
STK 4540 Lecture 4 

Random intensities in the claim 
frequency 

and 
Claim frequency regression 
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Overview pricing (1.2.2 in EB) 

Individual 
Insurance 
company 

Premium 

Claim 






py probabilit with )deductible above(event  

p-1y probabilit with ),deductible aboveevent  (no 0
  claim Total
X

Due to the law of large numbers the insurance company is cabable of estimating 
the expected claim amount 

•Probability of claim,  
•Estimated with claim frequency 
•We are interested in the distribution of  the claim frequency  
•The premium charged is the risk premium inflated with a loading (overhead  and margin) 

Expected claim amount given an event 

Expected consequence of claim 

Risk premium 

Distribution of X, estimated with claims data 



The world of Poisson 
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In the limit N is Poisson distributed with parameter   T 

Some notions 

Examples 

Random intensities 

Poisson 

t0=0 tk=T  

Number of claims 

tk-2 tk-1 tk tk+1 

Ik-1 Ik Ik+1 

•What is rare can be described mathematically by cutting a given time period T into K 
small pieces of equal length h=T/K 
•Assuming no more than 1 event per interval the count for the entire period is  
 
 N=I1+...+IK , where Ij  is either 0 or 1 for j=1,...,K 

•If p=Pr(Ik=1) is equal for all k and events are independent, this is an ordinary Bernoulli 
series 
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•Assume that p is proportional to h and set  hp  where 

is an intensity which applies per time unit 



The intensity       is an average over time and policies. 

The Poisson distribution 
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•Claim numbers, N for policies and N for portfolios, are Poisson distributed with 
parameters 

TJT        and     



Poisson models have useful operational properties. Mean, standard deviation and 
skewness are 

Policy level Portfolio level 




1
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The sums of independent Poisson variables must remain Poisson, if N1,...,NJ are 
independent and Poisson with parameters   then 

JNN  ...1Ν

J ,...,1

)...( 1 JPoisson  ~ 
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Random intensities 

Poisson 



Insurance cover third party liability 

Third part liability 

Car insurance client 

Car insurance policy 

Insurable object 
(risk), car Claim 

Policies and claims 

Insurance cover partial hull 

Legal aid 

Driver and passenger acident 

Fire 

Theft from vehicle 

Theft of vehicle 

Rescue 

Insurance cover hull 
Own vehicle damage 

Rental car 

Accessories mounted rigidly 

Some notions 

Examples 

Random intensities 

Poisson 
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Key ratios – claim frequency TPL  
and hull 

•The graph shows claim frequency for third part liability and hull for motor 
insurance 
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Claim frequency  hull motor
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Random intensities (Chapter 8.3) 

• How     varies over the portfolio can partially be described by observables such as age or sex 
of the individual (treated in Chapter 8.4) 

• There are however factors that have impact on the risk which the company can’t know much 
about 
– Driver ability, personal risk averseness,  

• This randomeness can be managed by making  a stochastic variable  

• This extension may serve to capture uncertainty affecting all policy holders jointly, as well, such 
as altering weather conditions 

• The models are conditional ones of the form 

 

 

 

• Let          

 

 which by double rules in Section 6.3 imply 

 

 

• Now E(N)<var(N) and N is no longer Poisson distributed 
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Random intensities 
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Specific models for        are handled through the mixing relationship 
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Gamma models are traditional choices for   and detailed below )(g

Estimates of  can be obtained from historical data without specifying            
. Let n1,...,nn be claims from n policy holders and T1,...,TJ their exposure to risk.  The intensity        
of individual j is then estimated as       . 
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Uncertainty is huge but pooling for portfolio estimation is still possible. One solution is     
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Both estimates are unbiased. See Section 8.6 for details. 10.5 returns to this.   

(1.5)    

(1.6)    
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The most commonly applied model for muh is the Gamma distribution. 
It is then assumed that  

The negative binomial model 
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)Gamma(~        where  GG

Here  is the standard Gamma distribution with mean one, and   
fluctuates around     with uncertainty controlled by      . Specifically    

)Gamma( 
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Since           , the pure Poisson model with fixed intensity 
emerges in the limit. 
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The closed form of the density function of N is given by 
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for n=0,1,.... This is the negative binomial distribution to be denoted                 . Mean, 
standard deviation and skewness are  
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Where E(N) and sd(N) follow from (1.3) when               is inserted. 
Note that if N1,...,NJ are iid then N1+...+NJ is nbin (convolution property).  

 /

(1.9) 
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Fitting the negative binomial 
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Moment estimation using (1.5) and (1.6) is simplest technically. The estimate of     is simply       
in (1.5), and for        invoke (1.8) right which yields 
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If  , interpret it as an infinite or a pure Poisson model.  0
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Likelihood estimation: the log likelihood function follows by inserting nj for n in (1.9) and 
adding the logarithm for all j. This leads to the criterion  
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where constant factors not depending on  and  have been omitted.  
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CLAIM FREQUENCY REGRESSION 
  



Overview of this session 
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The model (Section 8.4 EB) 

An example 

Why is a regression model needed? 

Repetition of important concepts in GLM 

What is a fair price of an insurance policy? 



What is a fair price of an  

insurance policy?  
• Before ”Fairness” was supervised by the authorities (Finanstilsynet) 

– To some extent common tariffs between companies 
– The market was controlled 

• During 1990’s: deregulation 
• Now: free market competition supposed to give fairness 
• According to economic theory there is no profit in a free market (in 

Norway general insurance is cyclical) 
– These are the days of super profit 
– 15 years ago several general insurers were almost bankrupt 

• Hence, the price equals the expected cost for insurer 
• Note: cost of capital may be included here, but no additional profit 
• Ethical dilemma: 

– Original insurance idea: One price for all  
– Today: the development is heading towards micropricing 
– These two represent extremes 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Expected cost 

• Main component is expected loss (claim cost) 

• The average loss for a large portfolio will be 
close to the mathematical expectation (by the 
law of large numbers) 

• So expected loss is the basis of the price 

• Varies between insurance policies 

• Hence the market price will vary too 

• Then add other income (financial) and costs, 
incl administrative cost and capital cost 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Adverse selection 

• Too high premium for some policies results 
in loss of good policies to competitors 

• Too low premium for some policies gives 
inflow of unprofitable policies 

• This will force the company to charge a fair 
premium 

• In practice the threat of adverse selection is 
constant 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Rating factors  

• How to find the expected loss of every 
insurance policy? 

• We cannot price individual policies (why?) 

– Therefore policies are grouped by rating 
variables 

• Rating variables (age) are transformed to 
rating factors (age classes) 

• Rating factors are in most cases categorical 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



The model (Section 8.4) 
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•The idea is to attribute variation in  to variations in a set of observable variables 
x1,...,xv. Poisson regressjon makes use of relationships of the form 

vvxbxbb  ...)log( 110



•Why   and not    itself? 
•The expected number of claims is non-negative, where as the predictor on the right of 
(1.12) can be anything on the real line 
•It makes more sense to transform so that the left and right side of (1.12) are 
more in line with each other.  
 
•Historical data are of the following form 
 

•n1  T1  x11...x1x 

•n2  T2  x21...x2x 

 
•nn  Tn  xn1...xnv 

 
 
•The coefficients b0,...,bv are usually determined by likelihood estimation   

)log(

(1.12) 



Claims  exposure     covariates 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



The model (Section 8.4) 
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•In likelihood estimation it is assumed that nj is Poisson distributed  where 
 is tied to covariates xj1,...,xjv as in (1.12). The density function of nj is then   
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•log(f(nj)) above is to be added over all j for the likehood function L(b0,...,bv).  
•Skip the middle terms njTj and log (nj!) since they are constants in this context. 
•Then the likelihood criterion becomes 
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•Numerical software is used to optimize (1.13). 
•McCullagh and Nelder (1989) proved that L(b0,...,bv) is a convex surface with a single 
maximum 
•Therefore optimization is straight forward.  

(1.13) 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Poisson regression:  
an example, bus insurance 
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)()()log(  0 sblbb districtagebusj 

•The model becomes 

for l=1,...,5 and s=1,2,3,4,5,6,7.  
•To avoid over-parameterization put bbus age(5)=bdistrict(4)=0 (the largest group is often 
used as reference) 
 

Rating factor class class description

Bus age 0 0 years

1 1-2 years

2 3-4 years

3 5-6 years

4  > 6 years

District 1

central and sem-central parts of 

sweden's three largeest cities

 2 suburbs and middle-sized towns

3 lesser towns, except those in 5 or 7

4

small towns and countryside, except 

5-7

5 northern towns 

6 northern countryside

7 gotland

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Take a look at the data first 
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Zone Bus age Duration

Number of 

claims Claims Cost

Claims 

frequency

Claims 

severity

Pure 

premium

1 0 28                   20                   155 312             72,6 % 7 766             5 638             

1 1 30                   8                      55 012               27,0 % 6 877             1 857             

1 2 47                   15                   52 401               32,1 % 3 493             1 120             

1 3 85                   24                   79 466               28,3 % 3 311             939                 

1 4 222                 41                   220 381             18,5 % 5 375             994                 

2 0 64                   18                   37 066               28,0 % 2 059             577                 

2 1 55                   28                   83 913               50,8 % 2 997             1 523             

2 2 55                   15                   45 321               27,1 % 3 021             820                 

2 3 67                   25                   341 384             37,5 % 13 655           5 116             

2 4 507                 166                 2 319 807         32,7 % 13 975           4 574             

3 0 74                   12                   192 547             16,2 % 16 046           2 600             

3 1 68                   19                   151 747             28,0 % 7 987             2 238             

3 2 62                   19                   517 152             30,6 % 27 219           8 315             

3 3 82                   12                   182 846             14,6 % 15 237           2 222             

3 4 763                 132                 1 725 852         17,3 % 13 075           2 263             

5 0 12                   4                      303 663             32,5 % 75 916           24 664           

5 1 12                   8                      126 814             64,3 % 15 852           10 200           

5 2 10                   -                  0,0 % -                  -                  

5 3 11                   4                      8 998                 38,0 % 2 250             855                 

5 4 239                 51                   1 383 030         21,3 % 27 118           5 789             

6 0 57                   29                   486 935             50,9 % 16 791           8 554             

6 1 68                   21                   58 955               30,9 % 2 807             868                 

6 2 57                   14                   307 563             24,7 % 21 969           5 416             

6 3 66                   18                   821 205             27,3 % 45 623           12 436           

6 4 895                 196                 3 937 850         21,9 % 20 091           4 399             

7 0 7                      1                      289 245             13,3 % 289 245         38 571           

7 1 7                      2                      -                      29,3 % -                  -                  

7 2 9                      1                      -                      11,7 % -                  -                  

7 3 9                      3                      53 751               32,4 % 17 917           5 814             

7 4 87                   7                      -                      8,1 % -                  -                  

9 0 320                 110                 481 150             34,3 % 4 374             1 502             

9 1 342                 125                 588 172             36,5 % 4 705             1 718             

9 2 440                 170                 2 212 900         38,6 % 13 017           5 028             

9 3 444                 133                 1 548 812         29,9 % 11 645           3 486             

9 4 4 263              754                 11 941 355       17,7 % 15 837           2 801             

min pp -                  

max pp 38 571           

median pp 2 263             

min cf 0,0 %

max cf 72,6 %

median cf 28,3 %

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Then a model is fitted with some  
software (sas below) 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Zon needs some re-grouping 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Zon and bus age are both significant 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Model and actual frequencies  
are compared 
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parameter level 1 estimate

Intercept 0,19

zon 1 1,08

zon 2 1,46

zon 3 0,83

zon 5 1,13

zon 6 1,12

zon 7 0,53

zon 9 1,00

bussald 0 1,77

bussald 1 1,86

bussald 2 1,78

bussald 3 1,48

bussald 4 1,00

Scale 3,35

model

zon 1 2 3 5 6 7 9

bus age 0 35,7 % 48,3 % 27,4 % 37,2 % 37,2 % 17,5 % 33,0 %

1 37,7 % 51,0 % 28,9 % 39,3 % 39,2 % 18,4 % 34,9 %

2 36,0 % 48,7 % 27,6 % 37,5 % 37,4 % 17,6 % 33,3 %

3 29,9 % 40,4 % 22,9 % 31,1 % 31,1 % 14,6 % 27,6 %

4 20,2 % 27,4 % 15,5 % 21,1 % 21,1 % 9,9 % 18,7 %

actual

zon 1 2 3 5 6 7 9

bus age 0 72,6 % 28,0 % 16,2 % 32,5 % 50,9 % 13,3 % 34,3 %

1 27,0 % 50,8 % 28,0 % 64,3 % 30,9 % 29,3 % 36,5 %

2 32,1 % 27,1 % 30,6 % 0,0 % 24,7 % 11,7 % 38,6 %

3 28,3 % 37,5 % 14,6 % 38,0 % 27,3 % 32,4 % 29,9 %

4 18,5 % 32,7 % 17,3 % 21,3 % 21,9 % 8,1 % 17,7 %

 
•In zon 4 (marked as 9 in the tables) the fit is ok 
•There is much more data in this zon than in the 
others 
•We may try to re-group zon, into 2,3,7 and 
other 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Model 2: zon regrouped 
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•Zon 9 (4,1,5,6) still has the best fit 
•The other are better – but are they good enough? 
•We try to regroup bus age as well, into 0-1, 2-3 and 4. 

Bus age 

Bus age 

Bus age 

Bus age 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Model 3: zon and bus age regrouped 
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•Zon 9 (4,1,5,6) still has the best fit 
•The other are still better – but are they good enough? 
•May be there is not enough information in this model 
•May be additional information is needed 
•The final attempt for now is to skip zon and rely solely on bus age 
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Model 4: skip zon from  
the model (only bus age) 
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•From the graph it is seen that the fit is acceptable 
•Hypothesis 1: There does not seem to be enough information in the data set to provide 
reliable estimates for zon 
•Hypothesis 2: there is another source of information, possibly interacting with zon, that 
needs to be taken into account if zon is to be included in the model 

Intercept 0,19                

bussald 0 1,78                

bussald 1 1,88                

bussald 2 1,78                

bussald 3 1,48                

bussald 4 1,00                0,0 %
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Actual claim frequency

Modelled  claim 
frequency

Bus age 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Limitation of the multiplicative model  

• The variables in the multiplicative model are assumed to 
work independent of one another 

• This may not be the case 
• Example:  

– Auto model, Poisson regression with age and gender as 
explanatory variables 

– Young males drive differently (worse) than young females 
– There is a dependency between age and gender 

• This is an example of an interaction between two 
variables 

• Technically the issue can be solved by forming a new 
rating factor called age/gender with values 
– Young males, young females, older males, older females etc 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Why is a regression model needed? 

• There is not enough data to price policies 
individually 

• What is actually happening in a regression model? 
– Regression coefficients measure the effect ceteris 

paribus, i.e. when all other variables are held constant 

– Hence, the effect of a variable can be quantified 
controlling for the other variables 

• Why take the trouble of using a regression model? 

• Why not price the policies one factor at a time? 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Claim frequencies, lorry data from Länsförsäkringer 
(Swedish mutual) 
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vehicle age

annual milagenew old total

low 3,3 % 2,5 % 2,6 %

high 6,7 % 4,9 % 6,1 %

total 5,1 % 2,8 %

•”One factor at a time” gives 6.1%/2.6% = 2.3 as the 
mileage relativity 
•But for each Vehicle age, the effect is close to 2.0 
•”One factor at a time” obviously overestimates the 
relativity – why? 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Claim frequencies, lorry data from Länsförsäkringer 
(Swedish mutual) 

31 

•New vehicles have 45% of their duration in low mileage, 
while old vehicles have 87% 
•So, the old vehicles have lower claim frequencies partly 
due to less exposure to risk 
•This is quantified in the regression model through the 
mileage factor 
•Conclusion: 2.3 is right for High/Low mileage if it is the 
only factor 
•If you have both factors, 2.0 is  the right relativity 

vehicle age

annual milagenew old

low 47 039           190 513         

high 56 455           28 612           

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Example: car insurance 

• Hull coverage (i.e., damages on own vehicle in a 
collision or other sudden and unforeseen damage) 

• Time period for parameter estimation: 2 years 
• Covariates: 

– Driving length 
– Car age 
– Region of car owner 
– Tariff class 
– Bonus of insured vehicle 

• Log Poisson is fitted for claim frequency 
• 120 000 vehicles in the analysis 
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Evaluation of model 

• The model is evaluated with respect to fit, result, 
validation of model, type 3 analysis and QQ plot 

• Fit: ordinary fit measures are evaluated 
• Results: parameter estimates of the models are 

presented 
• Validation of model: the data material is split in two, 

independent groups. The model is calibrated (i.e., 
estimated) on one half and validated on the other half 

• Type 3 analysis of effects: Does the fit of the model 
improve significantly by including the specific variable? 

• QQplot:  
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Fit interpretation 

Criterion Deg. fr. Verdi Value/DF

Deviance  2 365  2 337,1581  0,9882

Scaled Deviance  2 365  2 098,5720  0,8873

Pearson Chi-Square  2 365  2 633,8763  1,1137

Scaled Pearson X2  2 365  2 365,0000  1,0000

Log Likelihood _  27 694,4040 _

Full Log Likelihood _ - 5 078,4114 _

AIC (smaller is better) _  10 204,8227 _

AICC (smaller is better) _  10 205,3304 _

BIC (smaller is better) _  10 343,5099 _



Result presentation 
Variabler Klasse Estimat Std. feil

95% Lower 

Confidence 

95% Upper 

Confidence Chi-square Pr>Chi-sq

Intercept  - 2,0198  0,0266 - 2,0720 - 1,9676  5 757,82 <.0001

Tariff class 1 - 0,0553  0,0272 - 0,1086 - 0,0019  4,12 0,0423

Tariff class 2  0,0000  0,0000  0,0000  0,0000 . .

Tariff class 3  0,1060  0,0209  0,0651  0,1469  25,80 <.0001

Tariff class 4  0,1873  0,0234  0,1415  0,2331  64,14 <.0001

Tariff class 5  0,2547  0,0342  0,1877  0,3216  55,58 <.0001

Tariff class 6  0,3491  0,0349  0,2807  0,4174  100,23 <.0001

Bonus 70,00 %  0,1724  0,0223  0,1287  0,2162  59,77 <.0001

Bonus 75,00 %  0,0000  0,0000  0,0000  0,0000 . .

Bonus Under 70%  0,2789  0,0210  0,2377  0,3201  176,04 <.0001

Region Agder  0,0488  0,0432 - 0,0359  0,1334  1,27 0,2589

Region Akershus Østfold  0,0000  0,0000  0,0000  0,0000 . .

Region Buskerud Hedmark Oppland  0,0213  0,0254 - 0,0284  0,0711  0,71 0,4007

Region Hordaland - 0,0393  0,0327 - 0,1033  0,0247  1,45 0,2293

Region M R Rogaland S F - 0,0131  0,0302 - 0,0723  0,0461  0,19 0,6644

Region Nord  0,0487  0,0251 - 0,0006  0,0979  3,74 0,053

Region Oslo  0,1424  0,0259  0,0917  0,1931  30,33 <.0001

Region Telemark Vestfold  0,0230  0,0312 - 0,0380  0,0841  0,55 0,4596

Driving Length 8000 - 0,1076  0,0252 - 0,1570 - 0,0583  18,27 <.0001

Driving Length 12000  0,0000  0,0000  0,0000  0,0000 . .

Driving Length 16000  0,1181  0,0214  0,0761  0,1601  30,41 <.0001

Driving Length 20000  0,2487  0,0237  0,2022  0,2951  110,08 <.0001

Driving Length 25000  0,4166  0,0336  0,3508  0,4824  153,86 <.0001

Driving Length 30000  0,5687  0,0398  0,4906  0,6467  204,04 <.0001

Driving Length 99999  0,8168  0,0500  0,7188  0,9149  266,54 <.0001

Car age 1 - 0,0136  0,0240 - 0,0607  0,0335  0,32 0,5715

Car age 2  0,0000  0,0000  0,0000  0,0000 . .

Car age 3 - 0,0638  0,0177 - 0,0986 - 0,0290  12,94 0,0003

Car age 4 - 0,0800  0,0386 - 0,1400 - 0,0400  9,38 0,0022



Result presentation 

Tariff class 



Result presentation 

Bonus 



Result presentation 

Region 



Result presentation 

Driving Length 



Result presentation 

Car age 



Validation 
Variables Class Model Portfolio Diff.

Tariff class Total  19 332  18 284  5,73

Tariff class 1  2 360  2 138  10,37

Tariff class 2  5 059  4 921  2,81

Tariff class 3  5 586  5 426  2,95

Tariff class 4  3 686  3 442  7,08

Tariff class 5  1 367  1 227  11,38

Tariff class 6  1 274  1 130  12,77

Bonus Total  19 332  18 284  5,73

Bonus 70,00 %  3 103  2 851  8,83

Bonus 75,00 %  12 696  12 116  4,79

Bonus Under 70%  3 533  3 317  6,53

Region Total  19 332  18 284  5,73

Region Agder  805  713  12,87

Region Akershus Østfold  4 356  4 335  0,47

Region Buskerud Hedmark Oppland  3 078  2 866  7,41

Region Hordaland  1 497  1 432  4,53

Region M R Rogaland S F  1 839  1 672  9,99

Region Nord  3 163  2 920  8,33

Region Oslo  2 917  2 773  5,21

Region Telemark Vestfold  1 677  1 573  6,62

Driving Length Total  19 332  18 284  5,73

Driving Length 8000  2 793  2 752  1,48

Driving Length 12000  5 496  5 350  2,73

Driving Length 16000  4 642  4 480  3,62

Driving Length 20000  3 427  3 247  5,54

Driving Length 25000  1 376  1 193  15,37

Driving Length 30000  995  813  22,37

Driving Length 99999  603  449  34,33

Car age Total  19 332  18 284  5,73

Car age <= 5 år  2 710  2 386  13,59

Car age 5-10år  9 255  9 052  2,24

Car age 10-15år  6 299  6 032  4,43

Car age >15 år  1 068  814  31,17



Type 3 analysis 

Source Num DF Den DF F Value Pr > F Chi-square Pr>Chi-sq Method

Tariff class  5  2 365  38,43 <.0001  192,17 <.0001 LR

Bonus  2  2 365  97,09 <.0001  194,18 <.0001 LR

Region  7  2 365  6,35 <.0001  44,48 <.0001 LR

Driving Length  6  2 365  97,51 <.0001  585,08 <.0001 LR

Car age  3  2 365  9,23 <.0001  27,69 <.0001 LR

Type 3 analysis of effects: Does the fit of the 
model improve significantly by including the 
specific variable? 



QQ plot 



Some repetition of generalized  
linear models (GLMs) 
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•Frequency function fYi (either density or probability function) 
 
 
 

For yi in the support, else fYi=0. 
•c() is a function not depending on  
•C 
•      twice differentiable function 
•b’ has an inverse 
•The set of possible  is assumed to be open 
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Exponential dispersion Models (EDMs) 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Claim frequency 
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•Claim frequency Yi=Xi/Ti where Ti is duration 
•Number of claims assumed Poisson with  
 
 
 
 
•LetC 
•Then 
 
 
•EDM with  
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Note that an EDM... 

• ...is not a parametric family of distributions 
(like Normal, Poisson) 

• ...is rather a class of different such families 

• The function b() speficies which family we 
have 

• The idea is to derive general results for all 
families within the class – and use for all 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Expectation and variance 

• By using cumulant/moment-generating 
functions, it can be shown (see McCullagh 
and Nelder (1989)) that for an EDM 

– E 

– Ee 

• This is why b() is called the cumulant 
function 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



The variance function 

• Recall that        is assumed to exist 

• Hence 

• The variance function is defined by 

• Hence 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Common variance functions 
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Note: Gamma EDM has std deviation proportional  
to  , which is much more realistic than constant 
(Normal) 

)1(                         1        )( 2  iv

Distribution  Normal   Poisson    Gamma     Binomial 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 





Theorem 

50 

Within the EDM class, a family of probability distributions 
is uniquely characterized by its variance function 

Proof by professor Bent Jørgensen, Odense 

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Scale invariance 

• Let c>0 

• If cY belongs to same distribution family as 
Y, then distribution is scale invariant 

• Example: claim cost should follow the same 
distribution in NOK, SEK or EURO  
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Tweedie Models 

• If an EDM is scale invariant then it has 
variance function 

 

• This is also proved by Jørgensen 

• This defines the Tweedie subclass of GLMs 

• In pricing, such models can be useful 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Overview of Tweedie Models 
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Type Name Key ratio

p<0 Continuous - -

p=0 Continuous Normal -

0<p<1 Non-existing - -

p=1 Discrete Poisson Claim frequency

1<p<2 Mixed, non-negative Compound PoissonPure premium

p=2 Continuous, positive Gamma Claim severity

2<p<3 Continuous, positive - (claim severity)

p=3 Continuous, positive Inverse Normal(claim severity)

p>3 Continuous, positive - (claim severity)

The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Link functions 
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• A general link function g() 

 

 

• Linear regression:    identity link  

• Multiplicative model:   log link 

• Logistic regression:    logit link 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 



Summary 
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Generalized linear models: 
•Yi follows an EDM: 
•Mean satisfies 
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Multiplicative Tweedie models: 
•Yi Tweedie EDM: 
•Mean satisfies 
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The model 

An example 

Why regression? 

Repetition of GLM 

The fair price 


