
1 Modelling II: Conditional and non-linear

1.1 Introduction

Insurance requires modelling tools different from those of the preceding chapter. Pension schemes
and life insurance make use of life cycle descriptions. Individuals start as ‘active’ (paying con-
tributions), at one point they ‘retire’ (drawing benefits) or become ‘disabled’ (benefits again) and
they may die. To keep track on what happens stochastic models are needed, but those can not be
constructed by means of linear relationships like in the preceding chapter. There are no numerical
variables to connect! Distributions are used instead.

The central concept is conditional probabilities and distributions, expressing mathematically that
what has occurred is going to influence (but not determine) what comes next. That idea is the
principal topic of the chapter. As elsewhere, mathematical aspects (here going rather deep) are
downplayed. Our target is the conditional viewpoint as a modelling tool. Sequences of states in
life cycles involve time series (but of kind different from those in Chapter 5) and are treated in
Section 6.6. Actually time may not be involved at all. Risk hetereogenity in property insurance is
a typical (and important) example. Consider a car owner. What he encounters daily in the traffic
is thoroughly influenced by randomness, but so is (from a company point of view) his ability as a
driver. These are uncertainties of entirely different origin and define a hierarchy (driver comes
first). Conditional modelling is the natural way to connect random effects of this kind which oper-
ate on different levels. The very same viewpoint is used when estimation and Monte Carlo errors
are examined in the next chapter, and there are countless other examples.

Conditional arguments will hang over much of this chapter, and we embark on it in the next
section. Copulas is an additional tool. The idea behind is very different from conditioning and as
a popular approach of fairly recent origin. Yet copulas has without doubt to come to stay. Section
6.7 is an introduction.

1.2 Conditional modelling

Introduction
Condional probabilities are defined in elementary textbooks in statistics. When an event A has
occurred, the probability of another one B changes from Pr(B) to

Pr(B|A) =
Pr(A ∩B)

Pr(A)
and also Pr(B|A) =

Pr(A|B)Pr(B)

Pr(A)
, (1.1)

where the right hand side is known as Bayes’ formula. This is of obvious relevance in gambling
where new information leads to new odds. In this book conditional probabilities are above all
modelling tools, used to express random relationships between random variables. Note the math-
ematical notation. The condition is always placed to the right of a vertical bar. Similar notation
is Y |x (the random variable Y given x) with conditional density functions and expectaton f(y|x)
and E(Y |x).

Conditional modelling is sequential modelling, first X and then Y given X. The purpose of
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this section is to demonstrate the power in this line of thinking. It is the natural way to describe
countless stochastic phenomena, and simulation is easy. Simply

generate X∗ and then Y ∗ given X∗,

the second drawing being dependent on the outcome of the first. The following examples all play
major roles in later chapters.

The conditional Gaussian
Bivariate normal models were in Chapter 2 defined through

X1 = ξ1 + σ1η1 and X2 = ξ2 + σ2(ρη1 +
√

1− ρ2 η2),

where η1 and η2 are independent and N(0, 1); see (??). Suppose X1 = x1 is fixed. Then η1 =
(x1 − ξ1)/σ1, which when inserted for η1 in the representation for X2 leads to

X2 = ξ2 + σ2(ρ
x1 − ξ1

σ1
+
√

1− ρ2η2),

or after some reorganizing

X2 = (ξ2 + ρσ2
x1−ξ1

σ1
) + (σ2

√

1− ρ2)η2.

expectation standard deviation
(1.2)

Here η2 is the only random term and, by definition, X2 is normal with mean and standard deviation

E(X2|x1) = ξ2 + ρσ2
x1 − ξ1

σ1
and sd(X2|x1) = σ2

√

1− ρ2. (1.3)

We are dealing with a conditional distribution. As x1 is varied, then so does the expectation
and (for other models) also standard deviation.

Survival modelling
Let Y be the length of life of an individual. A central quantity in life insurance is

tpy0
= Pr(Y > y0 + t|Y > y0), (1.4)

known as the survival probability. This defines how likely it is that a person of age y0 reaches
age y0 + t. If F (y) is the distribution function of Y , then from (1.1) left

tpy0
=

Pr(Y > y0 + t)

Pr(Y > y0)
=

1− F (y0 + t)

1− F (y0)
for y0, t > 0. (1.5)

Survival probabilities are often used on multiples of a given increment h, for example

yl = lh l = 0, 1 . . . and tk = kh k = 0, 1 . . . ,
age time

and we shall write kpl0 = tpy0
when y0 = l0h and t = kh and also pl = 1pl. The probability of

surviving the coming k time steps must be equal to

kpl0 = pl0 × pl0+1 × · · · × pl0+k−1,
first interval second interval k’th interval

(1.6)
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and survival modelling is built up from the one-step probabilities pl; more on that in Chapter 12.

Over threshold modelling
Conditional probabilities of the same type is needed in property insurance, particularly in connec-
tion with large claims and re-insurance. For a given threshold b we seek the distribution of

Zb = Z − b given that Z > b. (1.7)

We can write it down by replacing t and y0 on the right in (1.5) by z and b. Thus

Pr(Zb > z|Z > b) =
1− F (b + z)

1− F (b)
,

where F (z) is the distribution function of Z. When differentiated with respect to z, this leads to

fb(z) =
f(z + b)

1− F (b)
, z > 0. (1.8)

as the density function for the amount exceeding a given threshold. Tail distributions of this type
possess a remarkable property, see Pickands (1975). For most distributions used in practice, pre-
cisely if f(z) is not identically zero above some upper limit, then fb(z) becomes either a Pareto
density or an exponential one as b→∞ no matter which model we started with; see Chapter 9.

Risk hetereogenity
Claim numbers N in property insurance was in Chapter 3 described by

Pr(N = n|µ) =
λn

n!
exp(−λ) where λ = µT

Policy

or λ = JµT,
Portfolio

for n = 0, 1, . . .; see (??) and (??). The nomenclature implies that µ now has become random,
and there are many situations where this is a natural viewpoint. Consider automobile insurance.
Variation in risk among drivers is accounted for by one random µ for each individual, but µ might
also reflect general driving conditions (such as the weather) that affect everybody jointly.

Modelling is the same whether µ affects policies indvidually or the entire portfolio collectively.
The claim frequency observed (N for an individual or N for a portfolio) is the outcome of two
experiments in a hierarchy. First µ is drawn randomly and then N or N given µ; i.e.

µ = ξZ, N |µ ∼ Poisson(µT ) and µ = ξZ, N|µ ∼ Poisson(JµT ).
policy level portfolio level,

(1.9)

where E(Z) = 1 to make ξ mean intensity. The standard model for Z is Gamma(α), one of the
distributions introduced in Section 2.6. Now

E(µ) = ξ and sd(µ) = ξ/
√

α, (1.10)

and the variability in µ, controlled by α, is removed when α→∞ so that eventually µ = ξ becomes
fixed; more on this model in Section 8.3.
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Figure 6.1 Simulated portfolio claim frequency scenarios under annual change of risk

Common risk factors
Claim numbers N1, . . . , NJ depending on the same random intensity µ is a special case of a more
general viewpoint. A random variable ω is called a common factor for X1, . . . ,XJ if

X1, . . . ,XJ are conditionally independent given ω. (1.11)

The theory of crdibility in Section 10.5 is a classical example in actuarial science, and the market
component played the role of ω in the CAPM model of Section 5.3. If ω isn’t directly observable,
we are dealing with hidden or latent factors.

Common factors (whether hidden or not) invariably increase risk and they are impossible to diver-
sify. Figure 6.1 is a simulated example where claim frequencies were generated over 25 years for
one ‘small’ and one ‘large’ car insurance portfolio. The intensity µ, changed every year and was
the same for all policies. Suppose µ follows a Gamma model. Claim frequencies are then generated
through

Z∗ ∼ Gamma(α), µ∗ ← ξZ∗ and then N ∗ ∼ Poisson(Jµ∗T ).

The experiments in Figure 6.1 were run as 25 independent drawings for each of m = 20 scenarios
plotted jointly. Underlying parameters were

ξ = 5%, α = 100, T = 1,

which means that claim frequency per car is 5% in an average year and the standard deviation 10%
of that; see (1.10). Fluctuations in Figure 6.1 match this fairly well1, but the main point is the

1The oscillations in both plots go out to about ±20% of the position of the straight line, and the 10%
relative standard deviation emerges when you divide by two.
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uncertainty which is no smaller (in relative terms) for the large portfolio. That runs contrary to
what has seen before (Section 3.2) and reflects that the impact of common factors isn’t removed
through portfolio size. The mathematics is given in Section 6.3.

Monte Carlo distributions
Simulation experiments are often run from parameters that have been estimated from historical
data. The distribution of the simulations are then influenced by estimation error in addition to
ordinary Monte Carlo randomness. To be specific, suppose the claim frequency N against a port-
folio follows the ordinary Poisson model with fixed intensity µ and let µ̂ be its estimate (method
in Chapter 8). The scheme is then

historical data −→ µ̂ −→ N ∗,
estimation Monte Carlo

and the question is how both sources of error are aggregated. A first step is to notice that the
model for N ∗ is really a conditional one; i.e

Pr(N ∗ = n|µ̂) =
(JT µ̂)n

n!
exp(−JT µ̂), n = 0, 1, . . . ,

and we must combine with statistical errors in the estimation process. The argument is given in
Chapter 7.

1.3 Risk from subordinate level

Introduction
Risk variables X influenced by a second random factor ω on a subordinate level were introduced
above. Think of ω as personal qualities of a policy holder, background conditions affecting an
entire insurance portfolio or market risk in finance. The importance of this kind of uncertainty was
examined in Section 5.3 through a specific model (CAPM), but it is also possible to proceed more
generally through the conditional mean and standard deviation only. To this end let

ξ(ω) = E(X|ω) and σ(ω) = sd(X|ω), (1.12)

and the aim of this section is to examine the risk of an insurance portfolio when mean and standard
deviation of individual claims vary with ω.

The double rules
Our tool is two operational rules that is best introduced generally. Suppose the distribution of Y
depends on a random vector X. The condional mean ξ(x) = E(Y |x) plays a leading role in risk
modelling; see Section 6.4. Here the issue is how ξ(x) and σ(x) = sd(Y |x) influence Y . Much
insight is provided by the identities

E(Y ) = E{ξ(X)}
double expectation

for ξ(x) = E(Y |x) (1.13)

and

var(Y ) = var{ξ(X)} + E{σ2(X)}
double variance

for σ(x) = sd(Y |x), (1.14)
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which are proved in Appendix A. Both ξ(X) and σ2(X) are random variables, and the expectation
of the former is the expectation of Y . The double variance formula decomposes var(Y ) into two
positive contributions with consequences reaching far.

Neither formula requires conditional modelling beyond mean and standard deviation, and a number
of useful results can be derived from them. They will in Chapter 7 play a main role when errors of
different origin are analysed jointly.

Impact of subordinate risk
Let Xj be a random variable depending on ωj for j = 1, . . . , J . The independence of X1, . . . ,XJ

is still assumed, but this now means that they are conditionally independent given ω1, . . . , ωJ .
Consider the two different sampling regimes

ω1 = . . . = ωJ = ω
common factor

and ω1, . . . , ωJ independent.
individual parameters

On the left ω is a common background factor affecting the entire portfolio whereas on the right ωj

is attached each Xj individually. Their effect on the portfolio risk X = X1 + . . . + XJ is widely
different, as we shall now see. It will be assumed that all Xj and all ωj follow the same distribution
(not essential).

Consider first the case where ω is a common background factor for the entire portfolio. We are
assuming that ξ(ω) = E(Xj |ω) and σ(ω) = sd(Xj |ω), the same for all j. Hence, by adding all
contributions

E(X|ω) = Jξ(ω) and var(X|ω) = Jσ2(ω),

where the variance formula requires conditional independence. Invoke the double rules with Y = X
and X = ω. Then, by (1.14)

var(X ) = var{Jξ(ω)} + E{Jσ2(ω)} = J2var{ξ(ω)} + JE{σ2(ω)}
which with (1.13) leads to

E(X ) = JE{ξ(ω)} and sd(X ) = J
√

var{ξ(ω)} + E{σ2(ω)}/J,
common ω

(1.15)

and the standard deviation is of the same order of magnitude J as the expectation itself. Such risk
can not be diversified away by increasing the portfolio size. Indeed,

sd(X )

E(X )
→ sd{ξ(ω)}

E{ξ(ω)} as J →∞

which does not vanish if sd{ξ(ω)} > 0.

Things change drastically when each Xj is attached a separate and independently drawn ωj. The
mean and variance of each Xj are now calculated by inserting J = 1 in (1.15). When all of those
are added over all policies j, we obtain mean and variance on portfolio level; i.e

E(X ) = JE{ξ(ω)} and sd(X ) =
√

J [E{σ2(ω)}+ var{ξ(ω)}].
ω individual

(1.16)
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The mean is the same as before, but the standard deviation has now the familiar form proportional
to
√

J .

Example: Random claim intensity.
The preceding argument enables us to understand how random intensities µ1 . . . , µJ influence the
claim frequency N = N1 + . . . + NJ of the portfolio under the two sampling regimes above:

µ1 = . . . = µJ = µ
common factor

and µ1, . . . , µJ independent.
individual parameters

On the left a common (random) factor µ is allocated all policy holders jointly whereas on the right
there is one independent intensity for each individual. Claim frequencies N1, . . . ,NJ are in either
case assumed conditionally independent and Poisson given µ1, . . . , µJ . In particular

E(Nj |µj) = µjT and var(N |µj) = µjT.

which are the functions ξ(µj) and σ2(µj) in (1.15) and (1.16). Let ξµ = E(µj) and σµ = sd(µj) be
the mean and standard deviation of each µj. Then (1.15) yields

E(N ) = JTξµ and sd(N ) = JT
√

σ2
µ + ξµ/(JT ),

common µ

(1.17)

and the form of the standard deviation (almost proportional to J) explains the simulated patterns
in Figure 6.1 where the relative random uncertainty seemed unaffected by J .

This changes when µ1, . . . , µJ are drawn independently of each other. Now

E(N ) = JTξµ and sd(N ) = T
√

J(σ2
µ + ξµ/T ),

µ individual

(1.18)

and the standard deviation has the familiar form proportional to
√

J . The practical significance
for portfolio risk will be examined below.

Insurance risk: A simple formula
Another useful consequences of the double rules are simple formulae for mean and standard devia-
tion of total portfolio loss. Consider the model from Section 3.2; i.e

X = Z1 + . . . + ZN

where N , Z1, Z2 . . . are stochastically independent. Let E(Zi) = ξz and sd(Zi) = σz. Elementary
rules for expectation and variance of sums yields

E(X |N ) = N ξz and var(X|N ) = Nσ2
z .

To incorporate claim frequency N as an additional source of randomness take Y = X and X = N
in (1.13) and (1.14). Then

var(X ) = var(N ξz) + E(Nσ2
z ) = var(N )ξ2

z + E(N )σ2
z
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so that

E(X ) = E(N )ξz and var(X ) = E(N )σ2
z + var(N )ξ2

z . (1.19)

In particular, suppose N follows a pure Poisson distribution. Then E(N ) = var(N ) = JµT and

E(X ) = JµTξz and var(X ) = JµT (σ2
z + ξ2

z ), (1.20)

which will be used repeatedly.

Random claim intensity: Important at portfolio level?
How the portfolio liabilities X are affected by random claim intensities may be examined by insert-
ing the expressions for E(N ) and sd(N ) into (1.19). For the mean this leads to

E(X ) = Jξµξz, (1.21)

which applies both when µ is a common, random value for the entire portfolio and when drawn
individually for each policy holder. This changes when we move to the variance. Inserting (1.17)
and (1.18) into (1.19) right yields by some algebra (detailed in Section 6.8)

sd(X ) =
√

Jξµ(σ2
z + ξ2

z) ×
√

1 + δγ

pure Poisson due to random µ
(1.22)

where

δ = T
σ2

z

σ2
z + ξ2

z

· σ
2
µ

ξµ
and γ =

1 for indvidual µ
J for common µ

(1.23)

This lengthy expression tells a lot.

On the right in (1.22) there is a main, pure Poisson factor and a correction caused by µ being
random. How important is the latter? In practice δ is quite small (hardly more than a few per
cent, see Exercise 6.3.2), and when µ1, . . . , µJ are drawn independently of each other (so that
γ = 1), the correction factor becomes

√
1 + δ

.
= 1 + δ/2, not a large increase. The other case is

different. Now γ = J , and the correction
√

1 + Jδ may be huge.

1.4 The role of the conditional mean

Introduction
The conditional mean is much more than a brick in the double rules of the preceding section.
Consider

Ŷ = ξ(X) = E(Y |X), (1.24)

where X is a quantity observed. In theory Ŷ is the best way of predicting the value of an unknown
Y if you know X. This is a celebrated result in engineering and statistics, yet not that prominent
in actuarial science. When Y is a future value, we are often more concerned with summaries such
as mean and percentiles than with predicting its actual outcome.
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But there is another (and important) side to this. If X is information available, E(Y |X) is what is
expected given that knowledge and a natural break-even price for carrying the risk Y . Shouldn’t
what we charge reflect what we know? In property insurance X might be our experience with a
policy holder or other information with bearing on risk; see Part II. Here the main example is the
pricing of money market products such as bonds which will eventually lead us to the theoretical
interest rate curve.

A quick word on the meaning of X in the present context: Think of it as all present and past
observations with bearing on Y . Theoretical literature often refers to X as a sigma-field (typically
denoted F), but it is perfectly possible to understand the ideas involved without such formalism
from measure theory.

Optimal prediction and interest rates
Central mathematical properties of the conditional mean are

E(Ŷ − Y ) = 0 and E(Ŷ − Y )2 ≤ E(Ỹ − Y )2 for all Ỹ = Ỹ (X).
expected error expected squared error

(1.25)

Here the left hand side, which is merely a rephrasal of the rule of double expectation (1.13), signifies
that the expected prediction error Ŷ − Y is zero. This means that Ŷ is an unbiased prediction;
more on unbiasedness in Chapter 7. The inequality on the right in (1.25) shows that the conditional
mean is on average the most accurate way of utilizing the information X. The proof is given in
Section 6.8.

This result will now be used to examine interest rate forecasting. Suppose the rates {rk} follow the
Vasicĕk model of Section 5.6. Then

rk = ξ + σ(εk + aεk−1 + . . . + ak−1ε1) + ak(r0 − ξ),

where r0 is known and ε1, ε2, . . . are independent with zero mean and unit variance; see (??). It
follows that

E(rk|r0) = ξ + ak(r0 − ξ) and sd(rk|r0) = σ

√

1− a2k

1− a2
;

see Section 5.6 for the standard deviation. If the Vasicĕk model is true, r̂k = E(rk|r0) is the best
possible prediction of rk.

What about the accuracy? A quick look is provided by the formula for the standard deviation.
Possible annual parameters could be σ = 0.016 and a = 0.7. If so, the standard deviation becomes
1.4% after one year and 2.2% after five. This signifies huge prediction error, up to 3 − 4% and
more. Forecasting interest levels though simple statistical techniques is futile.

Term structure modelling
The conditional mean is in the money market much more important for pricing than for prediction.
As above let r0 be the rate of interest today (known) and r1, . . . , rk those of the future (unknown),
running over the time sequence tk = kh for k = 0, 1, . . .. Consider

P (r0, tk) = EQ(Dk|r0) where Dk =
1

1 + r1
· · · 1

1 + rk
. (1.26)
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Here Dk is a discount and had future rates of interest been known, that is what you would have been
charged today for the right to receive one money unit at tk; i.e. for a unit-faced, zero-coupon bond
expiring at that time. The rates r1, . . . , rk are (of course) unknown, but there are views on what
they are going to be, leading to the expectation of Dk on the left in (1.26). This is a theoretical
price of a zero-coupon bond. When the situation is analysed in Chapter 14, it will emerge that a
risk-neutral Q-model should be employed, hence the subscript Q. This Q-model is not the same
as the one describing real interest rate fluctuations. It was the same with equity option in Section
3.5.

There are now two pricing systems for zero-coupon bonds. The preceding theoretical term struc-
ture P (r0, tk) is a based on a mathematical description of the market view, but there are also the
observed prices P (0 :k) introduced in Section 1.4. Why bother with the theoretical ones at all?
Answer: We need them to describe future bond prices and their uncertainty. For example, suppose
r∗k is a Monte Carlo rate of interest at tk. Then P (r∗k, t) is a simulated price at time tk of a bond
expiring at tk + t. Such simulations will in Chapter 15 play a crucial role with modern fair value
accounting and with the coordination of assets and liabilities in the life insurance industry.

Surely the observed bond prices P (0:k) and the theoretical ones P (r0, tk) at time t0 = 0 should be
equal? They must if the Q-model correctly reflects the market view, and it is common to calibrate
parameters by matching the two sets of prices.

Example: The Vasicĕk term structure
Countless theoretical bond pricing schemes have appeared in the literature; see Section 6.9. They
make use of a mathematical limiting process where h→ 0 and carefully constructed Q-models that
allow explicit formulae. One of the simplest and most widely used is the Vasicĕk model

rk − rk−1 = aqh(ξq − rk−1) +
√

hσqεk,

which was introduced through (??). The parameters are now subscripted with q to emphasize
risk-neutrality. Calculations of (1.26) under this model are carried out in Exercises 5.7.12-16 which
lead to

P (r0, t) = eA(t)−B(t)r0 (1.27)

where

B(t) =
1− e−aqt

aq
and A(t) = (B(t)− t)

(

ξq −
σ2

q

2a2
q

)

− σ2
qB(t)2

4aq
. (1.28)

We may interprete P (r0, t) as the price in a Vasicĕk world of a zero-coupon bond maturing at time
t when r0 is the present rate of interest. The model goes back to Vasicĕk (1977).

Monte Carlo term structures
With modern computational power simple bond price formulae may not be so important as before,
and it is perfectly feasible to compute P (r0, tk) by Monte Carlo and store it as a table over a suit-
able set of pairs (r0, tk). Simulations such as P (r∗k, t) may then be read off approximately from the
table. The minor numerical inaccuracy is of little practical importance, and we may now employ
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any Q-model we like. Here is an implementation for the Black-Karisinsky model (which does not
allow simple bond price schemes):

Algorithm 6.1 The Black-Karisinsky term structure
0 Input: m, ξq, aq, σq, r0, h and

σx = σq/
√

1− a2
q , x0 = log(r0/ξq) + σ2

x/2

1 P ∗(k)← 0 for k = 1, . . . ,K %P ∗(k) the theoretical bond price

2 Repeat m times
3 X∗ ← x0, D∗ ← 1/m %D∗ will serve as discount

4 For k = 1, . . . ,K do
5 Draw ε∗ ∼ N(0, 1) and X∗ ← aqX

∗ + σqε
∗

6 r∗ ← ξqe
−σ2

x/2+X∗

and D∗ ← D∗/(1 + r∗)
7 P ∗(k)← P ∗(k) + D∗ %The k-step discount summarized

8 Return P ∗(k) for k = 1, . . . ,K

The algorithm simulates future rates of interest and updates the stochastic discounts as it goes
through the inner loop over k. Output from the outer loop are Monte Carlo approximations P ∗(k)
to P (r0, tk) for k = 1, . . . ,K. Re-runs for many different r0 are necessary.

If you want the computations to run on a finely meshed time scale, you must adapt the parameters
as explained in Section 5.7. The examples in Figure 6.2 have been run om a crude annual one with
parameters

ξq = 4%, aq = 0.7, σq = 0.25 or ξq = 4%, aq = 0.5, σq = 0.31317.

Bond prices have been converted to the yield curve through

r̄∗(0:k) = P ∗(0:k)−1/k − 1,

which is the average rate of interest over the period in question; see Section 1.4. The initial rate
r0 varied between r0 = 2%, 4% 6% 8% and 10% which produced the different shapes in Figure 6.2.
In the long run the average yield tends to ξ = 4% with a speed determined by aq.

1.5 Stochastic dependence: General

Introduction
General probabilitic descriptions of dependent random variables X1, . . . ,Xn are provided by joint
density functions f(x1, . . . , xn) or joint distribution functions F (x1, . . . , xn). The latter are
defined as the probabilities

F (x1, . . . , xn) = Pr(X1 ≤ x1, . . . Xn ≤ xn).

Its n-fold partial derivative with respect to x1, . . . , xn is (when its exists) the density function
f(x1, . . . , xn) which may also be interpreted as the likelihood of the event

X1 = x1, X2 = x2, . . . , Xn = xn,
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Figure 6.2 Interest rate curves (from m = 10000 simulations) under the Black-Karisinsky model

when the initial rate of interest is varied.

though formally (in a strict mathematical sense) such probabilities are zero for continuous vari-
ables. Textbooks in probability and statistics often start with density functions. We need them for
parameter estimation in the next chapter, but they are otherwise not much used in this book (with
more advanced stochastic modelling they may play a vital role in checking logical consistency, but
that is with our problems always obvious). Copulas in Section 6.7 are examples of modelling joint
density functions directly.

Factorization of density functions
Whether X1, . . . ,Xn is a series in time or not we may always envisage them in a certain order. This
observation opens for general simulation technique. Simply go recursively through the scheme

Sample X∗
1 X∗

2 |X∗
1 · · · X∗

n|X∗
1 , . . . ,X∗

n−1

Probabiltities f(x1) f(x2|X∗
1 ) · · · f(xn|X∗

1 , . . . ,X∗
n−1),

where each drawing is conditional on what has come up before. We start by generating X1 and end
with Xn given all the others. The order selected does not matter in theory, but in practice there is
often a natural sequence to use. If it isn’t, look for other ways to do it.

The sampling scheme reflects the general factorization of joint density functions. Multiply the
conditional ones together, and you get

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1, . . . , xn−1).
general factorization

(1.29)

Note the notation where all density functions are denoted f though they differ according to their
arguments. A special case is Bayes’ formula. One version is

f(x1|x2, . . . , xn) =
f(x2, . . . , xn|x1)f(x1)

f(x2, . . . , xn)
(1.30)
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where the conditional density function of X1 given x2, . . . , xn is referred back to the opposite form
of X2, . . . ,Xn given x1. This type of identity is crucial for Bayesian estimation in Section 7.6.

Types of dependence
Several special cases of (1.29) are of interest. The model with a common random factor in Section
6.2 is of the form

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1).
Common factor: First variable

(1.31)

Here the conditional densities only depend on the first variable, and all the variables X2, . . . ,Xn

are conditionally independent given the first. Full independence means

f(x1, . . . , xn) = f(x1)f(x2) · · · f(xn).
Independence

(1.32)

Finally, there is the issue of Markov dependence, typically associated with time series. If Xk is
attached to time tk for k = 1, . . . n, the model is now

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|xn−1),
Markov dependence

(1.33)

where Xk only depends on the preceding xk−1 with the earlier xk−2, xk−3, . . . being irrelevant. Most
models in life insurance belongs to this class, and the random walk and first order autoregression
models of Section 5.6 do too; see below. How the general sampling scheme above is adapted is
obvious, but the Markov situation is so important that the steps have been summarized through
the following algorithm:

Algorithm 6.2 Markov sampling
0 Input: Conditional models
1 Generate X∗

1

2 For k=2,. . . ,n do
3 Generate X∗

k given X∗
k−1 %Sampling from f(xk|X∗

k−1)

4 Return X∗
1 , . . . ,X∗

n

Examples are given in Section 6.6 and in Exercise 6.5.1.

Linear and normal processes
All the time series models of Chapter 5 could have been introduced as Markov processes through a
sequence of conditional distributions. As an example, consider the Vasicĕk model (??) which reads

rk = rk−1 + (1− a)(ξ − rk−1) + σεk = ξ + a(rk−1 − ξ) + σεk

where ε1, ε2, . . . are independent with zero mean and unit variance. Suppose they are normal too.
Then

rk|rk−1 = r has the distribution of ξ + a(r − ξ) + σεk, εk ∼ N(0, 1),

13



and a model for the series {rk} is constructed by iterating over k = 1, 2 . . ., first specify r1|r0, then
r2|r1 and so on. This brings no particular benefit over the approach in Chapter 5, and indeed, the
dynamic properties of the model were in Section 5.6 derived without introducing the normal.

The sequence r1, . . . , rk inherits Gaussianity from the errors ε1, . . . , εk , and it is possible to write
down the joint density function. In the general case where ξ = (ξ1, . . . , ξn)′ is the vector of expec-
tations and Σ the covariance matrix the Gaussian density function reads

f(x) = (|2πΣ|)−1/2 exp{−1

2
(x− ξ)′Σ−1(x− ξ)} (1.34)

where |2πΣ| is the determinant of the matrix 2πΣ. This expression, though famous, plays no role
in this book.

The multinomial situation
One joint density function that will be used is the multinomial one; see Section 8.5. This model
is based on multinomial sampling (Section 4.2) where one label among K is selected according to
probabilities p1, . . . , pK (here p1 + . . . + pK = 1). This is repeated n times with each trial being
independent of all others. Let Nk is the number of times label k appears. The vector (N1, . . . ,NK)
is then multinomially distributed with density function

Pr(N1=n1, . . . , NK=nK) =
n!

n1! . . . nK !
pn1

1 . . . pnK

K (1.35)

where n1 + . . . + nK = n. Take K = 2 and we are back to the ordinary binomial.

The model (1.35) can be justified through a conditional argument. You have to be familiar with the
binomial distribution. Let bin(n, p) be the binomial density function based on n trials and success
probabiltiy p and suppose (for simplicity) that K = 3. Then

N1 ∼ bin(n, p1), N2|N1 = n1 ∼ bin

(

n− n1,
p2

p2 + p3

)

, N3 = n− n1 − n2,

where N3 is fixed by the two others. What lies behind the distribution stated for N2 in the middle?
We know that N1 has absorbed n1 trials. There are then n − n1 of them left for N2 and N3 and
among those label 2 must occur with probability p2/(p2 + p3).

The joint density function of (N1, N2) now becomes

n!

n1!(n− n1)!
pn1

1 (1− p1)
n−n1 × (n− n1)!

n2!(n− n1 − n2)!

(

p2

p2 + p3

)n2
(

1− p2

p2 + p2

)n−n1−n2

,

and if this is multplied out, you will discover that many of the factors cancel. The expression
simplifies to

n!

n1!n2!(n− n1 − n2)!
pn1

1 pn2

2 (1− p1 − p2)
n−n1−n2 =

n!

n1!n2!n3!
pn1

1 pn2

2 pn3

3

which is (1.35) when K = 3.
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Figure 6.3 The life cycles of two members of a pension scheme.

1.6 Markov chains and life insurance

Introduction
Liability risk in life, pension and disability insurance are based on probabilistic descriptions of life
cycles like those in Figure 6.3. The individual on the left dies at 82 having retired 22 years earlier at
60, whereas the other is a premature death at 52. A pension scheme consists many (even millions!)
of members like those, each with his individual life cycle. Disability is a little more complicated,
since there might be transitions back and forth; see below. It is worth noting that a switch from
active to retired is determined by a clause in the contract, whereas death and disability must be
described in random terms.

Each of the categories of Figure 6.3 will be called a state. A life cycle is a sequence {Cl} of
such states with Cl being the category occupied by the individual at age yl = lh. We may envisage
{Cl} as a step function, jumping occasionally from one state to another. There are three of them
in Figure 6.3. This section demonstrates how such schemes are described mathematically. Is it
really required? After all, we saw in Section 3.4 that uncertainty due to life cycle movements is
in insurance rarely very important. However, that does not make the underlying stochastic model
irrelevant. It is needed both to compute the expectations defining the liabiltities (Chapter 12) and
to evaluate portfolio uncertainty due to parameter error (Section 15.2).

Markov modelling
Consider random step functions {Cl} jumping between a limited number of states. The most fre-
quently applied model is the Markov chain. What makes such time series evolve is the so-called
transition probabilities

pl(i|j) = Pr(Cl+1 = i|Cl = j). (1.36)
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At each point in time there is a random experiment that takes the state from its current j to a
(possibly) new i. Note that the probabilitites defining the model do not depend on the track record
of the individual prior to age l. That is the Markov assumption. Monte Carlo is a good way to
find out how such models work; see Exercises 6.6.2 and 6.6.5.

Transition probabilities are usually different for men and women (not reflected in the mathematical
notation), and it is (of course) essential that they depend on age l. There is always a main role for
the survival probabilities pl = 1pl introduced in Section 6.2. For a simple pension scheme, such as in
Figure 6.3, the three states ‘active’, ‘retired’ and ‘dead’ are linked with the transition probabilities
shown.

pl active

active �
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H
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1− pl dead

pl retired

active �
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1− pl dead

pl retired

retired �
�

�
�*

H
H

H
Hj

1− pl dead

Before retirement At retirement After retirement

The details differ according to whether we are before, at or after retirement. Note the middle dia-
gram in particular, where the individual from a clause in the contract moves from active to retired
(unless he dies).

A disability scheme
Disability modelling, with movements back and forth between states, is more complicated. Consider
the following scheme.

disabled

active �
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�
�*

H
H

H
Hj

�
�

�
��

?

dead

where

pi|a = Pr(disabled|active)

pa|i = Pr(active|disabled).

A person may become ‘disabled’ (state i), but there is also a chance that he returns to ‘active’
(state a). Such rehabilitations are not too frequent as this book is being written (2008), but it
could be different in the future, and we should certainly be able to to handle it mathematically.
New probabilities are then needed in addition to those describing survival. They have above been
denoted pi|a and pa|i. Both will in practice depend on age l, but this aspect is here omitted. The
probability of moving from ‘active’ to ‘disabled’ is denoted pi|a while the opposite is pa|i.

The transition probabilities for the scheme must combine survival and disability/rehabilitation.
The full matrix are as follows:
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To new state
From Active Disabled Dead Row sum

Active pl · (1− pi|a) pl · pi|a 1− pl 1

Disabled pl · pa|i pl · (1− pa|i) 1− pl 1

Dead 0 0 1 1

Each entry is the product of input probabilities. For example, to remain active (upper left corner)
the indvidual must survive and not become disabled, and similar for the others. Note the row sums.
They are always equal to one (add them and you see it is true). Any set of transition probabilities
for Markov chains must satisfy this restriction, which merely reflects that the individual either
moves somewhere or remains where he is.

Numerical example
Figure 6.4 shows a portfolio development that might occur in practice. The survival model was the
same as in Section 3.4, i.e.

log(pl) = −0.0009 − 0.0000462 exp(0.090767 × l)

Their corresponding annual mortalitites ql = 1− pl are plotted in Figure 6.4 left. Note the steep
increase on the right for the higher age groups where the likelihood of dying within the coming
year has reached 1.5% and more.

This model corresponds to an average length of life of 75 years and will be further discussed
in Chapter 12. It is reasonably realistic for males in a developed country. Disability depends
on the current political climate and on economic cycles and is harder to hang numbers on. The
computations in Figure 6.4 are based on

pi|a = 0.7%, and pa|i = 0.1%,

which are values invented. Note the rehabilitation rate, which may be too high. In practice both
probabilities might depend on age, as noted above.

How individuals distribute between the three states are shown in Figure 6.4 right for a portfolio
originally consisting of one million 30-year males. The scenario has been simulated using Algorithm
6.2 (details in Exercise 6.6.2). There is very little Monte Carlo uncertainty in portfolios this size
and one single run is enough. At the start all are active, but with age the number of people in the
other two classes grow. At 65 years a little over 80% remain alive (distributed between ’active’ and
’disabled’), a realistic figure. What may not be true in practice is the downwards curvature in the
disability curve which might be turned around if the disability rate is made age-dependent.

1.7 Introducing copulas

Introduction
Let U1 and U2 be uniform, dependent random variables and consider

X1 = F−1
1 (U1) and X2 = F−1

2 (U2), (1.37)

17



Age (years)
30 40 50 60

0
.0

0
.5

1
.0

1
.5

%

Mortalities

Age (years)
30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Dead

Disabled

Active

Portfolio simulation

Figure 6.4 A disability sceme in life insurance: Mortality model (left) and portfolio simulation

(right).

where F−1
1 (u) and F−1

2 (u) are the percentiles of distribution functions F1(x) and F2(x). This
simple set-up defines a modelling strategy that has grown explosively popular. Treat dependence
and univariate variation as two separate issues and supply a joint distribution function C(u1, u2),
known as a copula, to describe the covariation between U1 and U2 which is then passed on to X1

and X2. The inversion algorithm of Chapter 2 tells us that the marginal distributions of X1 and
X2 are determined by the percentiles used in (1.37).

The idea goes back to the mid twentieth century, originating with the work of Sklar (1959). One of
the advantages is that it enables us to tackle situations as those in Figure 6.5 where the variables are
more strongly related in certain parts of the space than in others. An example in practice is equities
that may correlate stronger in falling markets than on average; see Longin and Solnik (2001) for a
formal, statistical justification. Such phenomena is of interest in insurance too. Wütrich (2004) is
a theoretical contribution.

Copula modelling
A bivariate copula is the joint distribution function

C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2), 0 < u1 ≤ 1, 0 < u2 ≤ 1, (1.38)

where 0 < u1 ≤ 1 and 0 < u2 ≤ 1. Any function C(u1, u2) that is to play this role must be
increasing in u1 and u2 and satisfy

C(u1, 0) = 0, C(u1, 1) = u1 and C(0, u2) = 0, C(1, u2) = u2. (1.39)

Simple examples are

C(u1, u2) = u1u2 and C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−1/θ

independent copula Clayton copula
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where θ > 0 on the right. Both satisfy the side conditions (1.39). Why must we impose the latter?
Because C(u1, 0) = Pr(U1 ≤ u1, U2 ≤ 0) = 0 and C(u1, 1) = Pr(U1 ≤ u1, U2 ≤ 1) = Pr(U1 ≤ u1) =
u1, no uniforms without this! The rationale for the other conditions in (1.39) is similar.

The copula approach rests on a representation theorem discovered by Sklar (1959). Any joint
distribution function F (x1, x2) with strictly increasing marginal distribution functions F1(x1) and
F2(x2) may be written

F (x1, x2) = C(u1, u2) where u1 = F1(x1), u2 = F2(x2).
copula modelling univariate modelling

(1.40)

with a modified version even for counts. Working through copulas do not restrict the model at all,
and there are additional versions when antitetic twins (Section 4.3) are supplied for either uniform.
The copula on the left in (1.40) may be combined with either of

u1 = F1(x1), 1− u2 = F2(x2) orientation (1,2)

1− u1 = F1(x1), u2 = F2(x2) orientation (2,1)

1− u1 = F1(x1), 1− u2 = F2(x2) orientation (2,2),

(1.41)

and the effect is to rotate the copula patterns 90◦, 180◦ and 270◦ compared to the orginal one
(orientation (1, 1)); see Figure 6.5.

Extension to many variables is straightforward. A J-dimensional copula C(u1, . . . , uJ) is the distri-
bution function of J dependent uniform variables U1, . . . , UJ and satisfies consistency requirements
similar to those in (1.39); see Exercise ??. Transformations back to the original variables are now
through X1 = F−1

1 (U1), . . . ,XJ = F−1
1 (UJ ), and there are 2J ways of rotating patterns through

the use of antitetic twins, not just 4. You calculate copulas of sub-vectors by inserting ones, for
example the (joint) distribution function of U1, . . . , Uj is C(u1, . . . , uj, 1, . . . , 1).

Example: The Clayton copula
The Clayton copula was introduced above above, but its defintion can be extended to

C(u1, u2) = max
(

u−θ
1 + u−θ

2 − 1)−1/θ, 0
)

(1.42)

and it is easy to check that the copula requirements (1.39) are satisfied whenever θ ≥ −1. Nor is it
a difficult exercise to show that C(u1, u2) → u1u2 as θ → 0, and θ = 0 corresponds to U1 and U2

being independent. When θ is negative,

C(u1, u2) = 0 if u2 > (1− u−θ
1 )−1/θ,

and certain pairs (u1, u2) are forbidden territory; see also Figure 6.6 below. Hard restrictions of
that kind are often undesirable. Yet when negative θ is included, the family in a sense cover the
entire range of dependency that is logically possible.; see Exercises 6.7.2.and 6.7.3.

Simulated structures generated by the Clayton copula are shown in Figure 6.5. The marginal
distributions of X1 and X2 were normal with mean ξ = 0.005 and volatility σ = 0.05, precisely
as in Figure 2.5 (and realistic for equity returns). Most striking is the cone-shapes patterns which
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Figure 6.5 Simulated financial returns from normals and Clayton copula.

signify unequal degree of dependence in unequal parts of the space. Note, for example, the plot in
the upper, left corner where downside returns are higher correlated than upside ones. Such situ-
ations have been seen in practice; consult Longin and Solnik (2001). Consequences for downside
financial risk could be serious, and ordinary Gaussian models do not capture this. The other plots
in Figure 6.5 rotate patterns by varying the orientation of the copula and adjust dependency by
changing the Clayton parameter θ (high values for strong dependence).

Conditional distributions under copulas
Additional insight is provided by examining conditional distributions, and this is one of the ways
copulas are simulated too. We shall need an expression for

C(uJ |u1, . . . , uJ−1) = Pr(UJ ≤ uJ |u1, . . . , uJ−1).

In the two-dimensional case J = 2

c(u2|u1) = c(u1, u2) =
∂2C(u1, u2)

∂u1u2
,
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Figure 6.6 Conditional distribution functions for the second variable of a Clayton copula; given
first variable marked on each curve.

where c(u1, u2) is the joint density function of (U1, U2). When this is integrated with respect to u2

C(u2|u1) =

∫ u2

0
c(v|u1) dv =

∫ u2

0

∂2C(u1, v)

∂u1∂v
dv =

∂

∂u1

∫ u2

0

∂C(u1, v)

∂v
dv =

∂C(u1,u2)
∂u1

,

and conditional distribution functions are determined by differentiating the original copula. The
general result is

C(uJ |u1, . . . , uJ−1) =
∂J−1C(u1, . . . , uJ−1, uJ)/∂u1 · · · ∂uJ−1

∂J−1C(u1, . . . , uJ−1, 1)/∂u1 · · · ∂uJ−1
(1.43)

and you have to differentiate numerator and denominator J−1 times. This is proved in Section 6.8.

As an example, consider the Clayton copula (1.42) for J = 2. Straightforward calculations yields

C(u2|u1) = u
−(1+θ)
1 max

(

(u−θ
1 + u−θ

2 − 1)−(1+1/θ), 0
)

, (1.44)

where the expression is zero when θ < 0 and u2 > (1−u−θ
1 )−1/θ. Conditional distribution functions

have been plotted in Figure 6.6 with θ is large and positive on the left and large and negative on
the right. Shapes under u1 = 0.1 and u2 = 0.9 differ markedly, attesting to strong dependency
between U1 and U2, but the most notable feature is a lack of symmetry. For the distributions on
the left U2 is located in a narrow strip around u1 when u1 = 0.1, but its variation is much larger
when u1 = 0.9. It is precisely this feature that creates the cones in Figure 6.5.

Archimedean copulas
These might be the most widely used of all copulas, and many of the most important ones have a
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stochastic representation due to Marshall and Olkin (1988). Let Z be a positive random variable
with density function g(z). Its moment generating function (or Laplace transform) is

M(x) = E(e−xZ) =

∫ ∞

0
e−xzg(z) dz; (1.45)

see Section A.1. Only positive x is of interest, and M(x) decreases monotonely from one at x = 0
to zero at ∞. Define

Uj = M

(

− log(Vj)

Z

)

, j = 1, . . . , J (1.46)

where V1, . . . , VJ is a sequence of independent and uniform random variables. Then U1, . . . , UJ are
uniform too (which isn’t obvious!), and their joint distribution function is a copula of the form

C(u1, . . . , uJ) = φ−1{φ(u1) + . . . + φ(uJ )}, (1.47)

where φ(u) = M−1(u). Here φ−1(u) and M−1(u) are the inverse functions of φ(u) and M(u); for
example x = φ−1(u) is the solution of the equation φ(x) = u. The result is proved in Section 6.8.

The Clayton coula emerges when Z is Gamma distributed with density function

g(z) =
αα

Γ(α)
zα−1e−αz where α = 1/θ.

Then

M(x) =

∫ ∞

0
e−xz αα

Γ(α)
zα−1e−αz dz =

(

1 +
x

α

)−α

= (1 + θx)−1/θ

so that the two functions φ(u) and φ−1(x) become

φ(u) =
1

θ
(u−θ − 1), and φ−1(x) = (1 + θx)−1/θ. (1.48)

When these are inserted into (1.47), the earlier expression for the Clayton copula emerges.

The function φ(u) is known as the generator and the copulas (1.47) as the Archimedean class.
It was originally obtained by Kimberling (1974). Generators that are inverses of moment gener-
ating functions allow easy sampling (see below)2, but generators are not confined to this type.
Indeed suppose φ(u) decreases monotonely from infinity at u = 0 to zero at u = 1. Then, in the
two-dimensional case,

C(u1, 0) = φ−1{φ(u1) + φ(0)} = φ−1(∞) = 0

and

C(u1, 1) = φ−1{φ(u1) + φ(1)} = φ−1{φ(u1)} = u1

which are the copula requirements (1.39). General J is similar. We may even allow finite φ(0), but
the copula is now strictly zero whenever φ(u1) + . . . + φJ (uJ) > φ(0), and certain combinations
of u1, . . . , uJ are forbidden. In practice this is rarely what we want. A huge list of generators are
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Figure 6.7 Generator functions for Archimedean copulas

compiled in Table 4.1 in Nelsen (2006). The Clayton generator with θ = 0.2 and the polynomial
one φ(u) = (1− u)3 are plotted in Figure 6.7.

Simulation
A Monte Carlo simulation U∗

1 , . . . , U∗
J of a uniform vector under a copula is passed on to the original

variables through

X∗
1 ← F−1

1 (U∗
1 ), . . . ,X∗

J ← F−1
J (U∗

J ),

which is still another application of the inversion algorithm. There are simple exact or approximate
ways of calculating percentiles for most distributions used in this book (Gamma and t-distributions
are exceptions). But what about U∗

1 , . . . , U∗
J itself? One class of models that is easy to handle are

Archimedean copulas satisfying the Marshall-Olkin stochastic representation. Simply copy (1.46)
as follows:

Algorithm 6.3 Archimedean copulas
0 Input: φ(u)
1 Draw Z∗ %Z with Laplace transform M(u) = φ−1(u)

2 For j = 1, . . . , J repeat
3 Draw V ∗ ∼ uniform and U∗

j ← − log(V ∗)/Z∗

4 Return U∗
1 , . . . , U∗

J

When Z∗ is drawn from the standard Gamma distribution with shape α = 1/θ, a simulation

2For the inverse φ(u)−1(u) of a given generator to be a moment generating function of some distribution

is must be totally positive; i.e its derivatives must satisfy (−1)s dsφ−1(u)
dus ≥ 0 for all s; see Feller (1971),

p. 439.
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of the Clayton copula is returned.

This doesn’t work when θ < 0, and other copulas are not in a form convenient for Monte Carlo at
all. A general approach is to go recursively through the copula vector, first draw U∗

1 (an ordinary
uniform), then U∗

2 given U∗
1 and so on. Let C(uj|u1, . . . , uj−1) = Pr(Uj ≤ uj|u1, . . . , uj−1) be the

conditional distribution of Uj given the predecessors. Independent uniforms V ∗
1 , . . . , V ∗

J are passed
on to a copula simulation by solving the equations

C(U∗
j |U∗

1 , . . . , U∗
j−1) = V ∗

j , j = 1, . . . , J. (1.49)

Numerical methods are required in general. For Clayton copulas there is a neat algorithm:

Algorithm 6.4 The Clayton copula
0 Input: θ
1 Draw U∗

1 ∼ uniform and S∗ ← 0
2 For j = 2, . . . , J do
3 S∗ ← S∗ + (U∗

j−1)
−θ − 1 %Updating from preceding uniform

3 Draw V ∗ ∼ uniform
4 U∗

j ← {−S∗ + (1 + S∗)(V ∗)−θ/(θ+j−1)}−1/θ %Next uniform

5 Return U∗
1 , . . . , U∗

J

This algorithm, which has been used for copula simulations in this book is justified in Section
6.8.

Numerical example
Has copula modelling much practical impact? It depends (as always) on what the model is used for.
Here is an illustration based on two financial assets with returns R1 = eξ1+σ1ε1 and R2 = eξ2+σ2ε2

where ε1 and ε2 are N(0, 1). Ordinary Gaussian modelling specifies the correlation ρ = cor(ε1, ε2).
Results under this model will now be compared with those under a Clayton copula. We are in the
latter case assuming that ε1 = Φ−1(U1) and ε2 = Φ−1(U2) where Φ−1(u) is the Gaussian percentile
function. The models can be calibrated by taking ρ = cor{Φ−1(U1),Φ

−1(U2)} so that cor(ε1, ε2)
becomes the same under both models. A simple way is to use Monte Carlo and approximate ρ by

ρ∗ =
1

m

m
∑

1

Φ−1(U∗
1i)Φ

−1(U∗
2i)

where (U∗
1i, U

∗
2i), i = 1, , . . . ,m are simulations.

The experiments reported in Figure 6.8 used the Calyton copula with θ = 1 which corresponds
to ρ = 0.498 in the Gaussian model. Monthly exectations and volatiltities ξ1 = ξ2 = 0.005 and
σ1 = σ2 = 0.05 were the same as in Figure 6.5, and the model assumed corresponds to the scat-
terplot in the upper, right hand corner there. The density functions apply to the equally weighted
portfolio R = R1/2 + R2/2. Those on the left are for downside returns lower than b = −5%; i.e.
they are conditional densities of R given R < −5%, and have been computed by discarding all
samples for which the portfolio return exceeds 5%. There are considerable discrepancies under the
two models, but those go away for five-year returns on the right. Now the differences can hardly
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Figure 6.8 Density functions for the monthly returns below 5% (left) and five-year returns (right)
under models described i the text.

be seen (though there are two curves if you look hard). Five-year (or sixty-month) returns are
computed through the recursion

R∗
0:k = R∗

0:k−1(1 +R∗
k), k = 1, . . . , 60

where R∗
0:0 = 100 and R∗

1, . . . ,R∗
60 are independent drawings of the portfolio returns. Copulas ef-

fects as those under the Clayton model for θ = 1 can evidently be ignored for long-range projections
of financial risk.

1.8 Mathematical arguments

Section 6.3
Portfolio risk We shall verify the formula (1.22) for the standard deviation of the portfolio risk
X . Start with

var(X ) = var(N )ξ2
z + E(N )σ2

z ,

which is the right hand side of (1.19). Here E(N ) = JξµT whereas the variance varied with the
sampling regime. Let γ = J for common and γ = 1 for independent sampling of the claim intensity.
Then the standard deviation formulae in (1.17) and (1.18) may be summarized as

var(N ) = JT 2(γσ2
µ + ξµ/T ).

Inserting the expressions for E(N ) and var(N ) into the formula for var(X ) yields

var(X ) = JT 2(γσ2
µ + Jξµ/T )ξ2

z + JξµTσ2
z = JTξµ(σ2

z + ξ2
z) + JT 2γσ2

µ.
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or

var(X ) =
(

JTξµ(σ2
z + ξ2

z)
)

×
(

1 + γT
σ2

µ

ξµ

ξ2
z

ξ2
z + σ2

z

)

,

which is (1.22).

Section 6.4.
Optimal prediction To prove that Ŷ = E(Y |X) is the optimal predictor for Y start by noting
that

E(Y − a)2 = E(Y 2)− 2aE(Y ) + a2, minimized by a = E(Y ),

and apply this conditionally given X. Then, if Ỹ = Ỹ (X) is an arbitrary function of X,

E{(Y − Ŷ )2|X} ≤ E{(Y − Ỹ )2|X},

and when expectation with respect to X is passed over both sides, the rule of double expectation
yields

E(Y − Ŷ )2 ≤ E(Y − Ỹ )2

which is (1.25).

Section 6.7.
Conditional distributions We shall derive an expression for

C(uJ |u1, . . . , uJ−1) = Pr(UJ ≤ uJ |u1, . . . , uJ−1) =

∫ uJ

0
c(v|u1, . . . , uJ−1) dv

where c(uJ |u1, . . . , uJ−1) is the conditional distribution function of UJ given the others. To calculate
the integral introduce c(u1, . . . , uJ) and c(u1, . . . , uJ−1) as joint density functions of U1, . . . , UJ and
U1, . . . , UJ−1 and note that

c(uJ |u1, . . . , uJ−1) =
c(u1, . . . , , uJ)

c(u1, . . . , uJ−1)
=

∂JC(u1, . . . , uJ )/∂u1, . . . , ∂uJ

∂J−1C(u1, . . . , uJ−1, 1)/∂u1, . . . , ∂uJ−1
.

If D is the denominator, then

∫ uJ

0
c(v|u1, . . . , uJ−1) dv = D−1

∫ uJ

0

∂JC(u1, . . . , uJ−1, v)

∂u1, . . . , ∂uJ−1, ∂v
dv

= D−1 ∂J−1

∂u1, . . . , ∂uJ−1

∫ uJ

0

∂C(u1, . . . , uJ−1, v)

∂v
dv

= D−1 ∂J−1C(u1, . . . , uJ)

∂u1, . . . , ∂uJ−1
,

and it follows that

C(uJ |u1, . . . , uJ−1) =
∂J−1C(u1, . . . , uJ−1, uJ)/∂u1, . . . , ∂uJ−1

∂J−1C(u1, . . . , uJ−1, 1)/∂u1, . . . , ∂uJ−1
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as claimed in Section 6.7.

Stochastic representation of Archimedean copulas Let V1, . . . , VJ be independent and uni-
form, Z a positive random variable with moment generating function M(x) =

∫∞
0 e−xzg(z)dz

and define Uj = M(− log(Vj)/Z) for j = 1, . . . , J . We are to prove that U1, . . . , UJ follow an
Archimedean copula with generator φ(u) = M−1(u) provided Z is independent of V1, . . . , VJ . Note
that Vj = e−M−1(Uj)Z so that if Z = z is fixed, then

Pr(U1 ≤ u1, . . . , UJ ≤ uj |z) = Pr(V1 ≤ e−M−1(u1)z . . . , VJ ≤ e−M−1(uJ )z|z)

and since V1, . . . , VJ are independent,

Pr(U1 ≤ u1, . . . , UJ ≤ uj |z) = e−M−1(u1)z−...−M−1(uJ )z .

But

Pr(U1 ≤ u1, . . . , UJ ≤ uJ) =

∫ ∞

0
Pr(U1 ≤ u1, . . . , UJ ≤ uJ |z)g(z) dz

and hence

Pr(U1 ≤ u1, . . . , UJ ≤ uJ) =

∫ ∞

0
e−{M−1(u1)+...+M−1(uJ )}zg(z) dz

so that

Pr(U1 ≤ u1, . . . , UJ ≤ uj) = M{M−1(u1) + . . . + M−1(uJ)}

which is a Archimedean copula with generator φ(u) = M−1(u).

Algorithm 6.4 The Clayton copula for U1, . . . , Uj is

C(u1, . . . , uj) =



max(
j
∑

i=1

u−θ
i − j + 1, 0)





−1/θ

.

which must be differentiated with respect to u1, . . . , uj−1. This yields

∂j−1C(u1, . . . , uj)

∂u1 . . . ∂uj−1
=



max(
j
∑

i=1

u−θ
i − j + 1), 0)





−(1/θ−j+1)

×
j−1
∏

i=1

(

u
−(1+θ)
i (1 + (i− 1)θ)

)

,

and from (1.43) the conditional distribution function of Uj given u1, . . . , uj−1 becomes

C(uj|u1, . . . , uj−1) =

(

max(
∑j

i=1 u−θ
i − j + 1), 0)

max(
∑j−1

i=1 u−θ
i − j + 2), 0)

)1/θ−j+1

=

(

max(u−θ
j + sj−1), 0)

max(sj−1 + 1), 0)

)1/θ−j+1
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where sj−1 =
∑j−1

i=1 u−θ
i − (j − 1). A Monte Carlo drawing of U∗

j given U∗
1 , . . . , U∗

j−1 is therefore
the solution of the equation

(

max((U∗
j )−θ + S∗

j−1), 0)

max(S∗
j−1 + 1), 0)

)1/θ−j+1

= V ∗ where S∗
j−1 =

j−1
∑

i=1

(U∗
i )−θ − (j − 1)

and V ∗ is another uniform. It follows that

U∗
j = {−S∗

j−1 + (1 + S∗
j−1)(V

∗)−θ/(θ+j−1)}−1/θ

and the entire scheme can be organized as in Algorithm 6.4.
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Wütrich, M.V. (2004). Extreme Value Theory and Archimedean Copulas. Scandinavian Actu-
arial Journal, 3, 211-228.

1.10 Exercises

Section 6.2
Exercise 6.2.1 The following experiment illustrates the concept of conditional distributions. Let aj =
−0.5 + j/10, for j = 0, 1, . . . , 10. a) Simulate (X∗

1i, X
∗
2i) for i = 1, . . . , 10000 from the bivariate normal

with ξ1 = ξ2 = 5%, σ1 = σ2 = 25% and ρ = 0.5. b) For j = 1, 2, . . . , 9, select those pairs for which
aj−1 < X∗

1i ≤ aj and compute their mean ξ|j and standard deviation σ|j . c) Plot ξ|j and σ|j against the
mid-points (aj−1 + aj)/2, and interprete the plots in terms of the conditional density function (1.3). d)
repeat a), b) and c) with ρ = 0.9 and comment on how the plot changes.

Exercise 6.2.2 Consider a time series {Xk} of random variables such that the conditional distribution
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of Xk given all preceding ones are normal with

E(Xk|xk−1, xk−2, . . .) = xk−1 + ξ and sd(Xk|xk−1, xk−2, . . .) = σ.

Which of the times series models in Chapter 5 is this? see also Exercise 6.5.1.

Exercise 6.2.3 Let Z be a positive random variable and suppose X given Z = z is normal with

E(X|z)) = ξ and sd(X |z) = σ0

√
z.

Which model from Chapter 2 is this?

Exercise 6.2.4 Let the survival probabiltities be those used in Section 3.4.; i.e.

log(1pl) = −0.0009− 0.0000462 exp(0.090767× l).

a ) For l = 40 and l = 70 years, compute kpl as given in (1.6) and plot them as a function of k for
k = 1, 2, . . . , 30.

Exercise 6.2.5 Let N be an integer-valued random variable. a) Show that

∞
∑

n=1

Pr(N ≥ n) =

∞
∑

n=1

∞
∑

k=n

Pr(N = k) =

∞
∑

k=1

k
∑

n=1

Pr(N = k) =

∞
∑

k=1

kPr(N = k)

so that

E(N) =

∞
∑

n=1

Pr(N ≥ n).

Let Nl be the remaining length of life for somebody having reached l years. b) Use a) to establish that

E(Nl) =
∞
∑

k=1

kpl.

Exercise 6.2.6 Let X be an exponentially distributed random variable with density function f(x) =
β−1 exp(−x/β) for x > 0. Show that in (1.8) fa(y) = f(y).

Exercise 6.2.7 Suppose that f(x) = β−1α/(1 + x/β)1+α for x > 0 (this is the Pareto density). a) Show
that

fa(y) =
α/(a + β)

{1 + y/(a + β)}1+α
if fa(y) =

α/β

(1 + y/β)1+α

b) Interprete this result; i.,e what is the over-threshold distribution if the parent model is Pareto?

Exercise 6.2.8 A simple (but much less used) alternative to the gamma model to describe variation in
the claim intensity µ is the log-normal. The model for portfolio claims then reads

N|µ ∼ Poisson(JµT ) µ = ξ exp(−1

2
σ2 + σε), ε ∼ N(0, 1).

a) Show that

E(µ) = ξ and sd(µ) = ξ
√

exp(σ2)− 1
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b) Determine σ so that sd(µ) = 0.1 × ξ. c) Run and plot simulations of N similar to those in Figure 6.2,
using ξ = 5% and σ as you determined it in b). Take both J = 104 and J = 106 as portfolio size. d) Any
conclusions that differ from those connected to Figure 6.2 in the text?

Section 6.3
Exercise 6.3.1 Suppose claim frequency N ∼Poisson(JµT ). Show that the formulas (1.19) for mean and
variance of the total claim X nowx become

E(X ) = JµTξz and sd(X ) =
√

JµT (ξ2
z + σ2

z).

Exercise 6.3.2 Suppose claim intensities µ vary independently from one policy holder to another so that

sd(X ) =
√

Jξµ(σ2
z + ξ2

z)×
√

1 + δ where δ =
σ2

z

σ2
z + ξ2

z

× σ2
µ

ξµ
;

see (1.21) and (1.22). a) Show that δ ≤ σ2
µ/ξµ. b) Argue that the case ξµ = 5% and σµ = 5% would exhibit

huge variability in claim intensity. c) Use a) to show that
√

1 + δ ≤ 1.023 under the specification in b) and
argue that the added portfolio risk due to the hetereogenity in µ accounts for no more than 2.3% of the total
value of sd(X ). This strongly suggests that at portfolio level the impact of risk hetereogenity usually can be
ignored. The next exercise treats a related case where the conclusion is very different.

Exercise 6.3.3 As in Exercise 6.3.2 assume that µ varies randomly, but now as a common parameter
for all policy holders. a) Go back to (1.21) and explain why the factor

√
1 + Jδ =

√

1 + J
σ2

z

σ2
z + ξ2

z

× σ2
µ

ξµ
;

accounts fot the effect of the µ-variablity on sd(§). b) Compute it when

ξ = 5%, σµ = 1%,
σz

ξz
= 0.5 J = 100000.

Any comments? c) Show that the factor
√

1 + Jδ increases with the ratio σz/ξz . Is the impact of µ-variability
larger or smaller for heavy-tailed claim size distributions than for lighter ones?

Exercise 6.3.4 Suppose that X1, . . . , XJ are conditionally independent and identically distributed given a
common factor ω. a) Explain that (1.15) now becomes

E(X ) = JE{ξ(ω)} and sd(X ) = J
√

var{ξ(ω)}+ E(σ2(ω)}/J,

where ξ(ω) and sd(ω) are the conditional mean and standard deviation. b) Show that

sd(X )

E(X )
→ sd{ξ(ω)}

E{ξ(ω)} as J →∞.

c) What this tell you about risk diversification models with common factors? This result throws light on
the conclusion in Exercise 6.3.3

Exercise 6.3.5 Let N ∗ be a simulation of a Poisson claim frequency N where the intensity µ has been
estimated as µ̂. If T = 1, this means that N ∗|µ̂ is Poisson(Jµ̂). a) Use the double rules to prove that

E(N ∗) = JE(µ̂) and var(N ∗) = JE(µ̂) + J2var(µ̂).
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b) Recall that E(N ) = var(N ) for a Poisson variable N whereas E(N ∗) < var(N ∗). What causes the
difference? Integration of random error from different sources is discussed in Chapter 7.

Exercise 6.3.6 Suppose X∗ ∼ N(ξ̂, σ̂) where ξ̂ and σ̂ are estimates of ξ and σ from historical data.
This should be interpreted as X∗ having a conditional distribution given the estimates. a) Argue, using the
double rules, that

E(X∗) = E(ξ̂) and var(X∗) = E(σ̂2) + var(ξ̂)

b) Suppose that var(ξ̂) = σ2/n and that E(σ̂2) = σ2 (which you recognize as a standard situation with n
historical observations). Show that

var(X∗) = σ2(1 +
1

n
).

Exercise 6.3.7 The double rule for variances can be extended to a version for covariances. Let

ξ1(x) = E(Y1|x), ξ2(x) = E(Y2|x) and σ12(x) = cov(Y1, Y2)|x)

for random variables Y1, Y2 conditioned on X = x. Then

cov(Y1, Y2) = cov{ξ2(X), ξ1(X)} + E{σ12(X)};

see Appendix A. Use this to find the covariances bewteen returns R1 and R2 satisfying the stochastic volatility
model in Section 2.4; i.e

R1 = ξ1 + σ01

√
Zε1 and R2 = ξ2 + σ02

√
Zε2

where ε1, ε2 and Z are independent and the two former are N(0, 1) with correlation ρ.

Section 6.4
Exercise 6.4.1 Let X1 and X2 be dependent normal variables with expectations ξ1 and ξ2, standard devi-
ations σ1 and σ2 and correlation ρ. a) Use (1.3) to justify that

X̂2 = ξ2 + ρσ2
x1 − ξ1

σ1
for X1 = x1

is the most accurate prediction of X2 if X1 is observed. b) Show that

sd(X̂2|x1)

sd(X2)
=
√

1− ρ2.

c) By how much is the uncertainty in X2 reduced by knowing X1 if ρ = 0.3, 0.7 and 0.9? Argue that ρ
should from this viewpoint be interpreted through ρ2, as claimed in Section 5.2.

Exercise 6.4.2 Claim intensities µ in automobile insurance depends on factors such as age and sex. Con-
sider a female driver of age x. A standard way to formulate the link between x and µ goes through the
conditional mean E(N |x), where N is claim frequency. One possibility is

µ = µ0e
−β(x−x0),

where x0 is the starting age for drivers and µ0 and β0 are parameters. a) What is the meraning of the
parameters µ0 and β? b) Determine them so that µ = 10% at age 18 and 5% at age 60 and plot the
relationship between x and µ. In practice a more complex relationship is often used; see Chapter 8.
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Exercise 6.4.3 Let

ξ = 5%, a = 0.5 σ = 0.016, r0 = 2%

in the Vasicĕk model for interest rates. a) Write down predictions for the rate of interest rk at k = 1, 2, 5
and k = 10 years, using (??). b) What is standard standard deviation of the prediction error? Use (??) and
compare the assessment for k = 1 and k = 5 with those in Section 6.4 coming from a related (but different)
set of parameters.

Exercise 6.4.4 Conside the Black-Karisisnski model defined in Section 5.7 under which

rk = ξ exp(−1

2
σ2

x + Xk) where σx =
σ√

1− a2
, Xk = aXk−1 + σεk.

Here ε1, ε2, . . . are all independent and N(0, 1). a) If r0 is the current rate of interest observed in the market,
aregue that

r̂k = ξ exp(−1

2
σ2

x + akx0) where x0 = log

(

r0

ξ
+

1

2
σ2

x

)

is a prediction of the future rate rk. b) Make the prediction for k = 1, 2, 5 and k = 10 years as in the
preceding exercise and use the same parameters as there. Compare forecasts under the two models. This
example will be examined further in Exercise 7.?.

Exercise 6.4.5 Algorithm 6.1 dealt with the forward rate of interest under the Vasiceĕk model. a) Modify
it so that it applies to the Black-Karisisnksi model [Hint: You replace Line 3 with parts of Algorithm 5.4.].
b) ???

Section 6.5
Exercise 6.5.1 Suppose the time series {Xk} is a Gaussian Markov process for which

Xk|Xk−1 = x ∼ N(ax, σ).

Which model from Chapter 5 is this?

Exercise 6.5.2 Suppose X1, . . . , XJ are conditionally normal given Z = z with expectations ξi and vari-
ance/covariances σijz. a) Which model from earlier chapters is this? b) Do the correlations depend on z?
Which model from Chapter 5 is this?

Exercise 6.5.3 Consider Algorithm 6.2, the skeleton for Markov sampling. a) Modify it to deal with
common factors; i.e explain that X∗

k on Line 3 now is drawn from f(xk|X∗
1 .

Exercise 6.5.4 This exercise shows how a stochastic volatiltiy model for log-returns are sampled by means
of the preceding exercise. Suppose

Z = exp(−1

2
τ2 + τε), ε ∼ N(0, 1)

is log-normal and that

X1 = log(1 + R1), X2 = log(1 + R2), X3 = log(1 + R3)

33



are conditionally normal with expectations ξ1, ξ2, ξ3, volatilities σ01sqrtz, σ02
√

z, σ03
√

z and correlations ρij .
a) Explain how the log-returns are samples. b) Carry out the sampling 1000 times when

ξ1 = ξ2 = ξ3 = 5%, σ01 = σ02 = σ03 = 0.2, all ρij = 0.5 and τ = 0.5.

c) Use b) to compute the 5% lower percentile of the portfolio with equal weights on the three risky assets.

Exercise 6.5.5 Stochastic volatility in finance is in reality a dynamic phenomenon where the random
variable Z = Zk being responsible are correlated in time. The first model proposed to deal with this is
known as ARCH3 and can be formulated as follows:

Rk = ξ + σ0

√
Zkεk where Zk =

√

1 + θ(Rk−1 − ξ)2

where ε1, ε2, . . . are independent and N(0, 1). a) Argue that returns deviating strongly from the mean ξ
makes volatility go up next time. b) Why is this a Markov model for the series {Rk}? c) Simulate the
model and plot the against time k for k = 1, . . . , 30 when

ξ = 5%, , σ0 = 0.2 and θ = 0.2 starting at R0 = 5%.

These are annual parameters. Plot ten different scenarios.

Exercise 6.5.6 An alternative to ARCH of the preceding is to use the Black-Karisinski model from Section
5.7 for {Zk}, i.e to take

Zk = exp(−1

2
τ2
y + τyYk) where τy =

τ√
1− a2

, Yk = aYk−1 + τηk.

Here both sequences η1, η2 . . . and ε1, ε2, . . . are independent N(0, 1) and independent from each other. a)
Simulate and plot ten realisations of this model under the same conditions as in the previous exercise using
a = 0.6 and τ = 0.1. b) Is there in behaviour a principal difference form the ARCH model. This model
type, though less used than the former (and, especially its extensions) is drawing much interest as this book
is being written (2004).

Exercise 6.5.7 The multinomial model illustrates the factorization (1.29). Start by noting that N0 ∼Binomial(n, q0).
a) Then argue that

N1|n0 ∼ Binomial(n− n0, q̃1) where q̃1 =
q1

1− q0
.

[Hint: From n trials originally, subtract those (= n0) with no delay. Among the remaining n− n0 trials the
likelihood is q̃1 for delay exactly one year.]. Suppose a binomual sampling procedure is available. b) Justify
that (N0, N1) can be sampled through

N∗
0 ∼ Binomial(n, q0) and N∗

1 ∼ Binomial(n−N∗
0 , q̃1)

The next step is

N∗
2 |n0, n1 ∼ Binomial(n− n0 − n1, q̃2) where q̃2) =

q2

1− q0 − q1
.

c) Explain why the general case can be run as follows:

Algorithm 6.6 Multinomial sampling

3ARCH stands for autoregressive, conditional, hetereochedastic.
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0 Input n and q0, . . . , qK

1 S∗ ← 0, d← 1
2 For k = 1, . . . , K − 1 do
3 Draw N∗

k ∼Binomial(n− S∗, p∗k/d)
4 S∗ ← S∗ + N∗

k , d← d− pk

5 Return N∗
1 , . . . , N∗

K−1 and N∗
K ← n− S∗.

This is inefficient for large K, but tolerable for delay. d) Run the algorithm 10000 times when

K = 4, q0 = 0.1, q1 = 0.3 q2 = 0.25, q3 = 0.2, q4 = 0.15.

and compare relative frequencies with the underlying probabiltites.

Exercise 6.5.8 We know from the preceding exercise that

Pr(N0 = n0) =
n!

n0!(n− n0)!
qn0

0 (1− q0)
n−n0

and that

Pr(N1 = n1|n0) =
(n− n0)!

n1!(n− n0 − n1)!
q̃n1

1 (1 − q̃1)
n−n0−n1 .

Multiply the two probabilities together and verify that

Pr(N0 = n0, N1 = n1) =
n!

n0!n1!(n− n0 − n1)!
qn0

0 qn1

1 (1− q0 − q1)
n−n0−n1 .

This is the multinomial density function (1.35) for K = 2 (note that N2 = n − n0 − n1 is fixed by the two
first). The general case is established by continuing in this way.

Section 6.6
Exercise 6.6.1 Consider a Markov chain {Ck} running over the three states “active”, “disabled” and ”dead”
with pa|d and pa|d as probabilities of going from “disabled” to “active” and “active” to “disabled” and with
probability of survival 1pl at age l. a) Argue, using conditioning, that the probability at age l of remaining
active must be 1pl(1− pa|d). b) Fill out the rest of the table of transition probabilities at page ?, using the
same reasoning. c) Verify that the row sums are equal to one. d) What does the matrix become when

log(1pl) = −0.0009− 0.0000462 exp(0.090767× l), pd|a = 0.7%, pa|d = 0.35% ?

Exercise 6.6.2 Let the three states of the preceding exercise be labeled 0 (for “active”), 1 (“disabled”) and
2 (“dead”) and let pl(i|j) be their transition probabiltites at age l. a) Implement Algorithm 6.2 for the
model of the preceding exercise. For example, argue that the following recursive step can be used on Line 3:

Draw U∗ ∼ uniform and l← l + 1
If U∗ < pl(0|C∗

k−1) then C∗
k ← 0

else if U∗ < pl(0|C∗
k−1) + pl(2|C∗

k−1) then C∗
k ← 1

else C∗
k ← 2 and stop.

b) Run the algorithm ten times with the model of Exercise 6.1, each time starting at age l = 30 years
and plotting the the simulated scenarios 50 years ahead. c) Change the model unrealistically!) to pd|a = 0.4
and pa|d = 0.20, re-compute the transitiom matrix and re-run the simualtions to see different patterns.
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Exercise 6.6.3 The expected remaining life-time at age l was derived an Exercise 6.2.5 as

E(Nl) =

∞
∑

k=1

kpl where kpl = 1pl+k−1 × · · · × 1pl

Consider the recursion

P ← 1pl × P, E ← E + P, l← l + 1

starting at P = 1, E = 0. a) Argue that it yields E = E(Nl) at the end. b) Implement the recursion,
compute E(Nl) for l = 20, 25, 30, . . . up to l = 70 for the survival model in Exercise 6.6.1. c) Plot the
computed sequence against l and explain why it is decreasing.

Exercise 6.6.4 One of the issues with potentially huge impact on the business of life and pension in-
surance is the fact that in most countries length of life is steadily prolonged. Suppose we want to change
our current survival model into a related one in order to get a rough picture of the economic consequences.
A simple way is to introduce

1p̃l =
θ1pl

θ1pl + (1 − 1pl)
,

where θ is a parameter. a) Show that the new survival probability 1p̃l decreases with age l if the original
model had that property. b) Also show that it increases with θ and coincides with the old one if θ = 1. c)
Let 1pl be the model of Exercise 6.6.1. Use the program of Exercise 6.6.3 to compute the average, remaining
length of life for a twenty-year for θ = 1.0, 1.1, 1.2, . . . up to θ = 2 and plot the relationship. d) Use the plot
to find out roughly how large θ must be for the average age to be five years more than it was.

Exercise 6.6.5 Consider a policy holder entering a pension scheme at time k = 0 at age l0 and mak-
ing a contribution (premium) at the start of each period. From age lr he draws benefit ζ (also at the start
of each period) which lasts until the end of his life. There is a fixed rate of interest r. Let Vk be the value
of his account after time k. a) Argue that as long as the member stays alive, his account develops according
to the recursion

Vk = (1 + r)Vk−1 + π, k < lr − l0
= (1 + r)Vk−1 − ζ, k ≥ lr − l0

starting at V0 = π.

a) Write a program that allows the account to build up and then decline, the scheme terminating upon
death. b) Simulate and plot the movements of the account against time when

l0 = 30, lr = 65, π =? ζ =? r = 3%

and the survival model is the one in Exercise 6.6.1. c) Repeat b) nine times to judge variability. d) If you
apply the program ?? on ?? under the Cambrige website you can see how much the status of the account
varies when the scheme stops at the death of the policy holder. The plot is based on 10000 simulations under
the conditions above.

Section 6.7
Exercise 6.7.1 a) Show that when U1 is uniform and U2 = U1, then

Hma(u1, u2) = min(u1, u2), 0 ≤ u1, u2 ≤ 1.

is the copula for the pair (U1, U2). b) Prove the first half of the Frechet-Hoeffding inequality; i.e.

H(u1, u2) ≤ min(u1, u2), 0 ≤ u1, u2 ≤ 1.
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for an arbitrary copula H(u1, u2). This shows that Hma(u1, u2) is a maximum copula.

Exercise 6.7.2 The second half of the Frechet-Hoeffding inequality apply to antitetic variables, introduced
in Chapter 4 to produce negatively correlated random variables. Let U1 be uniform and U2 = 1 − U1. a)
Show that the copula is

Hmi(u1, u2) = max(u1 + u2 − 1, 0),

For an arbitrary copula H(u1, u2) fix u2 and define the function

G(u1) = H(u1, u2)− (u1 + u2 − 1).

b) Show that G(1) = 0 and that G′(u1) < 0 [Hint: Recall (??).]. c) Explain that this means that G(u1) > 0
so that

H(u1, u2) ≥ max(u1 + u2 − 1, 0),

and the antitetic pair defines a minimum copula.

Exercise 6.7.3 We might use the the preceding two exercises used to check whether a family of copu-
las capture the entire range of dependency. a) Show that the Clayton copula (1.42) coincides with the
minimum (antitetic) copula when θ = −1 and b) that it converges to the maximum copula as θ →∞ [Hint:
Utilize that the Clayton copula for θ > 0 may be written

exp{L(θ)} where L(θ) = log(u−θ
1 + u−θ

2 − 1)/θ

and apply l’Hôpital’s rule to L(θ).].

Exercise 6.7.4 Show that the Clayton copula (1.40) approaches the independent copula as θ → 0 [Hint:
Use the argument of the preceding exercise.].

Exercise 6.7.5 One of the most popular copula models is the Gumbel family for which

H(u1, u2) = exp{−Q(u1, u2)} where Q(u1, u2) = {(− log u1)
θ + (− log u2)

θ}1/θ.

a) Verify that this is a valid copula when θ ≥ 1 by checking (1.39). b) Which model corresponds to the
special case θ = 1? c) Which model appears as θ →∞? [Hint: One way is to utilize that

Q(u1, u2) = exp{L(θ)} where L(θ) = log[(− logu1)
θ + (− log u2)

θ]/θ}.

Apply l’Hôpital’s rule to L(θ).]

Exercise 6.7.6 Show that the Gumbel family of the preceding exercise belongs to the Archimedean class
with generator φ(u) = (− log u)θ.

Exercise 6.7.7 Let H(u1, u2) = φ−1{φ((u1) + φ(u2)} be a general Archimedean copula where it is as-
sumed that the generator φ(u) decreases continuously from infinity at u = 0 to zero at u = 1. a) Calculate
H(u1, 0) and H(0, u2) and verify that the first line in (1.39) is satisfied. b) Same question for the second
line and H(u1, 1) and H(1, u2).

Exercise 6.7.8 Consider the Archimedean copula based on the generator φ(u) = (1 − u)3. Derive an
expression H(u1, u2) and b) show that it is zero whenever u2 ≤ {1− (1− u1)

3}1/3.

Exercise 6.7.9 Suppose an Archimedean copula is based on a generator for which φ(0) is finite. Use
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the fact that the generator is strictly decreasing to explain that the copula H(u1, u2) is positive if and only
if

φ(u1) + φ(u2) < φ(0) true if and only if u2 > φ−1{φ(0)− φ(u1)},

and the lower bound on u2 is normally positive. We rarely want models with this property.

Exercise 6.7.10 Consider the Clayton copula (??) with positive θ with generator φ(u) = (u−θ − 1)/θ.
Show that the key part of Algorithm 6.4 (lines 2 and 3) is solved by

U∗
2 = {1 + (U∗

1 )−θ[(V ∗)−θ/(1+θ) − 1]}−1/θ.
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