
Exercises for STK 4500

P̊al Lillevold and Dag Svege

1 Diversification

We consider a portfolio of identical annuities on N lives, all of the same age
x. The annuities are paid lifelong, annually, and in advance, and with a delay
period of k years. The annual payment is constant and equal to 1. The cash
value of the annuity of person i in the portfolio is given by the random variable

Ki =
bT (i)

x c∑
t=k

vt · I(T (i)
x ≥ k)

where T (i)
x is the remaining life span of the person in question, the notation bξc

refers to the nearest integer smaller than or equal to ξ, and vt is the discounted
value today of a unit payable t years from now.

By Monte Carlo simulation you shall find an approximate probability distri-
bution for the average cash value of the annuity payments in the portfolio, i.e.
an approximate probability distribution for the stochastic variable

P =
1
N

N∑
i=1

Ki

This should be carried out under two different ways of modelling the achieved
return on the investments:
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• Deterministically and with

vt+1

vt
= exp (−µ) , t = 1, 2, ..

• Stochastically and with

vt+1

vt
= exp

(
−
(
µ− σ2

2

)
− σ · Zt

)
, Z1,Z2,...u.i.d. ∼ N(0, 1)

Show that the expected reurn in the stochastic model equals the return in
the deterministic model.

For the distribution of the life spans we assume a pure Gompertz death
intensity such that the remaining life span can be simulated by means of the
function

Tx =
log
(

1− log(c)·log(u)
β·cx

)
log(c)

, u ∼ U(0, 1)

Make the program such that the parameters (N, x, k, µ, σ, β, c) can be chosen
as parameter values. For the concrete calculations, we put

(x, k, µ, σ, β, c) = (50, 17, 0.055, 0.056, 0.0000202, 1.1015)

while the number of insured customers should be able to vary: N ∈ {1, 2, ..., 20}.
The asymptotic distribution of P when the number of insured customers go

to infinity is given by the expected value. Show that

E(P | v1, v2, v3, ...) =
∞∑
t=k

vt · tpx

Compare the standard deviation of the asymptotic distribution, which only con-
siders the financial uncertainty, with the standard deviation in the probability
distribution, which considers both demographic uncertainty (life span) and fi-
nancial uncertainty.
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2 Stocks/bonds

We have two stochastic variables,

St = value of stock at time t
Bt = value of bond at time t

The initial values (S0, B0) are known, and we assume that the simultaneous
probability distribution is given by:

St = S0 exp
[(
µS −

σ2
S

2

)
t+ σS · Vt

]
Bt = B0 exp

[(
µB −

σ2
B

2

)
t+ σB ·Wt

]

(Vt2 − Vt1 ,Wt2 −Wt1) ∼ N

((
0
0

)
, (t2 − t1) ·

(
1 ρ
ρ 1

))
We shall study the stochastic variable for the ratio between the stock price and
the bond price at time t

Zt =
St
Bt

Show that

Zt = Z0 exp
[(
α− β2

2

)
t+ β · Ut

]
where

Ut ∼ N(0,
√
t)

α = (µS − µB) + σB(σB − ρ · σS)
β2 = σ2

S + σ2
B − 2 · σS · σB · ρ

Φ(·) is the cumulative distribution function of the standard normal distribution.
Show that:

Pr{Zt
Z0

> k} = Φ
((

α− β2

2
− log(k)

t

) √
t

β

)
and that:

Pr{Zt
Z0

> 1} > 1
2
⇐⇒ µS −

σ2
S

2
> µB −

σ2
B

2
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Plot Pr{Zt > k} and the probability density of Zt, f(k), for t ∈ [0, 40] and for
the following parameter values:

S0 = 1
B0 = 1
µS = 0.10
µB = 0.05
σS = 0.20
σB = 0.05
ρ = 0.40
k = 1

Assume that the share has an expected return i and a standard deviation s per
time unit. Show that

µ = log(1 + i)

σ =

√√√√log

(
1 +

(
s

1 + i

)2
)

and illustrate graphically the relationship between i and µ and between s and
σ. Show that

Cov
{
St+1 − St

St
,
Bt+1 −Bt

Bt

}
= exp[µS + µB ] · (exp[ρ · σS · σB ]− 1)

and illustrate graphically the relationship between Corr
{
St+1−St

St
, Bt+1−Bt

Bt

}
and

ρ.
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3 PDF premium reserve

In the model in Exercise 1 we showed that if we take both the financial and
the demographic uncertainty into account, the democratic uncertainty will soon
drown in the total uncertainty as the number of insured customers increases. In
this exercise we shall therefore neglect the demographic uncertainty.

We have a stream of payments {Gt, t ∈ [0, T ]} which we consider to be
deterministic and which is described by the file ’betalingsstrom.txt’. The cash
value of this stream of payments as a function of the financial development is

K(v1, v2, v3, ...) =
T∑
t=k

vt ·Gt

In Exercise 1, where we studied an annuity, we put Gt = tpx, but this quantity
may also include disability benefits and survivor’s pensions. In our case, the
stream of payments is such that

K(v1, v2, v3, ... | v1 = v2 = v3 = ... = v) =
∞∑
t=k

vt ·Gt ,

where v is a constant, becomes the premium reserve of a pension scheme.
Using Monte Carlo simulation you shall find a probability distribution for

K(v1, v2, v3, ...) under two different models for vt:

• Normally distributed log-returns

vt+1

vt
= exp

(
−
(
µ− σ2

2

)
− σ · Zt

)
, Z1,Z2,...u.i.d. ∼ N(0, 1)

• Log-returns with t-distributed ’noise terms’ with f degrees of freedom and
the same variance as the normally distributed log-returns:

vt+1

vt
= exp

(
−
(
µ− σ2

2

)
− σ ·

√
f − 2
f
· Zt

)
, Z1,Z2,...u.i.d. ∼ t(f)

In addition to finding the two probability distributions, you shall find which
quartiles of the probability distribution K(v1, v2, v3, ... | v1 = v2 = v3 = ... = v)
corresponds to when we are using the parameter values:

T = 80

v =
1

1.03
µ = 0.055
σ = 0.056
f = 5
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4 GARCH

GARCH(1,1) is given by

St+1

St
= exp (µ+ σt · Zt) , Z1, Z2...u.i.d. ∼ N(0, 1)

σt+1 =
√
θ0 + θ1 · (σt · Zt)2 + θ2 · σ2

t

Show that the variance in the GARCH(1,1)-model has the following properties:

E(σ2
t | σ2

0) = θ0 ·
(

1− (θ1 + θ2)t

1− (θ1 + θ2)

)
+ (θ1 + θ2)t · σ2

0

lim
t→∞

E(σ2
t | σ2

0) =
θ0

1− (θ1 + θ2)

Experiment with different parameter values and try to find reasonable values
which give noticable accumulations of volatility for periods of as much as 250
consecutive values of the stochastic variables

St+1

St
, t ∈ {1, 2, 3, ..., 5000}

when we start with

σ0 = k ·

√
θ0

1− (θ1 + θ2)

A possible procedure is to make plots of

• the log-returns

log
(
St+1

St

)
, t ∈ {1, 2, 3, ..., 5000}

• the volatilities
σt , t ∈ {1, 2, 3, ..., 5000}

• and of the “memory”

E(σ2
t | σ2

0) , t ∈ {1, 2, 3, ..., 250}

A starting point may be the parameter values

µ = 0
θ0 = 0.000002
θ1 = 0.09
θ2 = 0.89
k = 3

6



5 Annual return

In this exercise we shall look at two models for daily log-returns and study their
impact on the annual return. St is the value of an asset on day t. and the two
models are as follows:

• GBM:

St+1

St
= exp (ν + σ0 · Zt) , Z1, Z2...u.i.d. ∼ N(0, 1)

ν =
(
µ− σ2

0

2

)
• GARCH(1,1):

St+1

St
= exp (ν + σt · Zt) , Z1, Z2...u.i.d. ∼ N(0, 1)

σ0 =

√
θ0

1− (θ1 + θ2)

σt+1 =
√
θ0 + θ1 · (σt · Zt)2 + θ2 · σ2

t

In the GBM-model we get an explicit expression for probability distribution
of St:

St ∼ logN
(
ν · t, σ0 ·

√
t
)
, t ∈ {1, 2, 3, ...}

We assume that there are 250 days in a year. We use the same parameters
as suggested in Exercise 3 and

S0 = 1
ν = 0

We wish to see if there are substantial differences in the probability distri-
butions of S250 in the two models justifying the use of the more complicated
GARCH(1,1)-model. Discuss and compare the difference. Base you analysis on
the following properties:

• Graphs showing probability densities

• Expectation

• Variance

• Skewness

• Heaviness of tails
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6 Premium development

In this exercise we shall look at a pension amount based scheme with a ‘consec-
utive updating of the pension amount level’.

The first premium is paid at time 0 and equals

1
n
· So · n|äx

At any time t ∈ {1, 2, ..., n − 1}, the premium for increased pension benefits
equals:(

t+ 1
n
· St −

t

n
· St−1

)
· n−t|äx+t =

1
n
· St · n−t|äx+t︸ ︷︷ ︸

premium in respect of ongoing accrual

+

+
t

n
· (St − St−1) · n−t|äx+t︸ ︷︷ ︸

premium in respect of rectroactive pick-up for salary increases

We have a population consisting of N persons at the age of x years. The
pension amount at time t is St = 0.2 · Lt, where Lt is the actual salary. We
assume that everybody in the population has the same salary and the same
salary development. The dynamics of the salary development is supposed to
follow a stochastic process:

Lt = (1 + λ) · Lt−1 + θ · δt · Lt−1 , δ1, δ2...δn u.i.d. ∼ N(0, 1)

For the concrete computations, we put N = 1 as this quantity only contributes
as a scaling factor.

• Make a simulation program showing projections of possible trajectories
for future premium development, decomposed as ’regular premium’ and
’jump premium’, assuming that the actual mortality development follows
the expected. The basic interest rate is denoted by i. As default values for
the parameters, we use the mortality assumptions from Exercise 1 and:

i = 0.03
λ = 0.03
θ = 0.015
x = 30
n = 35
L0 = 500000
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Compare to the deterministic special case where θ = 0.

Assume that we have a stochastic return (LN) and that the payments at
time t are just sufficient to obtain full coverage of the premium reserve. The
necessary premium reserve for the population at time t is:

Vt =
t+ 1
n
· St · n−t|äx+t ·N · tpx︸ ︷︷ ︸

number

while the actual develpoment of the premium reserve from t to time t+1 is such
that the ‘premium fund’ at time t+ 1 (just before the next payment) equals

Vt · (1 + rt+1︸ ︷︷ ︸
return

) (1)

where the return from time t to time t+ 1 is given by the stochastic process

1 + rt = exp
((

µ− σ2

2

)
+ σ · εt

)
, ε1, ε2...εn u.i.d. ∼ N(0, 1) (2)

µ = 0.055
σ = 0.056

• Illustrate possible trajectories for the actually necessary payments and
compare them to the projected trajectories for future premium develop-
ment.
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7 Premium development with guarantee

In this exercise we build on Exercise 6. In Exercise 6 the return was determined
by a stochastic process that could move both above and below the basic interest
rate.

To make the model more realistic, we shall assume that the insured are
guaranteed that the insurance fund at least follows the basic interest rate, and
hence that the actual payments never exceed the premium. The price the insured
have to pay for this guarantee, is that they will only receive a part ξ of the return
that exceeds the basic interest rate. This guarantee on the return is modeled
by replacing

1 + rt+1

in the equation (1) in exercise 6 by

(1 + i) + ξ · (rt+1 − i)+

As default value for the new parameter, we use

ξ = 0.7

• Illustrate possible trajectories for actually necessary payments and com-
pare them to actually necessary payments without a guarantee on the
return.

• Increase the number of simulations and make a graphical illustration show-
ing an ‘area’ where 5% of the simulated payments lie above and 5% lie
below at every time t in the future. Do this both with and without a
guarantee on the return.
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We want to see if the guarantee on the return is profitable for the insured.

• Find the probability distribution of the cash value of the payment stream
both with and without the guarantee, when they are discounted by the
actual return.

• Find the probability distribution of the ratio between the cash values of
the payment streams with and without the guarantee, discounted by the
actual return.
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8 The Wilkie model

Implement the Wilkie model as described in section 1.4 of the document ’Erik
Bølviken ch13.pdf’ and study possible trajectories.
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9 Deposit based pension

In this exercise we shall take a look at how big we can expect our pension to be
if we enter a deposit based pension scheme according to current rules. Assume
that the deposits are annual, in advance and of size

P (L,G) = 0.05 min{L− 2 G, 4 G} I(L > 2 G)+
0.08 min{L− 6 G, 6 G} I(L > 6 G)

In the period where deposits are being made, the money is invested in a mutual
fund developing according to (2) in Exercise 6. When the retirement age of 67
years is reached, the accumulated capital is invested in an annuity with a return
of kroner 13.26 per kroner. The return from the annuity is payed annually
and in advance, and will not be adjusted during the disbursement period. To
find the total return, we must take the payments from the National Insurance
(‘folketrygden’) into account. For the return from the National Insurance, we
use the simplified formula:

F (L,G) = 0.825 G+
0.42 min{L−G, 5 G} I(L > G)+
0.42

3
min{L− 6 G, 6 G} I(L > 6 G)

Assume that the salary L and the basic amount of the National Insurance
(Folketrygdens grunnbeløp) G are deterministic and develop according to

Gt = G0 · (1 + gG)t, G0 = 58778
Lt = L0 · (1 + gL)t

Find the probability distribution of the total pension in percent of salary at
retirement and later in the disbursement period. You must choose parameters
for annual adjustments in salary and G, as well as an initial salary L0 and the
age at which the first deposit is made. In the disbursement period, the pension
is to be measured in percent of an assumed, G-adjusted salary.
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10 Transferring to deposit based pension

In this exercise we shall compare the pension level and the costs of continuing a
return based pension (YP) versus transferring to a deposit based pension scheme
(IP). To make the pension levels comparable in the two alternatives, we assume
that the deposit account is used to buy an annuity when the retirement age of
67 years is reached. In contrast to Exercise 9 we shall in this exercise compute
in continuous time, and we shall assume that the returns are deterministic.
We shall use a pure Gompertz death rate (see the Exercise 1) with parameters
(β, c) = (0.0000014, 1.14). In addition, we have the following list of parameters
and functions::

Parameter Default Forklaring
x 40 age at entering
tov 10 length of service at the time of transfer
L 400000 salary
G 58778 the basic amount of the National Insurance
i 0.03 the discount rate of the basis for calculation
m 0.01 margin/ price for the return guarantee in YP
δ the annual interest intensity in the basis for calc., m incl.
a actual annual return
δ′ assumed actual annual interest intensity
g 0.03 annual increase in return, L og G
γ intensity of annual fincrease in return, L og G
SY P annual return YP
pY P 0.66 pension percentage YP
F calculated benefits from National Insurance
Vt premium reserve of YP at time t
πt premium intensity at time t
SIP annual return IP
P deposit as in exercise 9
E67 13.26 cash value factor for from age 67

We have the following dependent quantities:

n = 67− x
γ = log(1 + g)
δ′ = log(1 + a)
δ = log(1 + i+m)

v =
1 + g

1 + a

Show that

SIP · E67 =

{
P · (1 + a)n−tov · v

n−tov−1
log(v) , v 6= 1

P · (1 + a)n−tov · (n− tov) , v = 1
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YP return is computed by the following formulas

SY P = min
{

1,
[n]
30

}
· (pY P ·min{12 ·G,L} − F )+

F = 0.75 ·G+ 0.42 ·min{L−G, 5 ·G}+ +
0.42

3
·min{L− 6 ·G, 6 ·G}+

In the alternative of a transfer to IP at time tov, we will get a so-called ‘paid-up
policy’ (fripolise) from the YP. The value of the paid-up policy at retirement
age is

tov
n
· SY P · (1 + max{0,min{g, a− i−m}}n−tov

The premium intensity of YP is defined as the contribution necessary to obtain
linear accumulation, i.e.

dVt
dt

= πt +
(µx+t + max{δ, δ′}) · t

n
· St · Ex+t

Show that

πt =
1 + (γ − (δ

′ − δ)+) · t
n

· St · Ex+t

Finally, you shall implement the necessary quantities and, under varying as-
sumptions on actual return a ∈ (0.00, 0.10), compare

• SY P (when pY P ∈ {0.66, 0.60}) and SIP in percent of salary at retirement

• P og π (n̊ar pY P = 0.66) in percent of salary from today till retirement.
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11 Profit sharing

We start with the model and the parameters from Exercise 9.
We let equation (2) describe the development of the value of a portfolio

consisting of stocks and bonds developing according to the model in Exercise
2. The portfolio is rebalanced every year such that the value of the part of the
portfolio that is in stocks is kept constant. We also make the assumption that a
weighted sum of our lognormal stochastic variables is approximately lognormal.
Show that the parameters we used in equation (2) in Exercise 9 corresponds
to having κ = 0.10 of the portfolio in stocks. In the rest of the exercise, the
parameters (µ, σ) will be functions of the part κ of the portfolio that is in stocks.

The other new thing in this exercise is that we have a guarantee on return
that is priced implicitly through profit sharing. The insurance company guar-
antees that the deposit account pays the basic interest of 3% every year, but in
return the account is only accredited a part ξ of the return exceeding the basic
interest rate. For the insurance company this scheme includes a possibility for
loss depending on the return. The ‘fair’ part ξ0 can be determined such that
the probability for loss is less than φ

• Find the probability distribution of the total pension in percent of the
salary at retirement with and without the guarantee. Compare!

• Make a 3D-plot showing ξ0 as a function of κ and φ
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12 Pricing guarantees on return

Guarantees on return can also be priced explicitly as European put options as
described in the paper ’Pricing of minimum interest guarantees: Is the arbitrage
free price fair?’. This exercise is based on the model and the notation of the
paper. We use the parameters from the section ‘4 Case Study’ as default values.

• Make a calculator for a one period return guarantee based on equation
(10) in the paper.The calculator should give error messages for parameter
values that do not lead to a solution (see appendix A in the paper).

• Make the calculations needed to produce Figure 4 in the paper

The annual return guarantee can be met by either buying a put option or by
buying the replicating portfolio of the put option. For the replicating portfolio
at any time to have exactly the same value as the put option, it has to be
continuously rebalanced. In practice, the portfolio must be rebalanced slightly
delayed and at discrete times. Assume that we divide the year in a certain
number of trading days where the portfolio can be rebalanced. On trading day
t+1 we rebalance the portfolio such that if we had this portfolio on trading day
t, the value on trading day t + 1 would had been the same as the value of the
put option.

• Make a plot of the replicating portfolio which corresponds to the annual
return guarantee in the paper.{

at · St + bt · exp
(
−δ ·

(
1− t

h

))}
t=0,...,h−1

where

at = −Φ

−
 log

(
St

K

)
+
(
δ + σ2

2

)
·
(
1− t

h

)
σ ·
√

1− t
h


and h ∈ {250, 50, 12}.

• In continuous time the replicating portfolio is self-financing, but the de-
layed rebalancing in discrete time needs added capital. Find the distribu-
tion of cash value of the added capital divided by the option price.
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13 Project

In this exercise we shall do the same as in exercises 6 and 7, but based on the
Wilkie model from exercise 8. We look at a closed group of people of the same
age. They have the same salary development determined by

Lk = Lk−1 (1 + I lk)
I lk = Ik + l + Zlk

Zlk = σl εlk, ε
l
k ∼ N(0, 1)

where

l = 0.015
σl = 0.01

The return is determined by the development of the value of a portfolio of
shares and bonds following the Wilkie model from exercise 8. Note that we
have no use for inflation in this exercise as it is included as part of the model
generating stocks, interest rates, and salary. Note also that the model for salary
development includes Ik from the model for inflation. This quantity must not
be confused with I lk.
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14 Computation of efficient set and portfolio front.

We look at a market with three (risky) investment alternatives characterized
by:

µ =

 0.06
0.08
0.11


and

V =

 0.0025 −0.002 0.003
−0.002 0.01 0.01
0.003 0.01 0.04


Compute xMIN and z∗.

Illustrate the portfolio front graphically in the
(
r, σ2

)
-plane as well as in the

(r, σ)-plane.
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15 Optimization of investment portfolios with
risk free investment alternatives.

In this exercise we look at a situation where the investment universe is extended
by a risk free investment alternative. For the n risky investment alternatives,
we are using the same concepts and notation as before:

Ri = Value at the end of the period of unit invested in property i; i = 1, ..., n
µi = E (Ri) ; i = 1, ..., n
Vij = Cov(Ri,Rj); i, j = 1, ..., n
µ =t (µ1, ....., µn)
V = {Vij}i,j=1,...,n
We denote the risk free alternative as “alternative 0”, and let R0 denote

the (deterministic) value at the end of the period of one unit invested in this
alternative.

As in the case without a risk free alternative, we look at optimization of the
investment portfolio in the following way: Given 1) one unit at our disposal for
making investments, and 2) a chosen expected level of return, r, we shall put
together a portfolio of the (n+ 1) investment alternatives in such a way that
the variance of the value at the end of the period is as small as possible.

Formulate the optimization problem in a precise mathematical way, and
findthe Lagrange function needed to solve the problem.

15.1

For the optimal parts invested in properties 0 and 1, ..., n, respectively, we intro-
duce the notation x̂0 and x̂ =t (x̂1, ....., x̂n) . Show that x̂0, x̂ and the Lagrange
multipliers 2λ and 2ν must satisfy:

1) V x̂− λe− νµ = 0
2) λ+ νR0 = 0
3) x̂0R0 +t x̂µ = r
4) x̂0 +t x̂e = 1
where we have used the notation e =t (1, ....., 1) ∈ Rn.

15.2

Show that x̂ must satisfy:
V x̂ = ν (µ−R0e)
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15.3

Show that:
var (R (x̂)) = ν (r −R0)
and:
Cov (Ri, R (x̂)) = ν (µi −R0) ; i = 1, ..., n

15.4

Show that:

(µi −R0) =
Cov (Ri, R (x̂))
var (R (x̂))

(r −R0) ; i = 1, ..., n

and express in words what this relation tell us.
This is an essential relationship in CAPM (Capital Asset Pricing Model).

One often refers to Cov(Ri,R(bx))
var(R(bx)) as the security’s β, and it may be interpreted as

an expression for how sensitive the security is compared to the total market. .
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16 Mathematical properties at the portfolio front.

Let:
σ {R [x∗ (r)]}

denote the standard deviation for the efficient set corresponding to a chosen
return level r. Derive an analytic expression for the tangent through the point

(r0, σ {R [x∗ (r0)]})

at the portfolio front. Show that the portfolio front has an asymptote which
passes through the point (

E
{
R
(
xMIN

)}
, 0
)

and has slope
σ {R [z∗]}
E {R [z∗]}

Comment.
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17 “Free lunch” with a barbell strategy

In this exercise we look at a portfolio combining zero coupon bonds of different
maturity. By a zero coupon bond we mean a bond which only pays a unit at
maturity. It is possible to be “short“ in a bond, i.e. “to borrow” a bond/oblige
oneself to pay the unit back at maturity.

We consider the construction of the portfolio as follows: We lend a bond of
medium maturity m. The money received is invested in parts of two different
bonds, one with a short time s to maturity and one with a long time l, i.e.
s < m < l. Assume that the interest rate is constant through the period –
denote it by r = eρ − 1 – and that the possible variations in the interest are
horizontal shifts in the constant interest intensity.

17.1

Show how to determine a self-financing and interest immune portfolio.

17.2

Find analytic expressions for the parts that should be bought in the long and
the short term bond, respectively.

17.3

Show that the profit, i.e. the cash value of the cash flow from the obligations
bought subtracted the cash flow of the bond “shorted”, has a local minimum at
r.

17.4

To make concrete calculations, we put r = 0.03, s = 5,m = 10, l = 15. Calculate
how the portfolio is constructed and illustrate the profit as a function of the
interest rate.

17.5

Comment.
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