UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: STK4530 - SOLUTIONS
Day of examination: 15 December 2017
Examination hours: 14.30-18.30
This problem set consists of 4 pages.
Appendices: None
Permitted aids: None.
Godkjent kalkulator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

$1 \mathbf{a}$
Ito gives

$$
d\left(e^{b t} r(t)\right)=b e^{b t} r(t) d t+e^{b t} d r(t)=a e^{b t} d t+\sigma e^{b t} d \widetilde{W}(t)
$$

Hence,

$$
r(t)=r_{0} e^{-b t}+\frac{a}{b}\left(1-e^{-b t}\right)+\sigma e^{-b t} \int_{0}^{t} e^{b s} d \widetilde{W}(s)
$$

1b

Using independent increment of \widetilde{W}, we find that the characteristic function of $\int_{0}^{t} e^{b s} d \widetilde{W}(s)$ is

$$
\mathbb{E}_{Q}\left[\exp \left(i x \int_{0}^{t} e^{b s} d \widetilde{W}\right)\right]=\exp \left(-\frac{1}{2} x^{2} \int_{0}^{t} e^{2 b s} d s\right)
$$

Hence, normality of $r(t)$ under Q follows, with mean $r_{0} e^{-b t}+(a / b)\left(1-e^{-b t}\right)$ and variance $\left(\sigma^{2} / 2 b\right)\left(1-e^{-2 b t}\right)$.

1c

Integrating from t to T gives,

$$
e^{b T} r(T)-e^{b t} r(t)=a \int_{t}^{T} e^{b s} d s+\sigma \int_{t}^{T} e^{b s} d \widetilde{W}(s)
$$

Hence,

$$
r(T)=e^{-b(T-t)} r(t)+\frac{a}{b}\left(1-e^{-b(T-t)}\right)+\sigma e^{-b T} \int_{t}^{T} e^{-b s} d \widetilde{W}(s)
$$

(Continued on page 2.)

From $d r(t)$, we also find

$$
r(T)-r(t)=a(T-t)-b \int_{t}^{T} r(s) d s+\sigma(\widetilde{W}(T)-\widetilde{W}(t))
$$

Re-arraging, and inserting $r(T)$,
$\int_{t}^{T} r(s) d s=\frac{1}{b}\left(1-e^{-b(T-t)}\right) r(t)-\frac{a}{b^{2}}\left(1-e^{-b(T-t)}\right)-\frac{\sigma}{b} e^{-b T} \int_{t}^{T} e^{b s} d \widetilde{W}(s)+\frac{a}{b}(T-t)+\frac{\sigma}{b} \int_{t}^{T} d \widetilde{W}(s)$
$r(t)$ is \mathcal{F}_{t}-measurable, and appealing to independent increment property of \widetilde{W}, we find

$$
\mathbb{E}_{Q}\left[e^{-\int_{t}^{T} r(s) d s} \mid \mathcal{F}_{t}\right]=\exp (A(t, T)-C(t, T) r(t))
$$

where

$$
A(t, T)=-\frac{a}{b}(T-t)+\frac{a}{b^{2}}\left(1-e^{-b(T-t)}\right)+\frac{\sigma^{2}}{2 b} \int_{t}^{T}\left(1-e^{-2 b(T-s)}\right)^{2} d s
$$

and

$$
C(t, T)=\frac{1}{b}\left(1-e^{-b(T-t)}\right)
$$

for $T \geq t$

1d

$P(t, T) / B(t)$ a Q-martingale, yields, since $P(T, T)=1$,

$$
\mathbb{E}_{Q}\left[1 / B(T) \mid \mathcal{F}_{t}\right]=P(t, T) / B(t)
$$

Hence, claim holds since $B(t)$ is \mathcal{F}_{t}-measurable. The conditional expectation is well-defined as r and its time integral are normal, and hence has finite exponential moments.

1e
We have

$$
d(P(t, T) / B(t))=d\left(e^{-\int_{0}^{t} r(s) d s} P(t, T)\right)
$$

We know this is a Q-martingale, so the dynamics will only involve the $d \widetilde{W}$ term. This we get from Ito's formula from the $d \widetilde{W}(t)$-term in $d P(t, T)$, which from above, is

$$
-P(t, T) C(t, T) \sigma d \widetilde{W}(t)
$$

Hence,

$$
d(P(t, T) / B(t))=-\sigma C(t, T)(P(t, T) / B(t)) d \widetilde{W}(t)
$$

P-dynamics: Let γ be an Ito integrable process such that the stochastic exponential of $\int_{0}^{t} \gamma(s) d \widetilde{W}(s)$ is a Q-martingale. Then by Girsanov there exists a P with $d P / d Q$ and a W being a P-Brownian motion,

$$
d W(t)=d \widetilde{W}(t)-\gamma(t) d t
$$

Inserting for $d W$ in the dynamics of $P(t, T) / B(t)$ yields the P-dynamics.
(Continued on page 3.)

Problem 2

2 a
For a volatility $\bar{\sigma}(t, T)$, the no-arbitrage dynamics of the forward is given by

$$
f(t, T)=f(0, T)+\int_{0}^{t} \bar{\sigma}(s, T) \int_{s}^{T} \bar{\sigma}(s, u)^{\operatorname{Tr}} d u d s+\int_{0}^{t} \bar{\sigma}(s, T) d \widetilde{W}(s)
$$

Inserting the defined volatility in this exercise, yields,

$$
f(t, T)=f(0, T)+\int_{0}^{t}(T-s)\|\sigma(s)\|^{2} d s+\int_{0}^{t} \bar{\sigma}(s, T) d \widetilde{W}(s)
$$

where $\|\cdot\|$ is the 2-norm in \mathbb{R}^{n}.

2b

We have $r(t)=f(t, t)$, thus

$$
r(t)=f(0, t)+\int_{0}^{t}(t-s)\|\sigma(s)\|^{2} d s+\int_{0}^{t} \sigma(s) d \widetilde{W}(s)
$$

The students can also find $d r(t)$.
We know that

$$
P(t, T)=\exp \left(-\int_{t}^{T} f(t, u) d u\right)
$$

By (stochastic) Fubini
$\int_{t}^{T} f(t, u) d u=\int_{t}^{T} f(0, u) d u+\frac{1}{2} \int_{0}^{t}\left((T-s)^{2}-(t-s)^{2}\right)\|\sigma(s)\|^{2} d s+(T-t) \int_{0}^{t} \sigma(s) d \widetilde{W}(s)$
Students can use Ito's formula to derive the dynamics of $d P(t, T)$ from this expression.

2c
By Bayes' Theorem, it holds,
$\mathbb{E}_{Q^{T}}\left[X \mid \mathcal{F}_{t}\right]=\frac{\mathbb{E}_{Q}\left[X \frac{d Q^{T}}{d Q}\right]}{\mathbb{E}_{Q}\left[\frac{d Q^{T}}{d Q}\right]}=\frac{\mathbb{E}_{Q}\left[\left.X \frac{1}{P(0, T) B(T)} \right\rvert\, \mathcal{F}_{t}\right]}{\frac{P(t, T)}{P(0, T) B(t)}}=\frac{B(t)}{P(t, T)} \mathbb{E}_{Q}\left[X B^{-1}(T) \mid \mathcal{F}_{t}\right]$
using Q-martingale property of $P(t, T) / B(t)$. The result follows after using that $B(t)$ is \mathcal{F}_{t}-measurable.

Problem 3

3a

THis is GBM, with $Q^{T_{2}}$-dynamics,

$$
L\left(t, T_{1}\right)=L\left(0, T_{1}\right) \exp \left(\lambda W^{T_{2}}(t)-\frac{1}{2} \lambda^{2} t\right)
$$

for $t \leq T_{1}$. $W^{T_{2}}$ is $Q^{T_{2}}-\mathrm{BM}$, hence $L\left(t, T_{1}\right)$ is lognormal under $Q^{T_{2}}$ and thus also $Q^{T_{2}}$-integrable. Using independent increment propery of Brownian motion shows that $t \mapsto L\left(t, T_{1}\right)$ is a $Q^{T_{2}}$-martingale.
(Continued on page 4.)

3b

Consider

$$
\mathcal{E}_{t}\left(\sigma_{T_{1}, T_{2}} \bullet W^{T_{2}}\right)=\exp \left(\int_{0}^{t} \sigma_{T_{1}, T_{2}}(s) d W^{T_{2}}(s)-\frac{1}{2} \int_{0}^{t} \sigma_{T_{1}, T_{2}}^{2}(s) d s\right)
$$

Since L is positive,

$$
\left|\sigma_{T_{1}, T_{2}}(t)\right| \leq \lambda
$$

and Novikov's condition ensure that $t \mapsto \mathcal{E}_{t}(\ldots)$ is a true $Q^{T_{2}}$-martingale. We have

$$
\left.\frac{d Q^{T_{1}}}{d Q^{T_{2}}}\right|_{\mathcal{F}_{t}}=\mathcal{E}_{t}\left(\sigma_{T_{1}, T_{2}} \bullet W^{T_{2}}\right)
$$

and by Girsanov's theorem we find that $Q^{T_{1}}$ is a probability measure where $W^{T_{1}}$ is a Brownian motion.

We find

$$
d L\left(t, T_{1}\right)=\lambda L\left(t, T_{1}\right)\left(d W^{T_{1}}(t)+\sigma_{T_{1}, T_{2}}(t) d t\right)
$$

and since $\sigma_{T_{1}, T_{2}}$ is stochastic, $L\left(t, T_{1}\right)$ is not lognormal wrt $Q^{T_{1}}$.

3c

Under $Q^{T_{2}}$, we have

$$
L\left(T_{1}, T_{1}\right)=L\left(t, T_{1}\right) \exp \left(\lambda\left(W^{T_{2}}\left(T_{1}\right)-W^{T_{2}}(t)\right)-\frac{1}{2} \lambda^{2}\left(T_{1}-t\right)\right)
$$

We find,
$E_{Q^{T_{2}}}\left[\max \left(L\left(T_{1}, T_{1}\right)-\kappa, 0\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}_{Q^{T_{2}}}\left[L\left(T_{1}, T_{1}\right) 1\left(L\left(T_{1}, T_{1}\right)>\kappa\right) \mid \mathcal{F}_{t}\right]-\kappa Q^{T_{2}}\left(L\left(T_{1}, T_{1}\right)>\kappa \mid \mathcal{F}_{t}\right)$
Using that $L\left(T_{1}, T_{1}\right)$ is conditionally lognormal, we can derive as in Black \&
Scholes the formula for the price, being

$$
\pi(t)=P\left(t, T_{2}\right)\left(L\left(t, T_{1}\right) \Phi\left(d_{1}\right)-\kappa \Phi\left(d_{2}\right)\right)
$$

where ' $p h i$ is cumulative normal distribution function and

$$
d_{1,2}=\frac{\ln \left(L\left(t, T_{1}\right) / \kappa\right) \pm \frac{1}{2} \lambda^{2}\left(T_{1}-t\right)}{\lambda \sqrt{T_{1}-t}}
$$

