
STK4900/9900  -   Lecture 10 

 

Program 
 

1. Repeated measures and longitudinal data  
2. Simple analysis approaches 
3. Random effects models 
4. Generalized estimating equations 
 
 
• Sections 7.1, 7.2, 7.3, 7.4 (except 7.4.5), 7.5 
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Example: Fecal fat  

2 

Lack of digestive enzymes in the intestine can cause bowel absorption 
problems, which will be indicated by excess fat in the feces.  Pancreatic 
enzyme supplements can reduce the problem. The data are from a 
study to determine if the form of the supplement makes a difference 

This is an example with repeated measurements 
(more than one observation per subject)  
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none tablet capsule coated

The plot shows that some patients tend to have high values for all pill 
types, while other patients tend to have low values 

The values for a patients are  not  independent, and this has to be 
taken into account when we analyze the data 
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Example: Birth weight and birth order 

We have recorded the weights of the babies of 200 mothers who all 
have five children. We are interested in studying the effect of birth order 
and the age of the mother  on the  birth weight 
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Box plots of birth weights for all 
200 mothers 

Birth weights for a sample of 30 
mothers with fitted line (based on all)  

The birth weights for a mother are  not  independent, and this has to 
be taken into account when we analyze the data 
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This is an example of longitudinal data (repeated measures taken over time)  



Simple approaches to analyzing repeated measures 

and longitudinal data   
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1. Standard analysis ignoring the dependence 
       Fecal fat ex: One-way ANOVA on pill type 
       Birth weight ex: Linear regression on birth order 
       However: Ignoring dependence is WRONG! 
                        Nor pursued further. 

2. Looking at parts of the data for an individual to avoid the     
       dependence problem 
       Fecal fat ex: one option is to compare two pill types  at a 

time using the paired t-test 
       Birth weight example one option is to look at the 

difference in weight between the fifth and the first child. 
       This is not wrong, but ignores part of the data (birth 

weight) or gives many comparisons (fecal fat) 
       See slides 7-8. 
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Approaches, contd.   

3.    Including dependence as fixed factor variable  
       Fecal fat ex: Two-way ANOVA on pill type and individual 
       Birth weight ex: Linear regression on birth order with 

mother as factor variable 
       However: Generally not interested in factors 

individual/mother. Also in birth weight ex many factor 
levels. 

4.    Including dependence as random factor: Random 
effects model  

       Fecal fat ex: Two-way ANOVA on pill type and individual 
as random factor 

       Birth weight ex: Linear regression on birth order with 
mother as random factor variable 

       Pro: Individual/mother modeled as random variable.  
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R commands (comparing pill types 1(none)  and 2(Tablet)):  
fecfat=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/fecfat.txt", 
                            header=T) 
x=fecfat$fecfat[fecfat$pilltype==1] 
y=fecfat$fecfat[fecfat$pilltype==2] 
t.test(x,y,paired=T) 

R output : 
Paired t-test  
t = 3.109,     df = 5,     p-value = 0.027 
95 percent confidence interval: 
     3.731         39.369  
mean of the differences:  21.55  

None Tablet Capsule 

Tablet 21.6 / 2.7 % * * 

Capsule 20.7 / 3.7 % -0.9 / 58.9 % * 

Coated 7.0 / 23.9 % -14.5 / 7.8 % -13.7 / 8.0 % 

Estimated difference / P-value for the six comparisons of two 
pill types at a time (column minus row)   

Fecal fat example: 
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R commands:  
babies=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/gababies.txt",              
                              header=T) 
first=babies$bweight[babies$birthord==1] 
fifth= babies$bweight[babies$birthord==5] 
diff=fifth-first 
t.test(diff) 

R output : 
One Sample t-test 
data:  diff  
t = 4.211, df = 199, p-value = 3.849e-05 
95 percent confidence interval: 
 101.90      281.38  
mean of x  
   191.64   

Birth weight example: 

On average the fifth child weights 191.6 grams more than the first 
 

A 95 % confidence interval is from 101.9 grams to 281.4 grams 

If we divide by four we get the average increase per child 
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Approach 3: Individual as fixed factor   

Fecal fat example: Two way ANOVA 

R commands and output:  
> anova(lm(fecfat~factor(pilltype)+factor(subject),data=fecfat)) 

 

Response: fecfat 

                 Df Sum Sq Mean Sq F value    Pr(>F)     

factor(pilltype)  3 2008.6  669.53  6.2574 0.0057406 **  

factor(subject)   5 5588.4 1117.68 10.4457 0.0001821 *** 

Residuals        15 1605.0  107.00 

R commands and output:  
> babiesanova=lm(bweight~birthord+initage+factor(momid),data=babies) 

> anova(babiesanova) 

 

Response: bweight 

               Df    Sum Sq Mean Sq F value    Pr(>F)     

birthord        1   4344611 4344611 21.9375 3.310e-06 *** 

initage         1   7401953 7401953 37.3750 1.523e-09 *** 

factor(momid) 198 166220126  839496  4.2389 < 2.2e-16 *** 

Residuals     799 158238219  198045 

Birth weight example: Two way ANOVA 
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Approach 4: Random effects model 

A drawback of Approach 3 is that an effect is estimated for every 
individual. The interest, however, lies in how such effects will vary over 
a population. 
 

A useful approach for analysing repeated measures is to consider a 
random effects model 
 

We will describe the random effects model using the fecal fat example 
 
Here we consider the model:   ij j i ijY Bm a e= + + +

where 

is the fecal fat for patient    when using pill type  ijY i j

is the effect of pill type    (relative to type 1)j ja

2the are the effects of patients, assumed independent (0, )i subjB N s

2the are random errors, assumed independent (0, )ij N ee s

To fit a random effects model, we use the  "nlme"  library 
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R commands:  

library(nlme)       
fit.fecfat=lme(fecfat~factor(pilltype), random=~1|subject, data=fecfat)  
summary(fit.fecfat) 
anova(fit.fecfat) 

R output  (edited): 
Linear mixed-effects model fit by fit by REML 
  

Random effects: 
Formula: ~1 | subject 
                 (Intercept)       Residual 
StdDev:      15.900             10.344 
 

Fixed effects: fecfat ~ factor(pilltype)  
                       Value   Std.Error         DF         t-value  p-value 
(Intercept)          38.083    7.742          15         4.919            0.0002 
factor(pilltype)2  -21.550    5.972           15        -3.608            0.0026 
factor(pilltype)3  -20.667    5.972           15        -3.461            0.0035 
factor(pilltype)4     -7.017    5.972           15        -1.175            0.2583 
 
   numDF       denDF    F-value         p-value 
(Intercept)                1                15                 14.266          0.0018 
factor(pilltype)          3                15                   6.257          0.0057 

12 

Correlation within subjects 

Covariance for two measurements from the same patient (         ): 

Cov( , )ij ikY Y

Correlation for two measurements from the same patient: 
  

j k¹

Cov( , )j i ij k i ikB Bm a e m a e= + + + + + +

Cov( , )i ij i ikB Be e= + + Cov( , )i iB B= Var( )iB= 2

subjs=

Variance for a measurement: 

Var( )ijY Var( )j i ijBm a e= + + +

Var( )i ijB e= + 2 2

subj es s= +=Var( ) Var( )i ijB e+

corr( , )ij ikY Y
Cov( , )

Var( ) Var( )

ij ik

ij ik

Y Y

Y Y
=

2

2 2

subj

subj e

s

s s
=

+

Estimate of correlation: 
  

2

2 2

15.900
0.71

15.900 10.344
=

+
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We will then analyze the birth weight example using a random 
effects model  
 
We here consider the model:   

1 1 2 2ij ij ij i ijY x x Bm b b e= + + + +

where 

is the birth weight for the -th baby of the -th motherijY j i

2 is the effect of one year's incerase in the age of the motherb

2the are the effects of mothers, assumed independent (0, )i subjB N s

2the are random errors, assumed independent (0, )ij N ee s

2 is the age of the -th mother when she had her first babyijx i

1 is the effect of increasing the birth order by oneb

1 is the birth order (parity)  of the -th baby of the -th motherijx j j i=

14 

R commands:  

fit.babies=lme(bweight~birthord+initage, random=~1|momid, data=babies)  
summary(fit.babies) 

R output  (edited): 
Linear mixed-effects model fit by fit by REML 
  

Random effects: 
 Formula: ~1 | momid 
                  (Intercept)         Residual 
StdDev:       358.18             445.02 
 

Fixed effects: bweight ~ birthord + initage  
                            Value        Std.Error*       DF        t-value*      p-value 
(Intercept)         2526.62      163.34           799       15.469        0.0000 
birthord                 46.61        9.951           799         4.684        0.0000 
initage                   26.73        9.003           198         2.969        0.0034 
 

Estimate of correlation for two babies by the same mother: 
  2

2 2

358.18
0.39

358.18 445.02
=

+

*) Standard errors and t-values differ slightly form those on page 277 in the 
text book, since we here use REML estimation. 
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Longitudinal data and correlation structures 

A random effects model for longitudinal data assumes that the 
correlation between any two observations for the same individual 
is the same  

In general for longitudinal data, where observations are taken 
consecutively over time, it may be the case that observations that 
are close to each other in time are more correlated than those 
further apart  

E.g.  for the birth weight example a random effects model assumes 
the same correlation between the birth weights of the first and 
second child as for the first and fifth child 

In order to fit a model for longitudinal data, we need to take into 
account the type of correlation between the observations  
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Common assumptions on the correlation structure of the       are  (         ): 

1 2, ,...,i i imY Y YAssume that the observations for the i-th subject are 

ijY

Exchangeable: corr( , )ij ikY Y r=

Autoregressive: corr( , )
k j

ij ikY Y r
-

=

Independence: corr( , ) 0ij ikY Y =

j k¹

We may use the "gee" library to fit models with these correlation 
structures  (using a method called generalized estimating equations) 

Note that a random effects model implies an exchangeable correlation 
structure 

Unstructured: corr( , )ij ik jkY Y r=
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R commands:  

library(gee) 
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="exchangeable")) 
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="AR-M")) 
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr=“unstructured")) 
summary(gee(bweight~birthord+initage,id=momid,data=babies,corstr="independence")) 

R output  (edited): 
      Estimate       Naive S.E.    Naive z      Robust S.E.       Robust z 
 

birthord        46.61            9.96            4.68            10.00                4.66 
initage          26.73            8.97            2.98            10.09                2.65 
 

birthord        47.31          13.83             3.42            10.49               4.51 
initage          27.41            7.83             3.50              9.67               2.83 
 

birthord        44.70             9.95            4.49              9.82               4.55 
initage          28.07             8.81            3.19              9.12               3.08 
 

birthord        46.61           12.76             3.65            10.00               4.66 
initage          26.73             5.61             4.77            10.09               2.65 

The naive SE and z are valid if the assumed correlation structure is true  

Inference should be based on the robust SE and z, since these are 
valid also if the assumed "working correlation" does not hold  

For the example with birth 
weight and birth order we have 
the following relation between 
the birth weights  
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                  first      second     third      fourth      fifth 

first         1.000     0.228       0.295     0.258      0.381 

second    0.228    1.000       0.483     0.468      0.426 

third        0.295    0.483      1.000      0.619      0.423 

fourth     0.258    0.468       0.619     1.000      0.464 

fifth         0.381    0.426      0.423      0.464      1.000 

Correlations: 

The weight of the first baby is 
less correlated with the others. 
Otherwise the weights have 
about the same correlation. 
An exchangeable correlation 
structure is a reasonable 
"working assumption" 
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In conclusion the birth weight data may be analyzed using 
generalized estimating equations with an exchangeable correlation 
structure (slide 14 ) or by using a random effects model (slide 11)  

However, if we extend the generalized estimating (GEE) approach 
and the random effects model to generalized linear models (like 
logistic regression), the results need not longer agree. 

The two models give comparable results in this example 

The GEE approach can be used for all glms (distributional families, 
link functions). We will only consider extension of logistic 
regression to dependent data.  
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GEE and binary data (logistic model) 

Example: Birth weight data, but with an indicator of low birth weight 
(lowbrth), i.e. < 3000g. 

geefit<-gee(lowbrth~birthord+initage,id=momid,family=binomial,data=babies, 

                                                                                                 corstr="unstructured") 

R output (edited):  
> summary(geefit) 

 

Model: 

 Link:                      Logit  

 Variance to Mean Relation: Binomial  

 Correlation Structure:     Unstructured  

 

Coefficients: 

               Estimate Naive S.E.   Naive z Robust S.E.  Robust z 

(Intercept)        1.34     0.60        2.24      0.60        2.24 

birthord          -0.082    0.038      -2.16      0.038      -2.15 

initage           -0.093    0.034      -2.76      0.034      -2.77 

Negative coefficients for birth order and initial age indicate that low 
birth weigh is less likely with increasing order and age. 
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GEE and Birth weight data, contd. 

More R output (edited):  
Working Correlation 

     [,1]   [,2]   [,3]   [,4]   [,5] 

[1,] 1.00   0.16   0.24   0.28   0.28 

[2,] 0.16   1.00   0.47   0.31   0.30 

[3,] 0.24   0.47   1.00   0.40   0.36 

[4,] 0.28   0.31   0.40   1.00   0.27 

[5,] 0.28   0.30   0.36   0.27   1.00 

Even the homemade expcoef function works on gee-objects 

More R output (edited):  
> expcoef(geefit) 

              expcoef     lower      upper 

(Intercept)      3.84      1.18      12.45 

birthord         0.92      0.85       0.99 

initage          0.91      0.85       0.97 
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Hierarchical models (Vittinghoff et al., Ch. 7.2)  

• Example: Lung capacity at patient visits within physician 
• Example: Average grades in classes within schools  

Here we are generally not interested in neither patients nor 
individual physicians. Should be modeled as random effects. 
Similarly for the school example. 
 
This generates more general dependency structures than 
discussed earlier and should be analyzed accordingly. We will not 
go into details. 
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Time series data (not in Vittinghoff et al.)  

• many small independent groups of subjects (measurements) 
• dependence within each group  

In this lecture we have so far considered data with  

Time series data is a different dependent data structure with 

• long sequences of correlated data 
• only one (or maybe a few) such sequences   

Examples 

• Temperature on consecutive days (weeks) 
• Stock prices on consecutive days (weeks)  
• Sunspot activity years 1700-1988  

1 2 3, , ,....Y Y Y
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Autocorrelation function (ACF)  

The correlation between observation at time t,    , and its lag at 
time t-k,       , is given   

ˆ( ) ( , )t t kk corr Y Yr -=

tY

t kY -

The                                is referred to as the autocorrelation 
function. 

ˆ( ), 0,1,2,....k kr =

For the sunspot data we have ACF with high positive correlations 
at 11 year cycles 
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Uncertainty limits for the ACF  

The dashed horizontal lines in the ACF plots lies at values  
In particular for the sunspot data with n=289 this becomes ±0.118 

1.96 / n±

These limits correspond to the test in Lecture 2 for                   
using test statistic  

0 : 0H r =

2

2

1

r n
t

r

-
=

-

Then correlations within the uncertainty limits are not significantly 
different from zero. 
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Example: Luteinizing hormone in blood samples at 10 min.  
intervals from a human female, 48 samples.  

The sunspot example is a bit unusual in the 11-year correlation pattern. 
The luteinizing hormone example may be more typical of a time-series in 
the sense only the first (few) correlations are significantly different from 0.   
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Autoregressive models AR(p)  

Another method for analyzing the dependence in a time series is 
through autoregressive  models where the current value  
is regressed on previous p values                                   of the 
series, i.e. through a model                                  

tY

1 2 3, , ,....,t t t t pY Y Y Y- - - -

1 1 2 2t t t p t p tY aY a Y a Y e- - -= + ××××+ +

where the      are regression coefficients and the      independent 
error terms. This is called an AR(p) model. 

ka te

For the special case AR(1) we have  

1 1t t tY aY e-= +

and the current value only depends on the previous value. This is 
referred to as a Markov property.   


