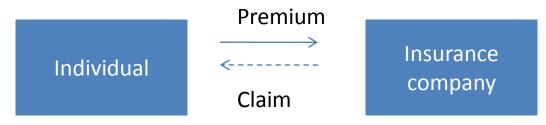
## STK 4540 Lecture 3

Uncertainty on different levels

And

Random intensities in the claim frequency

# Overview pricing (1.2.2 in EB)



Total claim = 
$$\begin{cases} 0 \text{ (no event above deductible), with probability 1-p} \\ X \text{ (event above deductible) with probability p} \end{cases}$$

Due to the law of large numbers the insurance company is cabable of estimating the expected claim amount

Distribution of X, estimated with claims data

$$E(X) = p \int_{all \, x} sf(s) ds + (1-p)0 = \pi^{Pu}$$
Risk premium
Expected claim amount given an event

Probability of claim,

- Expected consequence of claim
- Estimated with claim frequency
- •We are interested in the distribution of the claim frequency
- •The premium charged is the risk premium inflated with a *loading* (overhead and margin)

# Control (1.2.3 in EB)

- Companies are obliged to aside funds to cover future obligations
- •Suppose a portfolio consists of J policies with claims X<sub>1</sub>,...,X<sub>J</sub>
- The total claim is then

$$\chi = X_1 + \dots + X_J$$

Portfolio claim size

- •We are interested in  $E(\chi)$  as well as its distribution
- •Regulators demand sufficient funds to cover  $\chi$  with high probability
- •The mathematical formulation is in term of  $\ \ q_{\scriptscriptstyle {\cal E}}$ , which is the solution of the equation

$$\Pr\{\chi > q_{\varepsilon}\} = \varepsilon$$

where  ${\mathcal E}$  is small for example 1%

•The amount  $\ \ q_{\,arepsilon}$  is known as the solvency capital or reserve

# Insurance works because risk can be diversified away through size (3.2.4 EB)

- •The core idea of insurance is risk spread on many units
- •Assume that policy risks X<sub>1</sub>,...,X<sub>J</sub> are stochastically independent
- Mean and variance for the portfolio total are then

$$E(\chi) = \pi_1 + \dots + \pi_J$$
 and  $var(\chi) = \sigma_1 + \dots + \sigma_J$ 

and 
$$\pi_j = E(X_j)$$
 and  $\sigma_j = sd(X_j)$ . Introduce

$$\overline{\pi} = \frac{1}{J}(\pi_1 + \dots + \pi_J)$$
 and  $\overline{\sigma}^2 = \frac{1}{J}(\sigma_1 + \dots + \sigma_J)$ 

which is average expectation and variance. Then

$$E(\chi) = J\overline{\pi} = \text{ and } \operatorname{sd}(\chi) = \sqrt{J} \ \overline{\sigma} \text{ so that } \frac{\operatorname{sd}(\chi)}{\operatorname{E}(\chi)} = \frac{\overline{\sigma}/\overline{\pi}}{\sqrt{J}}$$

- •The coefficient of variation (shows extent of variability in relation to the mean) approaches 0 as J grows large (law of large numbers)
- •Insurance risk can be diversified away through size
- •Insurance portfolios are still not risk-free because
  - of uncertainty in underlying models
  - •risks may be dependent

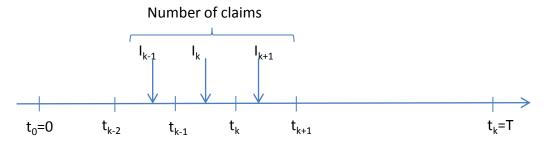
## The world of Poisson

Poisson

Some notions

Examples

Random intensities



- •What is rare can be described mathematically by cutting a given time period T into K small pieces of equal length h=T/K
- Assuming no more than 1 event per interval the count for the entire period is

$$N=I_1+...+I_K$$
, where  $I_j$  is either 0 or 1 for  $j=1,...,K$ 

•If p=Pr(I<sub>k</sub>=1) is equal for all k and events are independent, this is an ordinary Bernoulli series

$$Pr(N = n) = \frac{K!}{n!(K-n)!} p^{n} (1-p)^{K-n}, \text{ for } n = 0,1,...,K$$

•Assume that p is proportional to h and set  $p=\mu h$  where  $\mu$  is an intensity which applies per time unit

$$\Rightarrow \Pr(N=n) \underset{K\to\infty}{\longrightarrow} \frac{(\mu T)^n}{n!} e^{-\mu T}$$

In the limit N is Poisson distributed with parameter

$$\lambda = \mu T$$

## The Poisson distribution

Poisson

Some notions

Examples

Random intensities

•Claim numbers, N for policies and **N** for portfolios, are Poisson distributed with parameters

$$\lambda = \mu T$$
 and  $\lambda = J\mu T$ 

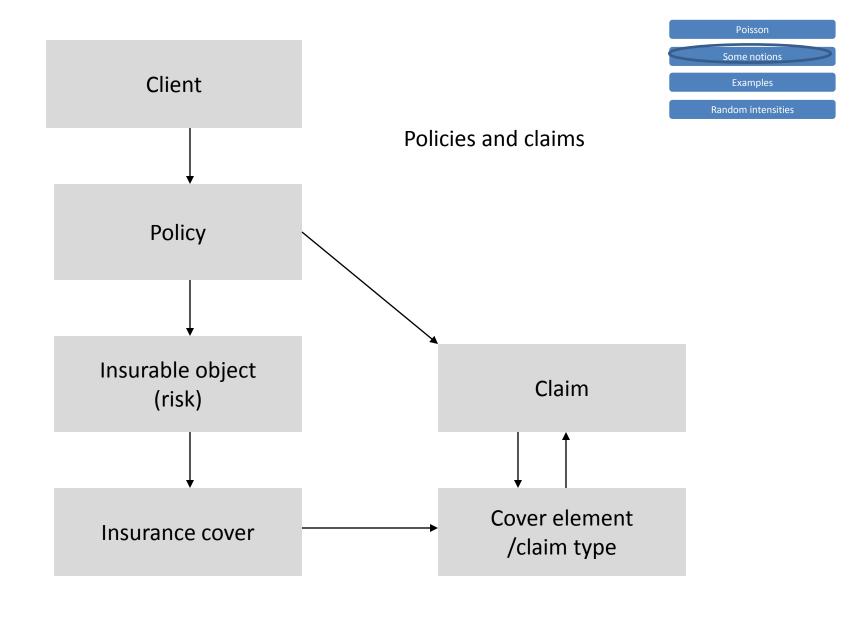
The intensity  $\mu$ s an average over time and policies.

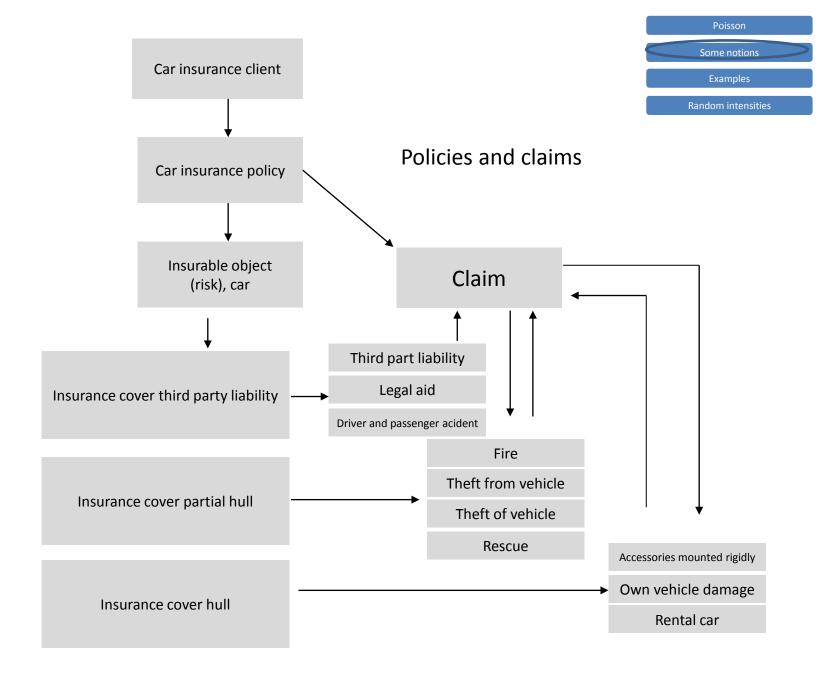
Poisson models have useful operational properties. Mean, standard deviation and skewness are

$$E(N) = \lambda$$
,  $sd(N) = \sqrt{\lambda}$  and  $skew(\lambda) = \frac{1}{\sqrt{\lambda}}$ 

The sums of independent Poisson variables must remain Poisson, if  $N_1,...,N_J$  are independent and Poisson with parameters  $\lambda_1,...,\lambda_J$  then

$$\mathbf{N} = N_1 + ... + N_J \sim Poisson(\lambda_1 + ... + \lambda_J)$$



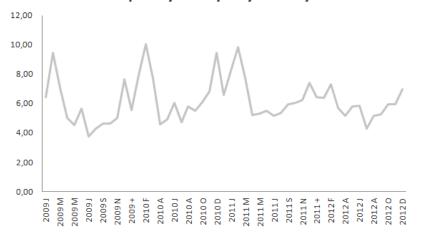


# Key ratios – claim frequency TPL and hull

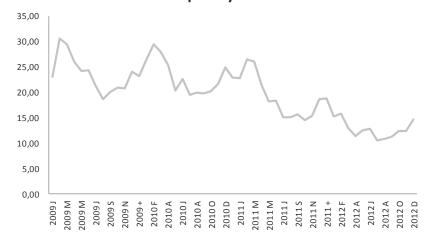


•The graph shows claim frequency for third part liability and hull for motor insurance

#### Claim frequency third party liability motor



### Claim frequency hull motor



## Random intensities (Chapter 8.3)

- How  $\mu$  varies over the portfolio can partially be described by observables such as age or sex of the individual (treated in Chapter 8.4)
- There are however factors that have impact on the risk which the company can't know much about
  - Driver ability, personal risk averseness,
- ullet This randomeness can be managed by making  $\mu$  a stochastic variable
- This extension may serve to capture uncertainty affecting all policy holders jointly, as well, such as altering weather conditions
- The models are conditional ones of the form

$$N \mid \mu \sim Poisson(\mu T)$$
 and  $N \mid \mu \sim Poisson(J\mu T)$ 

• Let  $\xi = E(\mu)$  and  $\sigma = \operatorname{sd}(\mu)$  and recall that  $E(N \mid \mu) = \operatorname{var}(N \mid \mu) = \mu T$ 

which by double rules in Section 6.3 imply

$$E(N) = E(\mu T) = \xi T$$
 and  $var(N) = E(\mu T) + var(\mu T) = \xi T + \sigma^2 T^2$ 

Now E(N)<var(N) and N is no longer Poisson distributed</li>

Poisson

Some notions

Examples

Random intensities

### The rule of double variance

Let X and Y be arbitrary random variables for which

$$\xi(x) = E(Y \mid x)$$
 and  $\sigma^2 = \text{var}(Y \mid x)$ 

Then we have the important identities

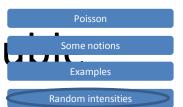
$$\xi = E(Y) = E\{\xi(X)\}$$
 and  $var(Y) = E\{\sigma^2(X)\} + var\{\xi(X)\}$ 

Recall rule of double expectation

$$E(E(Y \mid x)) = \int_{\text{all } x} (E(Y \mid x)) f_X(x) dx = \int_{\text{all } x} y f_{Y|X}(y|x) dy f_X(x) dx$$

$$= \int_{\text{all } y} \int_{\text{all } x} y f_{X,Y}(x, y) dx dy = \int_{\text{all } y} \int_{\text{all } x} f_{X,Y}(x, y) dx dy = \int_{\text{all } y} y f_Y(y) dy = E(Y)$$

# wikipedia tells us how the rule of down variance can be proved



### Law of total variance

From Wikipedia, the free encyclopedia

In probability theory, the law of total variance<sup>[1]</sup> or variance decomposition formula, states that if X and Y are random variables on the same probability space, and the variance of Y is finite, then  $Var[Y] = E(Var[Y \mid X]) + Var(E[Y \mid X])$ .

#### Proof [edit source]

The law of total variance can be proved using the law of total expectation. [3] First,

$$Var[Y] = E[Y^2] - E[Y]^2$$

from the definition of variance. Then we apply the law of total expectation to each term by conditioning on the random variable X:

$$= \mathbf{E}_X \left[ \mathbf{E}[Y^2 \mid X] \right] - \mathbf{E}_X \left[ \mathbf{E}[Y \mid X] \right]^2$$

Now we rewrite the conditional second moment of Y in terms of its variance and first moment:

$$= E_X [Var[Y \mid X] + E[Y \mid X]^2] - E_X [E[Y \mid X]]^2$$

Since the expectation of a sum is the sum of expectations, the terms can now be regrouped:

$$= E_X[Var[Y \mid X]] + (E_X [E[Y \mid X]^2] - E_X[E[Y \mid X]]^2)$$

Finally, we recognize the terms in parentheses as the variance of the conditional expectation E[Y|X]:

$$= \operatorname{E}_{X} \left[ \operatorname{Var}[Y \mid X] \right] + \operatorname{Var}_{X} \left[ \operatorname{E}[Y \mid X] \right]$$

### The rule of double variance

Var(Y) will now be proved from the rule of double expectation. Introduce

$$\hat{Y} = \xi(x)$$
 and note that  $E(\hat{Y}) = E(Y)$ 

which is simply the rule of double expectation. Clearly

$$(Y - \xi)^2 = ((Y - \hat{Y}) + (\hat{Y} - \xi))^2 = (Y - \hat{Y})^2 + (\hat{Y} - \xi)^2 + 2(Y - \hat{Y})(\hat{Y} - \xi).$$

Passing expectations over this equality yields

$$var(Y) = B_1 + B_2 + 2B_3$$

where

$$B_1 = E(Y - \hat{Y})^2$$
,  $B_2 = E(\hat{Y} - \xi)^2$ ,  $B_3 = E(Y - \hat{Y})(\hat{Y} - \xi)$ ,

which will be handled separately. First note that

$$\sigma^{2}(x) = E\{(Y - \xi(x))^{2} \mid x\} = E\{(Y - Y)^{2} \mid x\}_{\Lambda}$$

and by the rule of double expectation applied to  $(Y-Y)^2$ 

$$E\{\sigma^2(x)\} = E\{(Y-Y)^2 = B_1.$$

The second term makes use of the fact that  $\xi = E(Y)$  by the rule of double expectation so that

### The rule of double variance

$$B_2 = \operatorname{var}(Y) = \operatorname{var}\{\xi(x)\}.$$

The final term B₃ makes use of the rule of double expectation once again which yields

$$B_3 = E\{c(X)\}$$

where

$$c(X) = E\{(Y - Y)(Y - \xi) \mid x\} = E\{(Y - Y) \mid x\}(Y - \xi)$$
$$= \{E(Y \mid x) - Y)\}(Y - \xi) = \{Y - Y\}(Y - \xi) = 0$$

And  $B_3$ =0. The second equality is true because the factor  $(Y-\xi)$  is fixed by X. Collecting the expression for  $B_1$ ,  $B_2$  and  $B_3$  proves the double variance formula

## Random intensities

Specific models for  $\mu$  are handled through the mixing relationship

$$\Pr(N=n) = \int_{0}^{\infty} \Pr(N=n \mid \mu) g(\mu) d\mu \approx \sum_{i} \Pr(N=n \mid \mu_{i}) \Pr(\mu=\mu_{i})$$
 Gamma models are traditional choices for  $g(\mu)$  and detailed below

Estimates of  $\xi$  and  $\sigma$  can be obtained from historical data without specifying  $g(\mu)$ . Let  $n_1,...,n_n$  be claims from n policy holders and  $T_1,...,T_n$  their exposure to risk. The intensity  $\mu_j$  of individual j is then estimated as  $\mu_j = n_j \, / \, T_j$ .

Uncertainty is huge but pooling for portfolio estimation is still possible. One solution is

$$\hat{\xi} = \sum_{j=1}^{n} w_j \hat{\mu}_j \quad \text{where} \quad w_j = \frac{T_j}{\sum_{i=1}^{n} T_i}$$

$$(1.5)$$

and

$$\hat{\sigma}^{2} = \frac{\sum_{j=1}^{n} w_{j} (\hat{\mu}_{j} - \hat{\xi})^{2} - c}{1 - \sum_{j=1}^{n} w_{j}^{2}} \qquad \text{where} \qquad c = \frac{(n-1)\hat{\xi}}{\sum_{j=1}^{n} T_{i}}$$
(1.6)

Both estimates are unbiased. See Section 8.6 for details. 10.5 returns to this.

### The negative binomial model

Poisson

Some notions

Examples

Random intensities

The most commonly applied model for muh is the Gamma distribution. It is then assumed that

$$\mu = \xi G$$
 where  $G \sim \text{Gamma}(\alpha)$ 

Here  $Gamma(\alpha)$  is the standard Gamma distribution with mean one, and  $\mu$  fluctuates around  $\xi$  with uncertainty controlled by  $\alpha$  . Specifically

$$E(\mu) = \xi$$
 and  $sd(\mu) = \xi / \sqrt{\alpha}$ 

Since  $sd(\mu) \to 0$  as  $\alpha \to \infty$  the pure Poisson model with fixed intensity emerges in the limit.

The closed form of the density function of N is given by

$$Pr(N = n) = \frac{\Gamma(n + \alpha)}{\Gamma(n + 1)\Gamma(\alpha)} p^{\alpha} (1 - p)^{n} \quad \text{where} \quad p = \frac{\alpha}{\alpha + \xi \Gamma}$$

for n=0,1,.... This is the negative binomial distribution to be denoted  $nbin(\xi,\alpha)$ Mean, standard deviation and skewness are

$$E(N) = \xi T, \quad sd(N) = \sqrt{\xi T (1 + \xi T / \alpha)}, \quad \text{skew}(N) = \frac{1 + 2\xi T / \alpha}{\sqrt{\xi T (1 + \xi T / \alpha)}}$$
 (1.9)

Where E(N) and sd(N) follow from (1.3) when  $\sigma = \xi / \sqrt{\alpha}$  is inserted. Note that if N<sub>1</sub>,...,N<sub>J</sub> are iid then N<sub>1</sub>+...+N<sub>J</sub> is nbin (convolution property).

### Fitting the negative binomial

Moment estimation using (1.5) and (1.6) is simplest technically. The estimate of  $\xi$  is simply in (1.5), and  $\hat{\xi}$  for  $\alpha$  invoke (1.8) right which yields

$$\hat{\sigma} = \hat{\xi}/\sqrt{\hat{\alpha}} \quad \text{so that} \quad \hat{\alpha}_{\text{\tiny A}} = \hat{\xi}^2/\hat{\sigma}^2 \,.$$
 If  $\sigma = 0$ , interpret it as an infinite  $\alpha$  or a pure Poisson model.

Likelihood estimation: the log likelihood function follows by inserting  $n_j$  for n in (1.9) and adding the logarithm for all j. This leads to the criterion

$$L(\xi, \alpha) = \sum_{j=1}^{n} \log(n_j + \alpha) - n\{\log(\Gamma(\alpha)) - \alpha \log(\alpha)\} + \sum_{j=1}^{n} n_j \log(\xi) - (n_j + \alpha) \log(\alpha + \xi T_j)$$

where constant factors not depending on lpha and  $\xi$  have been omitted.