
STK 4540 Lecture 3 

Uncertainty on different levels 
And  

Random intensities in the claim 
frequency 
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Overview pricing (1.2.2 in EB) 

Individual 
Insurance 
company 

Premium 

Claim 
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Due to the law of large numbers the insurance company is cabable of estimating 
the expected claim amount 

•Probability of claim,  
•Estimated with claim frequency 
•We are interested in the distribution of  the claim frequency  
•The premium charged is the risk premium inflated with a loading (overhead  and margin) 

Expected claim amount given an event 

Expected consequence of claim 

Risk premium 

Distribution of X, estimated with claims data 



Control (1.2.3 in EB) 
•Companies are obliged to aside funds to cover future obligations 
•Suppose a portfolio consists of J policies with claims X1,…,XJ 

•The total claim is then  

JXX  ...1

•We are interested in   as well as its distribution 
•Regulators demand sufficient funds to cover   with high probability 
•The mathematical formulation is in term of  , which is the solution of the equation 

Portfolio claim size 
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where  is small for example 1% 
•The amount  is known as the solvency capital or reserve q





Insurance works because risk can be 
diversified away through size (3.2.4 EB) 

•The core idea of insurance is risk spread on many units 
•Assume that policy risks X1,…,XJ are stochastically independent 
•Mean and variance for the portfolio total are then  
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which is average expectation and variance. Then 
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•The coefficient of variation  (shows extent of variability in relation to the mean) 
approaches 0 as J grows large (law of large numbers) 
•Insurance risk can be diversified away through size 
•Insurance portfolios are still not risk-free because  

•of uncertainty in underlying models 
•risks may be dependent 



The world of Poisson 
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In the limit N is Poisson distributed with parameter   T 

Some notions 

Examples 

Random intensities 

Poisson 

t0=0 tk=T  

Number of claims 

tk-2 tk-1 tk tk+1 

Ik-1 Ik Ik+1 

•What is rare can be described mathematically by cutting a given time period T into K 
small pieces of equal length h=T/K 
•Assuming no more than 1 event per interval the count for the entire period is  
 
 N=I1+...+IK , where Ij  is either 0 or 1 for j=1,...,K 

•If p=Pr(Ik=1) is equal for all k and events are independent, this is an ordinary Bernoulli 
series 

Knpp
nKn

K
nN nKn ,...,1,0for      ,)1(

)!(!

!
)Pr( 


 

•Assume that p is proportional to h and set  hp  where 

is an intensity which applies per time unit 



The intensity       is an average over time and policies. 

The Poisson distribution 
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•Claim numbers, N for policies and N for portfolios, are Poisson distributed with 
parameters 

TJT        and     



Poisson models have useful operational properties. Mean, standard deviation and 
skewness are 

Policy level Portfolio level 


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The sums of independent Poisson variables must remain Poisson, if N1,...,NJ are 
independent and Poisson with parameters   then 
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Client 

Policy 

Insurable object 
(risk) 

Insurance cover 
Cover element 

/claim type 

Claim 

Policies and claims 

Some notions 

Examples 

Random intensities 

Poisson 



Insurance cover third party liability 

Third part liability 

Car insurance client 

Car insurance policy 

Insurable object 
(risk), car Claim 

Policies and claims 

Insurance cover partial hull 

Legal aid 

Driver and passenger acident 

Fire 

Theft from vehicle 

Theft of vehicle 

Rescue 

Insurance cover hull 
Own vehicle damage 

Rental car 

Accessories mounted rigidly 

Some notions 

Examples 

Random intensities 

Poisson 
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Key ratios – claim frequency TPL  
and hull 

•The graph shows claim frequency for third part liability and hull for motor 
insurance 
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Random intensities (Chapter 8.3) 

• How     varies over the portfolio can partially be described by observables such as age or sex 
of the individual (treated in Chapter 8.4) 

• There are however factors that have impact on the risk which the company can’t know much 
about 
– Driver ability, personal risk averseness,  

• This randomeness can be managed by making  a stochastic variable  

• This extension may serve to capture uncertainty affecting all policy holders jointly, as well, such 
as altering weather conditions 

• The models are conditional ones of the form 

 

 

 

• Let          

 

 which by double rules in Section 6.3 imply 

 

 

• Now E(N)<var(N) and N is no longer Poisson distributed 
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The rule of double variance 
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Let X and Y be arbitrary random variables for which 

)|var(     and     )|()( 2 xYxYEx  

Then we have the important identities 

)}(var{)}(E{)     var(Yand     )}({)( 2 XXXEYE  
Rule of double expectation Rule of double variance 

Recall rule of double expectation 
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wikipedia tells us how the rule of double 
variance can be proved 
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The rule of double variance 
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Var(Y) will now be proved from the rule of double expectation. Introduce 
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which is simply the rule of double expectation. Clearly 
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Passing expectations over this equality yields 
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which will be handled separately. First note that 
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The second term makes use of the fact that            by the 
rule of double expectation so that  
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The rule of double variance 
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The final term B3 makes use of the rule of double expectation once again which yields 
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where 

And B3=0. The second equality is true because the factor   is 
fixed by X. Collecting the expression for B1, B2 and B3 proves the double variance 
formula 
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Random intensities 
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Specific models for        are handled through the mixing relationship 
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Gamma models are traditional choices for   and detailed below )(g

Estimates of  can be obtained from historical data without specifying            
. Let n1,...,nn be claims from n policy holders and T1,...,TJ their exposure to risk.  The intensity        
of individual j is then estimated as       . 
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Both estimates are unbiased. See Section 8.6 for details. 10.5 returns to this.   

(1.5)    

(1.6)    
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The most commonly applied model for muh is the Gamma distribution. 
It is then assumed that  

The negative binomial model 
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)Gamma(~        where  GG

Here  is the standard Gamma distribution with mean one, and   
fluctuates around     with uncertainty controlled by      . Specifically    
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Since           , the pure Poisson model with fixed intensity 
emerges in the limit. 
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for n=0,1,.... This is the negative binomial distribution to be denoted                 . Mean, 
standard deviation and skewness are  
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Where E(N) and sd(N) follow from (1.3) when               is inserted. 
Note that if N1,...,NJ are iid then N1+...+NJ is nbin (convolution property).  
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Fitting the negative binomial 
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Moment estimation using (1.5) and (1.6) is simplest technically. The estimate of     is simply       
in (1.5), and for        invoke (1.8) right which yields 
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Likelihood estimation: the log likelihood function follows by inserting nj for n in (1.9) and 
adding the logarithm for all j. This leads to the criterion  
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where constant factors not depending on  and  have been omitted.  
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