


Recap (1.2.1 in EB)

• Property insurance is economic responsibility
for incidents such as fires and accidents
passed on to an insurer against a fee

• The contract, known as a policy, releases
claims when such events occur

• A central quantity is the total claim X amassed
during a certain period of time (typically a 
year)
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Overview pricing (1.2.2 in EB)

Individual
Insurance 
company

Premium

Claim






py probabilit with )deductible above(event  

p-1y probabilit with ),deductible aboveevent  (no 0
  claim Total
X

Due to the law of large numbers the insurance company is cabable of estimating
the expected claim amount

•Probability of claim, 
•Estimated with claim frequency
•We are interested in the distribution of the claim frequency
•The premium charged is the risk premium inflated with a loading (overhead  and margin)

Expected claim amount given an event

Expected consequence of claim

Risk premium

Distribution of X, estimated with claims data



Control (1.2.3 in EB)
•Companies are obliged to aside funds to cover future obligations
•Suppose a portfolio consists of J policies with claims X1,…,XJ

•The total claim is then

JXX  ...1

•We are interested in as well as its distribution
•Regulators demand sufficient funds to cover with high probability
•The mathematical formulation is in term of , which is the solution of the equation

Portfolio claim size

)(E


q

   }Pr{ q

where is small for example 1%
•The amount is known as the solvency capital or reserveq





Insurance works because risk can be 
diversified away through size (3.2.4 EB)

•The core idea of insurance is risk spread on many units
•Assume that policy risks X1,…,XJ are stochastically independent
•Mean and variance for the portfolio total are then

JJE   ...)var(   and   ...)( 11
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which is average expectation and variance. Then

J
JJE
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•The coefficient of variation (shows extent of variability in relation to the mean) 
approaches 0 as J grows large (law of large numbers)
•Insurance risk can be diversified away through size
•Insurance portfolios are still not risk-free because

•of uncertainty in underlying models
•risks may be dependent



How are random variables sampled?

UniformUUFXUFX ~  ,)1(or  )( 11  

Inversion (2.3.2 in EB):
•Let F(x) be a strictly increasing distribution function with inverse and let)(1 UFX 

•Consider the specification on the left for which U=F(X)
•Note that

)())(Pr(

))()(Pr()Pr(

xFxFU

xFXFxX
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since uuU  )Pr( 1

U[0,1]

F(x)

1u

1x



Outline of the course
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| Models treated Curriculum

Duration in 

lectures

Basic concepts and introduction EB 1.2, 2.3.1, 2.3.2, 3.2, 3.3 1

How is claim frequency modelled?

Poisson, Compound Poisson, 

Poisson regression, negative 

binomial model EB 8.2, 8.3, 8.4  2-3

How is claim reserving modelled? Delay modelling, chain ladder EB 8.5, Note  1-2

How is claim size modelled?

Gamma distribution, log-normal 

distribution, Pareto distribution, 

Weibull distribution EB 9  2-3

How is pricing done? EB 10 1

Solvency EB 10, Note  1-2

Credibility theory Buhlmann Straub EB 10 1

Reinsurance EB 10 1

Repetition 1

Binomial models

Monte Carlo simulation



Course literature
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Curriculum:
Chapter 1.2, 2.3.1, 2.3.2, 2.5, 3.2, 3.3 in EB
Chapter 8,9,10 in EB
Note on Chain Ladder
Lecture notes by NFH
Exercises

Assignment must be approved to be able to participate
in exame

The following book will be used (EB):

Computation and Modelling in Insurance and Finance, Erik Bølviken, 
Cambridge University Press (2013)

•Additions to the list above may occur during the course
•Final curriculum will be posted on the course web site in due time 



Overview of this session
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Some important notions and some practice too

Examples of claim frequencies

Random intensities (Section 8.3 EB)

The Poisson model (Section 8.2 EB)



Introduction
• Actuarial modelling in general insurance is broken down on claim

frequency and claim size
• This is natural due to definition of risk premium:

• The Poisson distribution is often used in modelling the distribution of claim
numbers

• The parameter is lambda = muh*T (single policy) and lambda = J*muh*T
(portfolios

• The modelling can be made more sophisticated by extending the model for 
muh, either by making muh stochastic or by linking muh to explanatory
variables

10

Some notions

Examples

Random intensities

Poisson
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Expected claim amount given an event

Expected consequence of claim

Risk premium

•Probability of claim, 
•Estimated with claim frequency



The world of Poisson (Chapter 8.2)
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t0=0 tk=T

Number of claims

tk-2 tk-1 tk tk+1

Ik-1 Ik Ik+1

•What is rare can be described mathematically by cutting a given time period T into K 
small pieces of equal length h=T/K
•On short intervals the chance of more than one incident is remote
•Assuming no more than 1 event per interval the count for the entire period is 

N=I1+...+IK ,where Ij is either 0 or 1 for j=1,...,K

•If p=Pr(Ik=1) is equal for all k and events are independent, this is an ordinary Bernoulli
series

Knpp
nKn

K
nN nKn ,...,1,0for      ,)1(

)!(!

!
)Pr( 


 

•Assume that p is proportional to h and set hp  where 

is an intensity which applies per time unit
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Poisson



The world of Poisson
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In the limit N is Poisson distributed with parameter  T 
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The world of Poisson
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•Let us proceed removing the zero/one restriction on Ik. A more flexible specification is

)()1Pr(I     ),()1Pr(    ),(1)0Pr( k hohohIhohI kk  

Where o(h) signifies a mathematical expression for which

0   as   0
)(

 h
h

ho

It is verified in Section 8.6 that o(h) does not count in the limit

Consider a portfolio with J policies. There are now J independent processes in 
parallel and if is the intensity of policy j and Ik the total number
of claims in period k, then
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The world of Poisson
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•Both quanities simplify when the products are calculated and the powers of h identified
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•It follows that the portfolio number of claims N is Poisson distributed with parameter

JTJT JJ /)...(      where,)...( 11  

•When claim intensities vary over the portfolio, only their average counts
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When the intensity varies over time
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•A time varying function handles the mathematics. The binary
variables I1,...Ik are now based on different intensities
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KktkK ,...,1for      )(        where,...., k1  

•When I1,...Ik are added to the total count N, this is the same issue as if K different
policies apply on an interval of length h. In other words, N must still be Poisson, now
with parameter 

where the limit is how integrals are defined. The Poisson parameter for N can also be 
written

And the introduction of a time-varying function doesn’t change things
much.  A time average takes over from a constant

)(t
 
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The intensity is an average over time and policies.

The Poisson distribution
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•Claim numbers, N for policies and N for portfolios, are Poisson distributed with
parameters

TJT        and     



Poisson models have useful operational properties. Mean, standard deviation and 
skewness are

Policy level Portfolio level


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1
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The sums of independent Poisson variables must remain Poisson, if N1,...,NJ are
independent and Poisson with parameters then

JNN  ...1Ν
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Client

Policy

Insurable object
(risk)

Insurance cover
Cover element

/claim type

Claim

Policies and claims
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Insurance cover third party liability

Third part liability

Car insurance client

Car insurance policy

Insurable object
(risk), car Claim

Policies and claims

Insurance cover partial hull

Legal aid

Driver and passenger acident

Fire

Theft from vehicle

Theft of vehicle

Rescue

Insurance cover hull
Own vehicle damage

Rental car

Accessories mounted rigidly

Some notions

Examples

Random intensities
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Some notes on the different insurance covers on the previous slide:

Third part liability is a mandatory cover dictated by Norwegian law that covers damages
on third part vehicles, propterty and person. Some insurance companies provide

additional coverage, as legal aid and driver and passenger accident insurance.

Partial Hull covers everything that the third part liability covers. In addition, partial hull covers damages on own
vehicle caused by fire, glass rupture, theft and vandalism in association with theft. Partial hull also includes rescue. 
Partial hull does not cover damage on own vehicle caused by collision or landing in the ditch. Therefore, partial hull is 
a more affordable cover than the Hull cover. Partial hull also cover salvage, home transport and help associated with
disruptions in production, accidents or disease. 

Hull covers everything that partial hull covers. In addition, Hull covers damages on own vehicle in a collision, 
overturn, landing in a ditch or other sudden and unforeseen damage as for example fire, glass rupture, theft or 
vandalism. Hull may also be extended to cover rental car.

Some notes on some important concepts in insurance:

What is bonus?
Bonus is a reward for claim-free driving. For every claim-free year you obtain a reduction in the insurance premium
in relation to the basis premium. This continues until 75% reduction is obtained. 

What is deductible?
The deductible is the amount the policy holder is responsible for when a claim occurs. 

Does the deductible impact the insurance premium?
Yes, by selecting a higher deductible than the default deductible, the insurance premium may be significantly
reduced. The higher deductible selected, the lower the insurance premium. 

How is the deductible taken into account when a claim is disbursed?
The insurance company calculates the total claim amount caused by a damage entitled to disbursement. What you
get from the insurance company is then the calculated total claim amount minus the selected deductible. 

Some notions
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Random intensities

Poisson



Key ratios – claim frequency
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Claim frequency all covers motor

•The graph shows claim frequency for all covers for motor insurance
•Notice seasonal variations, due to changing weather condition throughout the years

Some notions

Examples

Random intensities

Poisson



Key ratios – claim severity
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Average cost all covers motor

•The graph shows claim severity for all covers for motor insurance
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Key ratios – pure premium
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Pure premium all covers motor

•The graph shows pure premium for all covers for motor insurance
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Key ratios – pure premium

•The graph shows loss ratio for all covers for motor insurance
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Key ratios – claim frequency TPL 
and hull

•The graph shows claim frequency for third part liability and hull for motor 
insurance
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Average cost hull motor

Key ratios – claim frequency and 
claim severity

•The graph shows claim severity for third part liability and hull for 
motor insurance
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Random intensities (Chapter 8.3)

• How varies over the portfolio can partially be described by observables such as age or sex 
of the individual (treated in Chapter 8.4)

• There are however factors that have impact on the risk which the company can’t know much
about

– Driver ability, personal risk averseness, 

• This randomeness can be managed by making a stochastic variable 

• This extension may serve to capture uncertainty affecting all policy holders jointly, as well, such
as altering weather conditions

• The models are conditional ones of the form

• Let

which by double rules in Section 6.3 imply

• Now E(N)<var(N) and N is no longer Poisson distributed

26
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The rule of double variance
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Let X and Y be arbitrary random variables for which

)|var(     and     )|()( 2 xYxYEx  

Then we have the important identities

)}(var{)}(E{)     var(Yand     )}({)( 2 XXXEYE  
Rule of double expectation Rule of double variance

Recall rule of double expectation
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wikipedia tells us how the rule of double 
variance can be proved
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The rule of double variance
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Var(Y) will now be proved from the rule of double expectation. Introduce

E(Y))E( that    note and     )(
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 YxY 

which is simply the rule of double expectation. Clearly
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Passing expectations over this equality yields
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which will be handled separately. First note that
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and by the rule of double expectation applied to 
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The second term makes use of the fact that by the rule of
double expectation so that
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The rule of double variance
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)}.(var{)var(
^

2 xYB 

The final term B3 makes use of the rule of double expectation once again which yields

)}({3 XcEB 

where

And B3=0. The second equality is true because the factor is 
fixed by X. Collecting the expression for B1, B2 and B3 proves the double variance
formula
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Random intensities
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Specific models for are handled through the mixing relationship

)Pr()|Pr()()|Pr()Pr(
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Gamma models are traditional choices for and detailed below)(g

Estimates of can be obtained from historical data without specifying
. Let n1,...,nn be claims from n policy holders and T1,...,TJ their exposure to risk.  The intensity
if individual j is then estimated as .

    and    
)(g

j jjj Tn /
^



Uncertainty is huge. One solution is 
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Both estimates are unbiased. See Section 8.6 for details. 10.5 returns to this.  

(1.5)

(1.6)
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The most commonly applied model for muh is the Gamma distribution. 
It is then assumed that

The negative binomial model

32

)Gamma(~        where  GG

Here is the standard Gamma distribution with mean one, and  
fluctuates around with uncertainty controlled by      . Specifically

)Gamma( 
 

 /)(sd   and     )( E

Since , the pure Poisson model with fixed intensity
emerges in the limit.
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The closed form of the density function of N is given by
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for n=0,1,.... This is the negative binomial distribution to be denoted . Mean, 
standard deviation and skewness are
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Where E(N) and sd(N) follow from (1.3) when is inserted.
Note that if N1,...,NJ are iid then N1+...+NJ is nbin (convolution property). 
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(1.9)
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Fitting the negative binomial
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Moment estimation using (1.5) and (1.6) is simplest technically. The estimate of is simply
in (1.5), and for        invoke (1.8) right which yields
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If , interpret it as an infinite or a pure Poisson model. 0
^
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^



Likelihood estimation: the log likelihood function follows by inserting nj for n in (1.9) and 
adding the logarithm for all j. This leads to the criterion













n

j

jjj

n

j

j

Tnn

nnL

1

1

)log()()log(

)}log())({log()log(),(





where constant factors not depending on and have been omitted.  
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