1 of 1

Diversification: Financial risk vs. demographic risk

Pål Lillevold and Dag Svege

Traditional life insurance/pension undertaking

M

2 of 2

Contractual payments to insured individuals contingent upon:

K

- remaining life time (annuity)
- \cdot time of death (life insurance)
- · occurence and potential duration of disability (long term disability pension)
- · dependent's remaining life time (survivor's pension)
- \cdot etc.

Risk nature

Risk exposure: Random variations associated with biometric events - "demographic risk"/"biometric risk"

3 of 3

Do away with risk *in the aggregate* by sufficiently large portfolio:

- \cdot diversification
- \cdot law of large numbers

Assumptions:

- homogenous risks
- \cdot independent risks

Funding: Basic principle

Policyholders' obligations in return for insurer's obligation:

K

- · Premium payments
- \cdot In advance

Pre-funding \Rightarrow Accumulation of funds

4 of 4

Funding: Technical base

K

Balance between :

- \cdot contractual outgoes
- \cdot contractual ingoes and investment income

Balance in *expected* terms and *over time*.

 $E(\sum \text{Benefits}) = E(\sum \text{Premiums} + \text{Return})$

Principle of equivalence

5 of 5

Carrying out principle of equivalence

Mathematical expectation w.r.t. demographic risk well understood and substantiated control perspective.

6 of 6

Mathematical expectation w.r.t financial risk:

- \cdot what is it?
- \cdot how does it work?

Financial risk not diversifiable

First attempt to manage financial risk

Pretend that financial risk can be disregarded.

Artificial deterministic discount rate: Sufficiently low to be realised "almost certain"

7 of 7

Not very satisfactory:

- · Theoretically
- \cdot In practice

Deterministic discount rate in risky financial ma

8 of 8

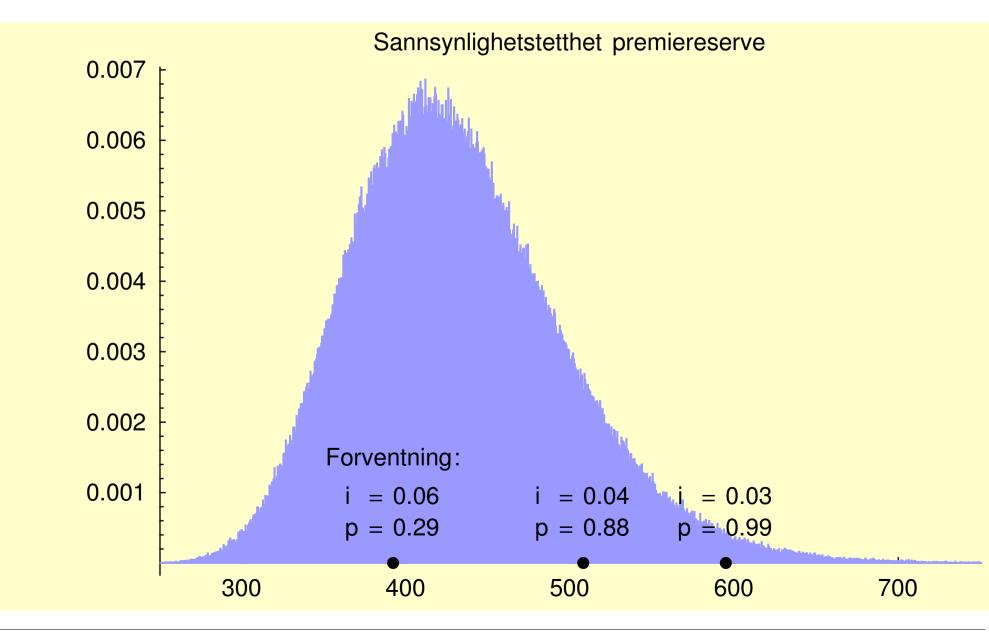
Setting:

- · actual return on insurer's investment is stochastic, with some probabilistic properti
- · insurer has an accrued liability represented as a future (stochastic) payment strea
- · premium reserve for accrued liability stipulated by discount rate "to the safe side"

Key question: Relation between:

- \cdot capital *actually required* to finance insurer's accrued liability expressed as a probability field of the second stribution
- \cdot premium reserve expressed as fixed amount; expected present value as if investmes was deterministic

Grafikk



9 of 9

Case for considering non-diversifiability of fina risk

10 of 10

Actuarial present value of deferred annuity :

$$P = \sum_{t=k}^{\infty} I[T > t] \cdot v_t$$

where

- $\cdot T$ = remaining lifetime for insured individual
- $\cdot v_t = \text{ factor for discounting from time } t \text{ back to time } 0.$

Non-diversifiability of financial risk: Basis

K

11 of 11

Two lifes T^1 and $T^2 i.i.d$.

$$P^{i} = \sum_{t=k}^{\infty} I[T^{i} > t] \cdot v_{t}; i = 1, 2$$

 P^1 and P^2 :

- · independent if v_t 's deterministic
- · dependent if v_t 's stochastic!

Non-diversifiability of financial risk: Basis

n lifes $T^1, T^2, ..., T^n$ *i.i.d*.

$$P^{i} = \sum_{t=k}^{\infty} I[T^{i} > t] \cdot v_{t}; i = 1, 2, ..., n$$

Assume v_t 's stochastic, whereby all P^i 's dependent with :

$$Var(P^{i}) = \sigma^{2}; \ i = 1, 2, ..., n$$
$$Cov(P^{i}, P^{j}) = \rho \cdot \sigma^{2}; \ i, j = 1, 2, ..., n$$

Then:

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}P^{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}\left(P^{i}\right) + \frac{1}{n}\sum_{i\neq j}\operatorname{Cov}\left(P^{i}, P^{j}\right) = \frac{1}{n^{2}}\cdot n\cdot\sigma^{2} + \frac{1}{n}\cdot n\cdot(n-1)\cdot\rho\cdot\sigma^{2} = \sigma^{2}\cdot\left[\frac{1}{n} + \frac{1}{n}\right]$$

which does not converge to zero as portfolio size increases!

Portofolio uncertainty in the absence of financia

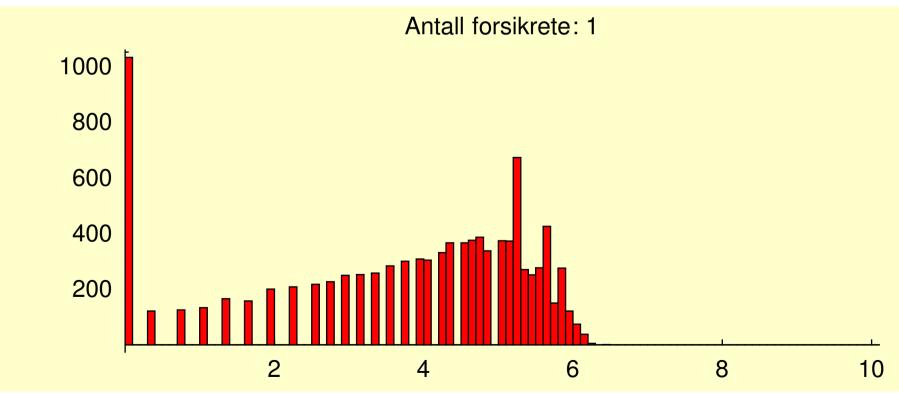
K

13 of 13

Pdf. for:

 $\frac{1}{n}\sum_{i=1}^{n}P^{i}$

under deterministic investment return.



Portofolio uncertainty in the presence of financ risk

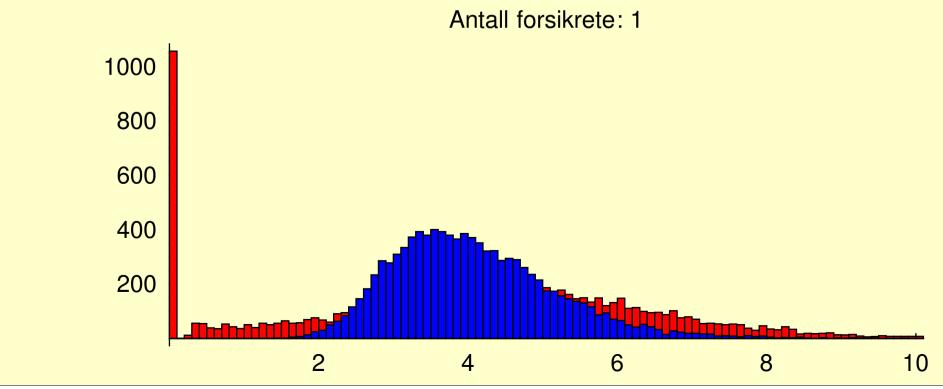
K

14 of 14

Pdf. for:

 $\frac{1}{n}\sum_{i=1}^{n}P^{i}$

under stochastic investment return.



©1988–2008 Wolfram Research, Inc. All rights reserved.

Volatility on investment return \rightarrow variability of annuity's present value.

Simple financial market model :

 R_t ; t = 1, 2, ... is investment return for period [t - 1, t)

Assume R_1, R_2, \dots *i.i.d.*, $\mu^R = E(R_t) \sigma^R = \sqrt{\operatorname{Var}(R_t)}$ Discount rates :

$$v_t = \prod_{s=1}^t \frac{1}{1+R_s}; t = 1, 2, \dots$$

Obtain (approximate) probability distribution for

$$P^{i} = \sum_{t=k}^{\infty} I[T^{i} > t] \cdot v_{t}$$

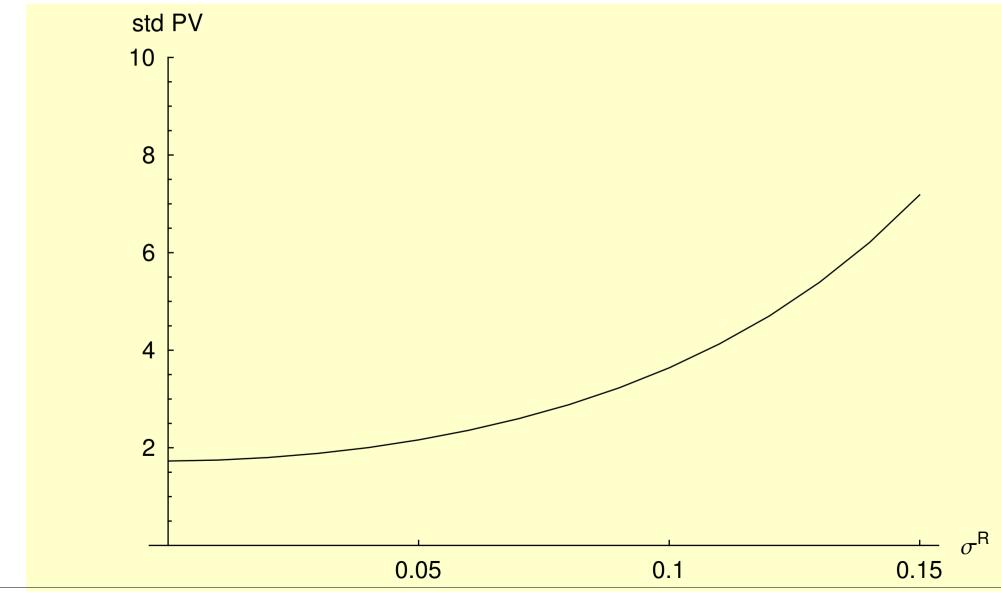
by stochastic Monte Carlo simulations of T^i and R_s

realisations. (Has in fact already been done for the preceding graphical illustrations). In particular : How does increased volatility in portfolio / financial markets affect the variability of annuity's present value, as measured by $Std(P^i; \sigma^R)$?.

Standard deviation for annuity's PV depending standard deviation for investment return.

K

16 of 16



^{©1988–2008} Wolfram Research, Inc. All rights reserved

17 of 17

Correlation between portfolios.

Two portfolios: $\{T^i\}_{i=1}^n$ and $\{T'^j\}_{j=1}^m$, all *i.i.d*

$$\operatorname{Cov}\left(\sum_{i=1}^{n} P^{i}, \sum_{j=1}^{m} P^{j}\right) = \sum_{i,j} \operatorname{Cov}(P^{i}, P^{j}) = m \cdot n \cdot \rho \cdot \sigma^{2}$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} P^{i}\right) = n \cdot \sigma^{2} + n \cdot (n-1) \cdot \rho \cdot \sigma^{2}$$

$$\operatorname{Var}\left(\sum_{j=1}^{m} P^{\prime j}\right) = m \cdot \sigma^{2} + m \cdot (m-1) \cdot \rho \cdot \sigma^{2}$$

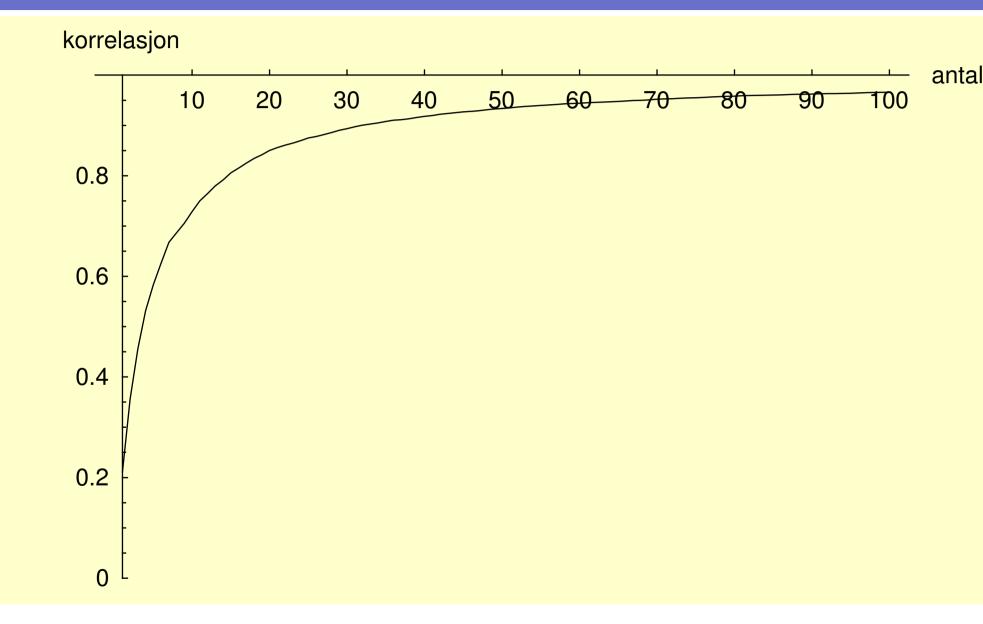
n = m:

$$\rho\left(\sum_{i=1}^{n} P^{i}, \sum_{j=1}^{n} P^{j}\right) = \frac{\rho}{\frac{1}{n} + \frac{(n-1)}{n} \cdot \rho} \xrightarrow{n \to \infty} 1$$

Correlation with increasing portfolio size

18 of 18

K



Modelling and managing financial risk: Foundar

19 of 19

Financial market model within probabilistic framework:

- (reasonably) realistic
- operational
- possible to validate and estimate against market data/behaviour

Risk issues:

- recall: non-diversifiable
- how to manage?
 - additional capital
 - investment strategies
 - other?
 - possible to completely eliminate the impact of risk?

Financial risk isolated vs. financial risk and liability risk considered as a whole

Course content

Stochastic modelling of financial assets' market value

Pension fund risk in the presence of financial risk

Derivatives:

- Concept
- Pricing
- Hedging

Application: Interest rate guarantees for pension contracts

Porfolio theory

Matching of assets to liabilities

Riks measures and management

Evaluation - Monte Carlo simulation.

Course content - limitations and extended perspective

Basic concepts!

Extended perspective of great importance for life insurance/pensions undertakings:

21 of 21

- Very long time perspective
- Interest rate sensivity
- Possibilities to hedge/securitise long term interest rate guarantees

Regulatory environement:

- Explicit pricing of interest rate guarantee compulsory in Norway from 2008
- Solvency II: Pension and insurance liabilities valued at "market value"
 - expected cash-flows discounted at market interest rates
 - investment strategy to hedge liability risk?