


Recap (1.2.1 in EB)

* Property insurance is economic responsibility
for incidents such as fires and accidents
passed on to an insurer against a fee

 The contract, known as a policy, releases
claims when such events occur

* A central quantity is the total claim X amassed
during a certain period of time (typically a
year)



Overview pricing (1.2.2 in EB)

Premium

Individual Emmmmmmme I EmneEs

company

_ 0 (no event above deductible), with probability 1-p
Total claim = _ _ N
X (event above deductible) with probability p

Due to the law of large numbers the insurance company is cabable of estimating
the expected claim amount

Distribution of X, estimated with claims data

E(X)=p Sf(S)dLs}* +(1-p)0=r"

‘ , all x
Risk premium Expected claim amount given an event
\ }
*Probability of claim, éxpected consequence of claim

*Estimated with claim frequency
*We are interested in the distribution of the claim frequency
*The premium charged is the risk premium inflated with a loading (overhead and margin)



Control (1.2.3 in EB)

*Companies are obliged to aside funds to cover future obligations
*Suppose a portfolio consists of J policies with claims X,,..., X,
*The total claim is then

X = X +.+X,
Portfolio claim size

*We are interested in E(}() as well as its distribution
*Regulators demand sufficient funds to cover X with high probability
*The mathematical formulation is in term of  { ., which is the solution of the equation

Pr{y>q.}=¢

where & is small for example 1%
*The amount ¢, is known as the solvency capital or reserve



Insurance works because risk can be
diversified away through size (3.2.4 EB)

*The core idea of insurance is risk spread on many units
*Assume that policy risks Xi,...,Xs are stochastically independent
*Mean and variance for the portfolio total are then

E(y)=n+..+7, and var(y)=o0,+...+0,

and 7; =E(X;) and o; =sd(X,).Introduce
_ 1 _, 1
72'27(7Z'1+...+7Z'J) and 02:7(01+...+0J)

which is average expectation and variance. Then

E(7) =37 = and sd(z) =3 Fsotha X _ T 7

E(y) I3

*The coefficient of variation (shows extent of variability in relation to the mean)
approaches 0 as J grows large (law of large numbers)
*Insurance risk can be diversified away through size
*Insurance portfolios are still not risk-free because
*of uncertainty in underlying models
*risks may be dependent




How are random variables sampled?

Inversion (2.3.2 in EB):
*Let F(x) be a strictly increasing distribution function with inverse X = F*(U) and let

X=F*(U)or X =F*1-U), U ~ Uniform

*Consider the specification on the left for which U=F(X)
*Note that

Pr(X <x)=Pr(F(X) < F(x))

=Pr(U < F(x))=F(x)
since. Pr(U <u)=u

U[0,1] -




Outline of the course

Durationin
| Models treated Curriculum lectures
Basic concepts and introduction EB1.2,2.3.1,2.3.2,3.2,3.3 1

Poisson, Compound Poisson,

Poisson regression, negative
How is claim frequency modelled? binomial model EB 8.2, 8.3, 8.4 2-3
How is claim reserving modelled? Delay modelling, chain ladder EB 8.5, Note 1-2

Gamma distribution, log-normal

distribution, Pareto distribution,
How is claim size modelled? Weibull distribution EB9 2-3
How is pricing done? Binomial models EB 10 1
Solvency Monte Carlo simulation EB 10, Note 1-2
Credibility theory Buhlmann Straub EB 10 1
Reinsurance EB 10 1
Repetition 1




Course literature

Curriculum:

Chapter 1.2, 2.3.1,2.3.2, 2.5, 3.2,3.3inEB
Chapter 8,9,10 in EB

Note on Chain Ladder

Lecture notes by NFH

Exercises

The following book will be used (EB):
Computation and Modelling in Insurance and Finance, Erik Bglviken,

Cambridge University Press (2013)

*Additions to the list above may occur during the course
*Final curriculum will be posted on the course web site in due time

Assignment must be approved to be able to participate
in exame



Overview of this session

The Poisson model (Section 8.2 EB)

Some important notions and some practice too

Examples of claim frequencies

Random intensities (Section 8.3 EB)




.
Introduction

Random intensities

e Actuarial modelling in general insurance is broken down on claim
frequency and claim size

* Thisis natural due to definition of risk premium:

E(X)=p| , sf(s)ds+(@L-p)0=7"

all x
Risk premium

Expected claim amount given an event

\ }

*Probability of claim, éxpected consequence of claim
*Estimated with claim frequency

 The Poisson distribution is often used in modelling the distribution of claim
numbers

 The parameter is lambda = muh*T (single policy) and lambda = J*muh*T
(portfolios

 The modelling can be made more sophisticated by extending the model for
muh, either by making muh stochastic or by linking muh to explanatory
variables
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The world of Poisson (Chapter 8.2) _

Number of claims

A
[ |

t0=0 tk—Z tk-l tk tk+1 tk=T

*What is rare can be described mathematically by cutting a given time period T into K
small pieces of equal length h=T/K

*On short intervals the chance of more than one incident is remote

*Assuming no more than 1 event per interval the count for the entire period is

N=I,+...+l,,where l; is either O or 1 for j=1,...,K

*If p=Pr(l,=1) is equal for all k and events are independent, this is an ordinary Bernoulli
series

Kl
Pr(N =n) = "1-p) ™", for n=01,..., K
(N =n) K —mt P (1-p)

*Assume that p is proportional to h and set p=uh where u

is an intensity which applies per time unit

11



The world of Poisson
Pr(N =n) = — (KKi PP

sl
(K -n)!\ K K

_(UT)" K(K=1)-(K-n+1) (1_ ,uT)K 1

n' Kn K (1_11,1-'-)”
\ | / ) K
/ s
— 1 —>e* 51
K—>a0 K—00 K—ow

=Pr(N=n) > 1) g

K—>o0 n|

In the limit N is Poisson distributed with parameter A=ul
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Poisson

Some notions

The world of Poisson s

Random intensities

*Let us proceed removing the zero/one restriction on lk. A more flexible specification is

Pr(l, =0)=1—zh+o(h), Pr(l, =1)=h+o(h), Pr(l, >1)=o(h)

Where o(h) signifies a mathematical expression for which

%—)0 as h—0

It is verified in Section 8.6 that o(h) does not count in the limit

Consider a portfolio with J policies. There are now J independent processes in
parallel and if M is the intensity of policy j and Ik the total number
of claims in period k, then

Pr(Ik:O):ﬁ(l—yj) and Pr(lkzl):i{,uihn(l—,ujh)}
\ J

\ J
! Y

Claims policy i only

No claims

13



Some notions

The world of Poisson s

Random intensities

*Both quanities simplify when the products are calculated and the powers of h identified

Pr(l, =0) = [ [ (- ;) = (1— 5h)(A— ;)1 p2h)

=1
= (L= sh = 0 + p1,p0*) (L= p5h)
=1-mh—p,h+ ﬂzﬂlhz — psh( = gh = p,h + ﬂz/ﬁhz)
=1-ph—ph—p;h+o(h)

J
Pr(l, =1) = (Z,uj)h+o(h)
j=1
°It follows that the portfolio number of claims N is Poisson distributed with parameter

A=y +...+ ;)T =3ul, where g=(y+...+ 1)/ J

*When claim intensities vary over the portfolio, only their average counts

14



Some notions

When the intensity varies over time

A time varying function U= /U(t) handles the mathematics. The binary

variables Is,...Ik are now based on different intensities

Ly it Where g =p(t ) for k=1..,K

*When Iy,...Ik are added to the total count N, this is the same issue as if K different
policies apply on an interval of length h. In other words, N must still be Poisson, now
with parameter

K T
A=h>p, —>Iy(t)dt as h—0
k=1 0

where the limit is how integrals are defined. The Poisson parameter for N can also be
written

)
A=Txu where = % j u(t)dt,
0

And the introduction of a time-varying function lu(t) doesn’t change things
much. A time average /,_1 takes over from a constant [/

15



Some notions

The Poisson distribution

*Claim numbers, N for policies and N for portfolios, are Poisson distributed with
parameters

A=ul and A=Jul

Policy level Portfolio level

The intensity  [ds an average over time and policies.

Poisson models have useful operational properties. Mean, standard deviation and
skewness are

E(N)=4, sd(N)=+1 and SkeW(l):\/z

The sums of independent Poisson variables must remain Poisson, if Ni,...,Nsare
independent and Poisson with parameters ﬂl,_,tbebj

N=N,+...+ N, ~ Poisson(4, +...+4,)
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Client

l Policies and claims

Policy

|

Insurable object
(risk)

| |

R Cover element
/claim type

Claim

Insurance cover

Poisson
Some notions
Examples

Random intensities



Poisson

Some notions

Car insurance client
Examples

l Random intensities

. . Policies and claims
Car insurance policy

l

Insurable object .
(risk), car Claim
4—
l T A
Third part liability
Insurance cover third party liability — Legal aid
v
Driver and passenger acident
Fire
Theft from vehicle
Insurance cover partial hull > i
Theft of vehicle v

Rescue
Accessories mounted rigidly

» Own vehicle damage
Insurance cover hull
Rental car



Some notes on the different insurance covers on the previous slide:

Some notions

Third part liability is a mandatory cover dictated by Norwegian law that covers damages
on third part vehicles, propterty and person. Some insurance companies Drovide
additional coverage, as legal aid and driver and passenger accident in Random intensities

Examples

Partial Hull covers everything that the third part liability covers. In addition, partial hull covers damages on own
vehicle caused by fire, glass rupture, theft and vandalism in association with theft. Partial hull also includes rescue.
Partial hull does not cover damage on own vehicle caused by collision or landing in the ditch. Therefore, partial hull is
a more affordable cover than the Hull cover. Partial hull also cover salvage, home transport and help associated with
disruptions in production, accidents or disease.

Hull covers everything that partial hull covers. In addition, Hull covers damages on own vehicle in a collision,
overturn, landing in a ditch or other sudden and unforeseen damage as for example fire, glass rupture, theft or
vandalism. Hull may also be extended to cover rental car.

Some notes on some important concepts in insurance:

What is bonus?
Bonus is a reward for claim-free driving. For every claim-free year you obtain a reduction in the insurance premium
in relation to the basis premium. This continues until 75% reduction is obtained.

What is deductible?
The deductible is the amount the policy holder is responsible for when a claim occurs.

Does the deductible impact the insurance premium?
Yes, by selecting a higher deductible than the default deductible, the insurance premium may be significantly
reduced. The higher deductible selected, the lower the insurance premium.

How is the deductible taken into account when a claim is disbursed?

The insurance company calculates the total claim amount caused by a damage entitled to disbursement. What you
get from the insurance company is then the calculated total claim amount minus the selected deductible.
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Some notions

Key ratios — claim frequency

*The graph shows claim frequency for all covers for motor insurance
*Notice seasonal variations, due to changing weather condition throughout the years

Claim frequency all covers motor

35,00

30,00

25,00

20,00

15,00

10,00

5,00

0,00
aSSZY92+te<3<003355 V2 +e <3 <00
O 00 0 8 23 382 492 2@ 9 dduodg 99 39 Y a9 oNA
S99 06 800000800 gd=gQogooon Qo5 8 o
N Q¥ NI VALY LNANRANANRYRAE A

20



Poisson

Some notions

Examples

ty

Im severi

Key ratios — cla

Random intensities

*The graph shows claim severity for all covers for motor insurance

Average cost all covers motor
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Poisson

Some notions

Examples

i0S — pure premium

Key rat

Random intensities

*The graph shows pure premium for all covers for motor insurance

Pure premium all covers motor
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Poisson

Some notions

Examples

i0S — pure premium

Key rat

Random intensities

*The graph shows loss ratio for all covers for motor insurance

Loss ratio all covers motor
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Poisson

Some notions
Examples
Random intensities

and hull

*The graph shows claim frequency for third part liability and hull for motor

insurance

Key ratios — claim frequency TPL

Claim frequency hull motor

Claim frequency third party liability motor
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Poisson
Some notions
Examples
Random intensities

Average cost hull motor
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*The graph shows claim severity for third part liability and hull for

Im severi

Key ratios — claim frequency and
cla

motor Insurance
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Some notions

Random intensities (Chapter 8.3) EEE=TE——
oo inensies

Random intensities

How varies over the portfolio can partially be described by observables such as age or sex
of the individual (treated in Chapter 8.4)

There are however factors that have impact on the risk which the company can’t know much
about
—  Driver ability, personal risk averseness,

This randomeness can be managed by making H a stochastic variable

This extension may serve to capture uncertainty affecting all policy holders jointly, as well, such
as altering weather conditions

The models are conditional ones of the form

N | 2z~ Poisson(uT) and N| g~ Poisson(JuTl)

Policy level Portfolio level

let £=E(u) and o=sd(x) andrecall that E(N | &) =var(N | ) = uT

which by double rules in Section 6.3 imply
E(N)=E(uT)=¢&T  and var(N)=E(uT)+var(uT) =£&T +0°T?

Now E(N)<var(N) and N is no longer Poisson distributed
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The rule of double variance

Let X and Y be arbitrary random variables for which

E(X)=E(Y|x) and o°=var(Y|X)

Then we have the important identities

c=E()=E(X)} and var(Y)= E{c” (X)}+var{g(X)}

Rule of double expectatio Rule of double
Recall rule of double expectation

E(E(Y )= [(E(Y 1) f ()dx=[ [ yh (yP)dy f, ()l

all x all xally

= J‘ jyfx,Y(X, y)dxdy = _[ y j f. (X, y)dxdy = : yE, (y)dy = E(Y)

ally all x ally allx ally

27



wikipedia tells us how the rule of do@sE==

variance can be proved

Examples

Random intensities

Law of total variance

From Wikipedia, the free encyclopedia

In probability theory, the law of total variance!'! or variance decomposition formula, states that if X and ¥ are random variables on the same probability space, and the variance of Yis finite, then

Var[Y| = E(Var[Y | X]) + Var(E[Y | X]).

Proof [ edit source |
The law of total variance can be proved using the law of total expectation. ! First,
Var[Y] = E[Y?] — E[Y]?
from the definition of variance. Then we apply the law of total expectation to each term by conditioning on the random variable X
2 2
=Ex [E[Y* | X]] - Ex [E[Y' | X]]
Mow we rewrite the conditional second moment of Y in terms of its variance and first moment:
2 2
= Ex[Var]Y" | X] + E[Y | X]*] — Ex[E[Y" | X]]

Since the expectation of a sum is the sum of expectations, the terms can now be regrouped:
2
= Ex[Var[Y | X] + (EX [E[Y | X]?] — Ex[E[Y | X]] )

Finally, we recognize the terms in parentheses as the variance of the conditional expectation E[Y]X]:

= Eyx [Var[Y | X]] + Varyx [E[Y | X]]



The rule of double variance e

Var(Y) will now be proved from the rule of double expectation. Introduce
Y =£(x) andnotethat E(Y)=E(Y)

which is simply the rule of double expectation. Clearly

(Y =& =((Y =Y)+(Y=&) = (Y =Y) +(Y=&)* +2(Y =Y)(Y-&).
Passing expectations over this equality yields
var(Y) =B, + B, +2B,
where A A o
B, =E(Y-Y)*, B,=E(Y-&)*, By=E(Y-Y)(Y-2),
which will be handled separately. First note that .
o’ (x) = E{(Y =£())* [ x}=E{(Y -Y)* | X},
and by the rule of double expectation appliedto (Y -Y)?
E{c*(x)}=E{(Y -Y)* =B,

The second term makes use of the fact that Gy=tHe (Y13 of
double expectation so that
29



Some notions

The rule of double variance e

Random intensities

B, = var(YA ) =var{&(x)}.

The final term Bs makes use of the rule of double expectation once again which yields

B, = E{c(X)}

where

e(X) = E{(Y —Y)(Y= &) | X} = E{(Y —Y) | }(Y— &)
C{E( 0V - =Y -Y)}Y-8)=0

And B.=0. The second equality is true because the factor (Y — 5) is

fixed by X. Collecting the expression for Bi1, B. and Bs proves the double variance
formula
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Some notions

Random intensities

Specific models for 14 are handled through the mixing relationship

Pr(N =n) =IPF(N = nlu)g(ﬂ)dﬂzZPF(N =n| ) Pr(u= 1)

Gamma models are traditional choices for ancg(qu@iled below

Random intensities

Estimates of f and o can be obtained from historical data without specifying
. Let ny,...,Nn g)@lébaims from n policy holders and T,,..., T, their exposure to riskx The intensity

ifindividual j is then estimated as 1/ : My =N, /Tj
Uncertainty is huge. One solution is
A n A T
E=>w,u; where w; =—" (1.5)
j=1 T

and j—

A ij(ﬂj_f)z_c
2 _ 4

O

where C= (nn—_1)§

-3 w2 T,
j=1 =1

Both estimates are unbiased. See Section 8.6 for details. 10.5 returns to this.

(1.6)
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e
The negative binomial model
e

The most commonly applied model for muh is the Gamma distribution.
It is then assumed that

u=6 where G~ Gamma(x)

Here Gamma(a) is the standard Gamma distribution with mean one, and y2i
fluctuates around 5 with uncertainty controlled by  (Bpecifically

E(v)=¢ and sd(w)=¢/Ve

Since. sd(x) >0 as «a —> oo the pure Poisson model with fixed intensity
emerges in the limit.

The closed form of the density function of N is given by

Pr(N =n) = [(n+a) p“(A—p)" where p=
T'(n+) () o+ ET
for n=0,1,.... This is the negative binomial distribution to be denoted nbin(&, a)Mean,
standard deviation and skewness are
1+ 26T/
E(N)=£T, sd(N)= 1+ T /a), skew(N)= (1.9)
(N)=¢&T (N)=ET(A+£T /) (N) TG

Where E(N) and sd(N) follow from (1.3) when o= é:/ \/as inserted.

Note that if Ni,...,Ns are iid then Ni+...+Nsis nbin (convolution property).
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Some notions

Fitting the negative binomial

Random intensities

Moment estimation using (1.5) and (1.6) is simplest technically. The estimate of is simp&
in (1.5), ang for invoke (1.8) right which yields

0:5/\/; sothat a=¢&°10°.

f o=0 , interpret it as an infinite & or a pure Poisson model.

N

Likelihood estimation: the log likelihood function follows by inserting nj for n in (1.9) and
adding the logarithm for all j. This leads to the criterion

L(£.@) = Y log(n, + ) - 1{log(I () - log( )} +

inj Iog(f)—(nj +a)|og(a+§Tj)

where constant factors not depending on andf have béen omitted.
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