
STK4900/9900  -   Lecture 3 

 

Program 
 

1. Data structure and basic questions 
2. The multiple linear regression model 
3. Categorical predictors 
4. Planned experiments and observational studies 
 
 
• Section 2.5 

• Sections 4.1, 4.2 (except 4.2.4), 4.3 (except 4.3.4-5) 
• Supplementary material on planned experiments and  
       uncorrelated predictors  
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Data structure and basic questions 
 

Data have the form: 

1 11 21 1

2 12 22 2

unit              outcome                predictors (covariates)

  1                                           , ,....,

  2                                           , ,....,

    

p

p

y x x x

y x x x

n 1 2                                         , ,....,n n n pny x x x

Objectives:  

•  Study the effect of one predictor while adjusting for  
   the effects of the other predictors 

•  Identify important predictors for an outcome 

•  Predict the outcome for a new unit where only the values  
   of the predictors are available 
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Example: We have data on the diameter (in inches 4.5 feet above ground level), 
height (in feet) and volume (in cubic feet) of a sample of 31 trees from a forest in the 
US.  We want to study how the volume of a tree is related to its diameter and height 
 

R-commands: 

trees=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/trees.txt",header=T) 

plot(trees) 
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A scatterplot 
matrix gives 
an overview 
of the data 
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For the tree data we may fit a simple linear regression model  with 
volume as the outcome using either diameter or height as the covariate  

Height as predictor: 

R-commands: 

fit.height=lm(volume~height, data=trees) 
summary(fit.height) 

 
R-output (edited) 

    Estimate    Std. Error 

(Intercept)   -87.12       29.27 

height             1.54        0.38 
 

Multiple R-squared: 0.358 

Diameter as predictor: 

R-commands: 

fit.diameter=lm(volume~diameter, data=trees) 
summary(fit.diameter) 

 
R-output (edited) 

    Estimate    Std. Error 

(Intercept)   -36.94       3.37 

diameter         5.07       0.25 
 

Multiple R-squared: 0.935 

Diameter accounts for more of the variability in the volumes than height 

But we would like to use both covariates   
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Multiple linear regression 
 

Data:  
 

( | )i i i iy E y e= +x

Model:  

Here              
 

The  xji's  are considered to be fixed quantities, and the  

 i's  are independent error terms  that are assumed to be  
2(0, )-distributedN es

outcome for unit no.iy i=

predictor  (covariate) no.  for unit no.jix j i=

0 1 1 2 2 ....i i p pi ix x xb b b b e= + + + + +

1 2( , , ,..., ) 1,...,i i i piy x x x i n=

systematic part 
(linear predictor) 

random part 
(noise) 

1 2( , ,..., )i i i pix x x=x
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       is the change  in                  for an increase of one unit in the 

covariate         holding all other covariates constant 

Also for multiple linear regression do we use the method of least 

squares, i.e.  the estimates                           are obtained as the 

values of                       that  minimize the sum of squares 

0 1
ˆ ˆ ˆ, ,...., pb b b

( ) ( )22

0 1 1

1 1

( | ) ....
n n

i i i i i p pi

i i

y E y y b b x b x
= =

- = - - - -å åx

0 1, ,...., pb b b

Least squares 

Interpretation of regression coefficients 

jb ( | )E y x

jx

The effect of each covariate in a multiple linear regression model is 

adjusted for the effects of  all the other covariates in the model 
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For the tree data we may fit a multiple linear regression model with 
volume as the outcome and both diameter and height as predictors  

R-commands: 

fit.both=lm(volume~diameter+height, data=trees) 
summary(fit.both) 

 
R-output (edited): 

        Estimate       Std. Error        t value          Pr(>|t|)     
(Intercept)     -57.99           8.64               -6.71          2.75e-07  
diameter          4.71            0.264             17.82         < 2e-16  
height              0.339          0.130               2.61            0.015   
 
Residual standard error: 3.88 on 28 degrees of freedom 
Multiple R-squared: 0.948       

Note that the effects of diameter and height are modified when 
adjusted for the effect of the other 
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2

0 1 2 3volume diameter (diameter) heightb b b b e= + + + +

The regression model is linear in the parameters  
jb

But the model allows for non-linear effects of the covariates 

For example we may for the tree data include a quadratic term for 
diameter, i.e. we may consider the model: 

R-commands: 

fit.both=lm(volume~diameter+I(diameter^2)+height, data=trees) 
summary(fit.both) 
 
R-output (edited): 

                         Estimate     Std. Error       t value      Pr(>|t|)     
(Intercept)        -9.92            10.08             -0.98        0.334     
diameter          -2.89              1.310           -2.20        0.036    
I(diameter^2)    0.269             0.046           5.85        3.13e-06  
height               0.376             0.088           4.27        0.00022  
 
Residual standard error: 2.63 on 27 degrees of freedom 
Multiple R-squared: 0.977 
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Transformations 

Sometimes it may be useful to perform the regression analysis 
based of transformations of the outcome and/or the covariates 

The formula for the volume of a cone indicates that the volume of 

a tree is (approximately) proportional to                                       
2height (diameter)´

This suggest the linear regression model: 

0 1 2log(volume) log(height)+ log(diameter)b b b e= + +

R-commands: 

fit.log=lm(log(volume)~log(height)+log(diameter), data=trees) 
summary(fit.log) 
 
R-output (edited): 
  Estimate       Std. Error  t value    Pr(>|t|)     
(Intercept)     -6.63        0.800    -8.29    5.06e-09  
log(height)       1.12              0.204      5.46    7.81e-06  
log(diameter)    1.98              0.075    26.4     < 2e-16 
 

Residual standard error: 0.117 on 28 degrees of freedom 
Multiple R-squared: 0.978 
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Fitted values and residuals 

Fitted values: 0 1 1 2 2
ˆ ˆ ˆ ˆˆ ....i i i p piy x x xb b b b= + + + +

Residuals: ˆ
i i ir y y= -

 

In a similar manner as for simple linear regression, we have: 

Sums of squares 

TSS MSS RSS= +Decomposition: 

( )2

1

ˆ

n

i

i

MSS y y
=

= -å

( )2

1

ˆ

n

i i

i

RSS y y
=

= -å

( )2

1

n

i

i

TSS y y
=

= -å (total sum of squares) 

(model sum of squares) 

(residual sum of squares) 
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Coefficient of determination 

The coefficient of determination  is given as for simple linear 

regression:  

This may be interpreted as the proportion of the total variability in the 
outcomes that is accounted for by the predictors  
 
 
The multiple correlation coefficient  is given by 
 

 

 

One may show that this is the Pearson correlation coefficient between 
the outcomes (    ) and the fitted values (    ) 

2 1
MSS RSS

R
TSS TSS

= = -

2r R=

iy ˆ
iy
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Residual standard error 

 

Unbiased estimator of         :  

2

|
ˆVar( )

1
y

RSS
s

n p
e = =

- -x

2

es

        is the residual standard error  |ys
x

 

The denominator is 

1 ( 1)

number of observation number of 'sj

n p n p

b
- - = - +

= -
 

This is the residual degrees of freedom (df) 
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The variance of        is estimated by  :  

2

|

2 2
ˆˆVar( ) (*)

( 1) (1 )
j

y

j

x j

s

n s r
b =

- -
x

ˆ
jb

Here                                                  is the sample variance of the  xji's 

and         is the multiple correlation coefficient for a multiple linear  

regression where         is regressed on the other predictors in the model     

2 2

1
( ) /( 1)

j

n

x ji ji
s x x n

=
= - -å

 

Standard error:  ˆ ˆˆ( ) Var( )j jse b b=

2

jr

jx

 

Formula (*) is similar to the one for simple linear regression 
 

The formula shows that               becomes larger if         is 

correlated with the other predictors in the model 

ˆ( )jse b
jx

Standard error of the estimates 
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Hypothesis tests  

 

Test statistic  

/

/( 1)

MSS p
F

RSS n p
=

- -

 

Consider the null hypothesis that none of the predictors have 

an effect , i.e. the null hypothesis  
0 1 2: ... 0pH b b b= = = =

Overall test 

We reject  H0 for large values of  F 
 

The test statistic is F-distributed with  p  and  n – p –1  df under H0  

 

This is a generalization of the F-test for one-way ANOVA 
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It may be of more interest to test  the null hypothesis                       

versus the alternative                          
 

To this end we may use the test statistic  

0 : 0jH b =
: 0A jH b ¹

ˆ

ˆ( )

j

j

t
se

b

b
=

Under H0  the test statistic is t-distributed with  n – p – 1  df 

| |tWe reject H0 for large values of   
 

Test for the effect of a single predictor 

 

Quite often it is not very interesting to test the null hypothesis 

that none of the covariates have an effect  

Note that the t-test is the same as for simple linear regression 

(i.e. with only on covariate), except for the degrees of freedom 
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Confidence intervals 

 

95% confidence interval for        :  jb

where c is the upper 97.5% percentile in the t-distribution 

with  n – p – 1 df 

ˆ ˆ( )j jc seb b± ×

Note that the confidence interval is the same as for simple linear 

regression, except for the degrees of freedom 
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Binary categorical predictors 
 

For the tree example both predictors are numerical  
 

In general the predictors in a linear regression model may be 
numerical and/or categorical  

However, special care needs to be exercised when using 
categorical predictors  

For ease of presentation, we start out by considering a 
single binary predictor, i.e. a categorical predictor with only 
two levels (female/male, treatment/control, etc) 

This corresponds to the situation where we compare two groups 

 

We assume that the data for the two groups are random samples 

from                     and                     , respectively    2

1( , )N em s 2

2( , )N em s
 

We will reformulate the situation as a regression problem 
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Example: 
 

In Lectures 1 and 2 we considered a study of bone mineral density 
(in g/cm2) for rats given isoflavone and for rats in a control group 
 

We then used a t-test and the corresponding confidence interval to 
study the effect of isoflavone 

 R-output: 
 

Two Sample t-test 
 

data:  treat and cont  

t = 2.844,  df = 28,  p-value = 0.0082 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 0.0045    0.0279  

sample estimates: 

mean of x  mean of y  

0.2351   0.2189  
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1 2 1( ) 1,2,....,i i iy x i nm m m e= + - × + =

The observations may be denoted (with n = n1 + n2 ):  

11 2Group 1: , ,...., ny y y

1 11 2Group 2: , ,....,n n ny y y+ +

We introduce the binary covariate 

1

1

0 for 1,2,..., (group 1, reference)

1 for 1,..., (group 2)
i

i n
x

i n n

=ì
= í

= +î

Then we may write 

where the �i's  are independent error terms that are 2(0, )-distributedN es

This has the form of a simple linear regression model with  

0 1 expected outcome in the reference groupb m= =

1 2 1 difference in expected outcomeb m m= - =

First reformulation as a regression problem 
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R-commands for bone density example: 
 

bonedensity= 
read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/bonedensity.txt",header=T) 

bonedensity$group=factor(bonedensity$group) 
lm.density=lm(density~group,data=bonedensity) 
summary(lm.density) 
 

R-output: 
 

  Estimate  Std. Error  t value   Pr(>|t|)     
(Intercept)     0.2189     0.00402   54.34    < 2e-16 
group2   0.0162     0.00569    2.844    0.0082  
 
Residual standard error: 0.0156 on 28 degrees of freedom 
 

Note that we define "group" to be a categorical covariate (or "factor") 

The intercept is the mean in group 1 (the reference group) 

The estimate for group2 is the difference between the means in the two groups  

20 
The t-value (2.844) and p-value (0.0082) equals the t-test 



We may write the model as 

We introduce the "grand mean"  1 2

2

m m
m

+
=

An alternative reformulation as a regression problem 

1

2

for in group 1

for in group 2

i

i

i

i
y

i

m e
m e
+ì

= í +î

Then the model may be reformulated as 

1

2

( ) for in group 1

( ) for in group 2

i

i

i

i
y

i

m m m e
m m m e
+ - +ì

= í + - +î
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We now introduce the covariate 

1

1

1 for 1,2,..., (group 1)

1 for 1,..., (group 2)
i

i n
x

i n n

=ì
= í

- = +î

Then the model may be written 

0 grand meanb m= =

1 1 deviation from grand mean in group 1b m m= - =

1( ) 1,2,....,i i iy x i nm m m e= + - × + =

This has the form of a simple linear regression model with  
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R-commands for bone density example: 
 

options(contrasts=c("contr.sum","contr.poly")) 
 lm.density.sum=lm(density~group,data=bonedensity) 
summary(lm.density.sum) 
 

R-output: 
  Estimate  Std. Error  t value       Pr(>|t|)     
(Intercept)   0.2270     0.00285   79.70        < 2e-16  
group1       -0.0081    0.00285   -2.844        0.0082  
 

Residual standard error: 0.0156 on 28 degrees of freedom 

We get the formulation on the previous slide by using "sum-contrast" 
 

The formulation on slide 19 is denoted "treatment-contrast" and is specified 

by the command:  options(contrasts=c("contr.treatment","contr.poly")) 

The intercept estimate is the "grand mean" 

The group1 estimate is the difference between the mean in group1 

and the "grand mean" 

Treatment-contrast is default in R and we will stick to it in the following. 

But note that other software may use sum-contrast as default 23 

Multilevel categorical predictors 

We then consider a categorical predictor with  K   levels 

This corresponds to the situation where we compare K groups 

 

We will reformulate the situation as a regression problem 

1 2, ,...., ny y y

We denote the observations for all groups combined by  

Here the first  n1  observations are from group 1, the next  n2 

observations are from group 2, etc.    

 

We assume that all observations are independent and that the 

observations from group  k  are   
 

 

2( , )-distributedkN em s
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Example: 
 

In Lecture 2 we considered an experiment were 24 rats were 
randomly allocated to four different diets, and the blood coagulation 
time (in seconds) were measured for each animal 

 

We will study the effect of diet on the blood coagulation time 
 

A B C D
6
0

6
5

7
0
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With  K  groups we need to introduce  K – 1 predictor variables 

1

1 for in group 2

0 otherwise
i

i
x

ì
= í
î

Reformulation as a regression problem 

2

1 for in group 3

0 otherwise
i

i
x

ì
= í
î

1,

1 for in group 

0 otherwise
K i

i K
x -

ì
= í
î

Note that all                 for  i  in group for 1, which is the reference group   0jix =
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1 2 1 1 3 1 2 1 1,( ) ( ) ... ( )i i i K K i iy x x xm m m m m m m e-= + - × + - × + + - × +

Then we may write 

where the �i's  are independent error terms that are 2(0, )-distributedN es

This has the form of a multiple linear regression model with  

0 1 (expected outcome in the reference group)b m=

1 1 (difference in expected outcome 

  between group 1 and the reference)

j j

j

b m m+

+

= -
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R-commands for blood coagulation example: 

rats=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/rats.txt",header=T) 

rats$diet=factor(rats$diet) 

fit.rats=lm(time~diet,data=rats) 

summary(fit.rats) 

anova(fit.rats) 

R-output (edited): 

         Estimate  Std. Error          t value  Pr(>|t|)     

(Intercept)      61.00   1.18               51.55   < 2e-16  

diet2                 5.00   1.53                  3.27  0.0038  

diet3                 7.00   1.53                  4.58  0.0002 

diet4                 0.00   1.45              0.00  1.0000     

 

Residual standard error: 2.366 on 20 degrees of freedom 

Multiple R-squared: 0.671,     Adjusted R-squared: 0.621  

F-statistic: 13.57 on 3 and 20 DF,  p-value: 4.66e-05 

 

Analysis of Variance Table 

      Df  Sum Sq  Mean Sq      F value       Pr(>F)     

diet              3     228     76.0             13.57         4.66e-05 

Residuals     20     112        5.6   

We get a more detailed picture than in Lecture 2 28 



The methods for multiple linear regression are valid both for planned 

experiments  (where the values of the predictors are under the control 

of the experimenter) and observational studies  (where we condition 

on the observed values of the predictors) 

 

But the interpretation of the results is more complicated for 

observational studies, as we will now discuss 

 

We start out by considering the situation with two covariates 

Planned experiments and observational studies 
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Planned experiment 

An experiment has been conducted 

to study how the extraction rate of a 

certain polymer depend on temp-

erature and the amount of catalyst 

used. The extraction rate was 

recorded twice for each of three 

levels of temperatures and three 

levels of the catalyst 

Observational study 

For 25 brands of cigarettes the content 

of tar, nicotine, and carbon monoxide 

have been measured (details) 

We want to study how the amount 
of CO emitted from the cigarette 
smoke depends on the content of 
tar and nicotine 

tar
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          Estimate    Std. Error 
(Intercept)       25.39      17.74     
temp                0.475       0.293    
 

Residual standard error: 10.15 
Multiple R-squared: 0.141  

Polymer example 

          Estimate    Std. Error 
(Intercept)       -13.61        8.73 
cat                  112.50      14.42 
 

Residual standard error: 4.99 
Multiple R-squared: 0.792  

                        Estimate      Std. Error  
(Intercept)       -42.11     7.20 
temp                 0.475         0.084 
cat                   112.50     8.44   
 
Residual standard error: 2.92 
Multiple R-squared: 0.933  

Note that: 
 

•  The estimates are the same in  

    the model with two predictors  

    as they are in the simple linear  

    regression models with only  

    one predictor at a time 
 

•   R2 for the model with two  

    predictors is the sum of   

    R2 -values for the two  

    one-predictor models  
 

•  The reason is that the two  

    predictors are uncorrelated 
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polymer=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/polymer.txt",header=T) 

          Estimate    Std. Error 
(Intercept)        1.66      0.99     
nicotine           12.40       1.05    
 

Residual standard error: 1.83 
Multiple R-squared: 0.857  

Cigarette example 

          Estimate    Std. Error 
(Intercept)       2.74        0.68 
tar                   0.80       0.05 
 

Residual standard error: 1.40 
Multiple R-squared: 0.917  

                        Estimate      Std. Error  
(Intercept)         3.09     0.84 
nicotine            -2.65         3.79 
tar                     0.96     0.24   
 
Residual standard error: 1.41 
Multiple R-squared: 0.919  

Note that: 
 

•  When only nicotine is used as  

   predictor, it has large effect on CO 
 

•  The effect of nicotine disappears  

    when adjusted for the effect of tar 
 

•  The reason is that the two  

    predictors are strongly correlated 
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cigarettes=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/cigarettes.txt", 

header=T) 



For planned experiments one may choose the values of the predictors 
so that they are uncorrelated. This is also called orthogonality 
 

Orthogonality is a useful property: 
 

•    R2 is given as                                      where        is the  

      Pearson correlation between predictor  j  and the outcome 
 

•    The estimates        are the same as obtained by fitting a simple  
      linear regression for each covariate. 
 

•    The standard errors                are typically smaller (cf. slide 13 ) 
 

•     Therefore, shorter confidence intervals and more precise  
      predictions may be obtained 

Planned experiments and uncorrelated predictors 

ˆ
jb

2 2 2 2

1 2 ... pR r r r= + + + jr

ˆ( )jse b

33 

 

 

Observational studies and correlated predictors 

For observational studies the predictors will be correlated 
 
Then, as illustrated above for two covariates, the effect of one 
covariate may change when other covariates are included in the 
model 
 
Therefore special care has to be exercised when analysing data 
from observational studies 
 
We will have a closer look at this in Lecture 4 
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Another difference between planned and observational studies is that 

for planned studies we are able to randomize which study subjects 

receive different treatments. 

 

For instance, comparing a proposed treatment with a placebo 

treatment we at random select n/2 individuals that get the proposed 

treatment and the remaining n/2 get the placebo. 

 

This way there will be no systematic initial difference between the two 

groups and a difference in outcomes between treatment groups can, 

due to the randomization, be attributed to a causal effect. 

  

Randomization 

36 

In an observational study randomization will not be possible and 

observed differences between groups can be spurious, i.e. due to 

initial differences between the groups. 

 

These initial differences will be then be correlated with the groups that 

we want to compare. Thus this is related to the discussion of 

correlated covariates and confounding in Lecture 4. 

 

 

 

 

Spurious effects 


