STK4900/9900 - Lecture 4

Program

1. Causal effects
2. Confounding
3. Interaction
4. More on ANOVA

- Sections 4.1, 4.4, (4.5), 4.6
- Supplementary material on ANOVA

Example (cf. practical exercise 10)

How does exercise affect blood glucose level?

Use the HERS data,
disregarding women with
diabetes

Simple linear regression:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	97.36	0.282	345.8	$<2 \mathrm{e}-16$
exercise	-1.693	0.438	-3.87	0.00011

Residual standard error: 9.715 on 2030 degrees of freedom
Multiple R-squared: 0.0073, Adjusted R-squared: 0.0068
F-statistic: 14.97 on 1 and 2030 DF, p-value: 0.00011

Can we conclude that exercise on average decreases the blood glucose level with $1.7 \mathrm{mg} / \mathrm{dL}$?

< 2e-16
0.00011

Problem:

The women who exercise are not a random sample of all women in the cohort (as they would have been in a randomized clinical trial), but differ from the women who don't exercise, e.g. with respect to age, alcohol use, and body mass index (BMI)
Further age, alcohol use, and BMI may influence the glucose level

Confounding

It is possible that the observed significant association between exercise and glucose levels is due to the dependency between exercise and BMI and other covariates, i.e. not causal.

In such case we say that the association is spurious and that BMI and the other covariates are confounding variables, more precisely we have

Conditions for confounding

A covariate X_{2} is a confounder for the causal effect of X_{1} provided that

- X_{2} is a causal determinant of the outcome Y (or a proxy for such determinants)
- X_{2} is a causal determinant of X_{1} (or they share a common causal determinant)

Confounding patterns

Examples of confounding patterns when X_{2} is a numerical covariate

Example (contd)

We fit a multiple regression model with blood glucose level as response and exercise, age, alcohol use, and body mass index (BMI) as covariates

Multiple linear regression:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	78.96	2.592	30.45	$<2 \mathrm{e}-16$
exercise	-0.950	0.429	-2.22	0.0267
age	0.064	0.03	2.02	0.0431
drinkany	0.680	0.422	1.61	0.1071
BMI	0.489	0.042	11.77	$<2 \mathrm{e}-16$

Residual standard error: 9.389 on 2023 degrees of freedom
(4 observations deleted due to missingness)
Multiple R-squared: 0.072, Adjusted R-squared: 0.070
F-statistic: 39.22 on 4 and 2023 DF, p-value: < 2.2e-16

We now find that exercise on average decreases the blood glucose level with $1.0 \mathrm{mg} / \mathrm{dL}$
This should be closer to the causal effect of exercise

Control of confounding

Consider the situation where all causal determinants other than X_{1} are captured by the binary covariate X_{2}

Then, given the level of $X_{2}(=0,1)$, there is no more confounding and the causal effect of X_{1} may estimated by comparing the means of exposed and unexposed within levels of X_{2}

In practice this is obtained by fitting the linear model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}
$$

since here β_{1} is the effect of one unit's increase in X_{1} keeping the value of X_{2} constant

In general we may use multiple linear regression to correct for a number of confounders by including them as covariates in the model (assuming that all relevant confounders are recorded in the data)

In particular:

Suppose that the true model is given by

$$
\begin{equation*}
E(Y)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2} \tag{1}
\end{equation*}
$$

but the data are analyzed with a model omitting x_{2}, thus as

$$
\begin{equation*}
E(Y)=a+b x_{1} \tag{2}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\hat{b}=\hat{\beta}_{1}+\hat{\beta}_{2} r_{12} \frac{S_{2}}{S_{1}} \tag{3}
\end{equation*}
$$

where \hat{b} is the least squares estimate of b under model (2),
$\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are least squares estimates of model (1),
r_{12} is the Pearson correlation between x_{1} and x_{2} and the s_{j} the empirical standard deviations of x_{1} and x_{2}

It follows:

When the two covariates are correlated, $r_{12} \neq 0$,
and when there is a causal effect of x_{2} on Y , so $\hat{\beta}_{2} \neq 0$,
then we estimate different effects of x_{1} under model (1) and (2),

$$
\text { that is: } \quad \hat{b} \neq \hat{\beta}_{1}
$$

However when the two covariates are weakly correlated, $r_{12} \approx 0$, or when there is no important causal effect of x_{2} on Y , so $\hat{\beta}_{2} \approx 0$, then the estimates differ little, $\hat{b} \approx \hat{\beta}_{1}$

From equation (3) it follows that inclusion of a new covariate x_{2} can both make the association between x_{1} and Y weaker as well as stronger.

Example (contd)

We then calculate the correlation between and the standard deviations of exercise and BMI
r12=cor(hers.nob\$exercise,hers.nob\$BMI)
r12
-0.1587467
s1=sd(hers.nob\$exercise)
s1
0.4927197
s2=sd(hers.nob\$BMI)
s2
5.141301

Finally we demonstrate that equations (3) $\hat{b}=\hat{\beta}_{1}+\hat{\beta}_{2} r_{12} \frac{S_{2}}{S_{1}}$ holds in the example
fit.b\$coef[2]+fit.b\$coef[3]**12*s2/s1
exercise
-1.701807
The answer is identical to the estimate \hat{b} for the simple model!

Example (contd)

We will demonstrate equation (3) on the glucose data. Note that BMI had a strongly significant association with glucose. It turns out that BMI is the essentially confounder of the exercise.
However, there were 2 subjects with unknown (missing) BMI. These have to be removed from the data before the comparison

R code for removing the missing:

hers.nob=hers.no[lis.na(hers.no\$BMI),]

We then fit models with and without BMI:

fit. $\mathrm{a}=\mathrm{Im}$ (glucose~exercise,data=hers.nob)
fit.a\$coef
(Intercept) exercise
$97.370059-1.701807$
fit. $\mathrm{b}=\mathrm{Im}$ (glucose \sim exercise + BMI,data=hers.nob)
fit.b\$coef
(Intercept) exercise BMI
83.9422021 -0.9172885 0.4736147

Control of confounding

If all confounding variables are recorded and included adequately in a multiple regression model we should then identify the causal effects also in an observational study.

But there is of course no way we can know that all confounders have been identified and measured without error.

We should therefore be cautious about concluding about causal effects from observational studies

Still we may hope to that we are closer to identifying causality after adjusting (or controlling) for known confounders

Mediation, Sec. 4.5

Not all measured variables should be adjusted for.
Exampe: Statin drugs may reduce (bad) cholesterol which in turn may reduce risk of heart attack.

Adjusting for cholesterol measured after taking statins may then hide a causal effect of statins on risk of heart attack.

In this case cholesterol is a mediator, or intermediate variable. It is likely correlated (caused by) statin use and causally related to heart attack. However, since it is on the causal pathway between statin use and heart attack we should not adjust for it.

Interaction for binary covariates

We have considered the situation where two binary predictors X_{1} and X_{2} have a causal effect on the outcome

We could then estimate the (causal) effects by fitting the linear model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}
$$

Note that we assume that the effect of X_{1} is the same for both levels of X_{2} (and vice versa):

X_{1}	X_{2}	$E(y \mid \mathbf{x})$
0	0	β_{0}
1	0	$\beta_{0}+\beta_{1}$
0	1	$\beta_{0}+\beta_{2}$
1	1	$\beta_{0}+\beta_{1}+\beta_{2}$

Why randomization works

In a study where subjects are randomized to different treatments we can ignore confounding.
This can be deduced from equation (3) $\hat{b}=\hat{\beta}_{1}+\hat{\beta}_{2} r_{12} \frac{s_{2}}{s_{1}}$
After randomization the treatment x_{1} and the confounder x_{2} will be (approximately) uncorrelated, thus $r_{12} \approx 0$ and $\hat{b} \approx \hat{\beta}_{1}$.

Hence the causal effect is estimated after randomization!

We don't even need know the confounding factors

If the effect of X_{1} depends on the level of X_{2} we have an interaction We may then fit a model of the form

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+\varepsilon_{i}
$$

The effect for different values of the covariates are then given by:

X_{1}	X_{2}	$X_{1} X_{2}$	$E(y \mid \mathbf{x})$
0	0	0	β_{0}
1	0	0	$\beta_{0}+\beta_{1}$
0	1	0	$\beta_{0}+\beta_{2}$
1	1	1	$\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}$

Example

Use the HERS data to study how low-density lipoprotein cholesterol after one year (LDL1) depends on hormone therapy (HT) and statin use (both binary)

R commands:

ht.fit=Im(LDL1~HT+statins+HT:statins, data=hers)
summary(ht.fit)

R output (edited):

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	145.157	1.326	109.507	$<2 \mathrm{e}-16$
HT	-17.73	1.87	-9.477	$<2 \mathrm{e}-16$
statins	-13.81	2.15	-6.416	$1.65 \mathrm{e}-10$
HT:statins	6.24	3.08	2.030	0.0425
(In the model formula HT :statin specifies the interaction term "HT*statin")				

The effect of HT seems to be lower among statin users

Interaction for one binary and one numerical covariate

We now consider the situation where X_{1} is a binary predictor and X_{2} is numerical

As an illustration we consider the HERS data, and we will see how baseline LDL cholesterol depends on statin use (X_{1}) and BMI (X_{2})

The model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}
$$

assumes that the effect of BMI is the same for statin users and those who don't use statins

It may be of interest to consider a model where the effect of BMI may differ between statin users and those who don't use statins, i.e. where there is an interaction

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	145.157	1.326	109.507	$<2 \mathrm{e}-16$
HT	-17.73	1.87	-9.477	$<2 \mathrm{e}-16$
statins	-13.81	2.15	-6.416	$1.65 \mathrm{e}-10$
HT:statins	6.24	3.08	2.030	0.0425

HT reduces LDL cholesterol for non-users of statins by $17.7 \mathrm{mg} / \mathrm{d}$
For users of statins the estimated reduction is $17.7-6.2=11.5 \mathrm{mg} / \mathrm{dl}$
To obtain the uncertainty, we use the "contrast" library

R commands:

library(contrast)
par1 $=$ list(HT=1,statins=1) \# specify one set of values of the covariates par2= list(HT=0,statins=1) \# specify another set of values of the covariates contrast(ht.fit, par1,par2) \# compute the difference between the two sets

R output (edited):

Contrast	S.E.	Lower	Upper	t	df	$\operatorname{Pr}(>\|t\|)$
-11.48	2.44	-16.27	-6.69	-4.7	2604	0

We then consider the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+\varepsilon_{i}
$$

Note that the model may be written

$$
y_{i}= \begin{cases}\beta_{0}+\beta_{2} x_{2 i}+\varepsilon_{i} & \text { when } x_{1 i}=0 \\ \beta_{0}+\beta_{1}+\left(\beta_{2}+\beta_{3}\right) x_{2 i}+\varepsilon_{i} & \text { when } x_{1 i}=1\end{cases}
$$

This is a model with different intercepts and different slopes for the numerical covariate depending on the value of the binary covariate

When considering such a model, it is useful to center the numeric covariate (by subtracting its mean) to ease interpretation

In the example, we let X_{2} correspond to the centered BMI-values, denoted cBMI

R commands:

hers\$cBMI=hers\$BMI - mean(hers\$BMI[!is.na(hers\$BMI)]) stat.fit=Im(LDL~statins+cBMI+statins:cBMI,data=hers) summary(stat.fit)

R output (edited):

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	151.09	0.881	171.58	$<2 \mathrm{e}-16$
statins	-16.72	1.463	-11.43	$<2 \mathrm{e}-16$
cBMI	0.640	0.156	4.09	$4.41 \mathrm{e}-05$
statins:cBMI	-0.721	0.269	-2.68	0.0075

Interaction for two numerical covariates

We finally consider the situation where X_{1} and X_{2} are both numerical

A model with interaction is then given by

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+\varepsilon_{i}
$$

For such a model, it is useful to center the covariates

But even then the interpretation of the estimates is a bit complicated

If (e.g.) factor B has three levels b_{1}, b_{2}, b_{3}, we need to introduce two x 's for this factor (cf slide 26 of Lecture 3):

$$
\begin{aligned}
& x_{2 i}= \begin{cases}1 & \text { if individ } i \text { has level } \mathrm{b}_{2} \text { for factor } \mathrm{B} \\
0 & \text { otherwise }\end{cases} \\
& x_{3 i}= \begin{cases}1 & \text { if individ } i \text { has level } \mathrm{b}_{3} \text { for factor } \mathrm{B} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

A model with interaction then takes the form

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\beta_{4} x_{1 i} x_{2 i}+\beta_{5} x_{1 i} x_{3 i}+\varepsilon_{i} \tag{*}
\end{equation*}
$$

It becomes quite complicated to write the model like this, so it is common to use an alternative formulation

Then a regression model with interaction takes the form (cf slide 15)

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{1 i} x_{2 i}+\varepsilon_{i}
$$

We recapitulate:

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\beta_{4} x_{1 i} x_{2 i}+\beta_{5} x_{1 i} x_{3 i}+\varepsilon_{i} \tag{*}
\end{equation*}
$$

In order to rewrite model (*), we denote the outcomes for level a_{j} of factor A and level b_{k} of factor B by

$$
y_{i j k} \quad \text { for } i=1, \ldots, n_{j k}
$$

We may then rewrite model (${ }^{*}$) as

$$
\begin{equation*}
y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\varepsilon_{i j k} \tag{**}
\end{equation*}
$$

We have the following relations between the parameters in model (*) and model (**)

$\left({ }^{*}\right)$	β_{0}	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}
$\left({ }^{* *}\right)$	μ	α_{2}	β_{2}	β_{3}	$(\alpha \beta)_{22}$	$(\alpha \beta)_{23}$

In model (**) the parameters for the reference levels are 0 :

$$
\alpha_{1}=\beta_{1}=(\alpha \beta)_{11}=(\alpha \beta)_{12}=(\alpha \beta)_{13}=(\alpha \beta)_{21}=0
$$

R commands:

polymer=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/polymer.txt",header=T) polymer\$ftemp=factor(polymer\$temp)
polymer\$fcat=factor(polymer\$cat)
fit=Im(rate~ftemp+fcat+ftemp:fcat,data=polymer)
summary(fit)

R output:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	39.5	1.23	32.25	$1.30 \mathrm{e}-10$
ftemp60	4.0	1.73	2.31	0.046
ftemp70	6.0	1.73	3.46	0.007
fcat0.6	6.5	1.73	3.75	0.005
fcat0.7	18.5	1.73	10.68	$2.06 \mathrm{e}-06$
ftemp60:fcat0.6	6.5	2.45	2.65	0.026
ftemp70:fcat0.6	6.0	2.45	2.45	0.037
ftemp60:fcat0.7	7.5	2.45	3.06	0.014
ftemp70:fcat0.7	4.5	2.45	1.84	0.099

Residual standard error: 1.73 on 9 degrees of freedom
Multiple R-squared: 0.986, Adjusted R-squared: 0.973
F-statistic: 78.78 on 8 and 9 DF, p-value: 2.012e-07

Note that the model formulation

$$
\begin{equation*}
y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\varepsilon_{i j k} \tag{**}
\end{equation*}
$$

works equally well when factor A has J levels and factor B has K levels, while the formulation (*) would become much more complicated

In Lecture 3 (cf. slide 30), we considered a study of how the extraction rate of a certain polymer depends on temperature and the amount of catalyst used.

We there assumed a linear effect of temperature and the amount of catalyst

We will here consider temperature and catalyst as factors, each with three levels

	$\mathbf{0 . 5 \%}$	$\mathbf{0 . 6 \%}$	$\mathbf{0 . 7 \%}$
$50^{\circ} \mathrm{C}$	38	45	57
	41	47	59
$60^{\circ} \mathrm{C}$	44	56	70
	43	57	69
$70^{\circ} \mathrm{C}$	44	56	70
	47	60	67

26

In a planned experiment we can make sure that we have the same number of observations for all the $J \times K$ combinations of levels of factor A and factor B

We then have a balanced design, and the total sum of squares (TSS) may be uniquely decomposed as a sum of squares for each of the two factors (SSA, SSB), a sum of squares for interaction (SSAB), and a residual sum of squares (RSS):

$$
T S S=S S A+S S B+S S A B+R S S
$$

To each of these sum of squares there correspond a degree of freedom as given in the ANOVA table on the next slide

NB! If the design is not balanced, the decomposition of the total sum of squares is not unique

The result of a two-way ANOVA may be summarized in the table

Source	df	Sum of squares	Mean sum of squares	F statistics
Factor A	$J-1$	$S S A$	$S S A /(J-1)$	$F=\frac{S S A /(J-1)}{R S S /(n-J K)}$
Factor B	$K-1$	$S S B$	$S S B /(K-1)$	$F=\frac{S S B /(K-1)}{R S S /(n-J K)}$
Interaction	$(J-1)(K-1)$	$S S A B$	$S S A B /(J-1)(K-1)$	$F=\frac{S S A B /(J-1)(K-1)}{R S S /(n-J K)}$
Residual	$n-J K$	$R S S$	$R S S /(n-J K)$	
Total	$n-1$	$T S S$		

The F-statistics (with their appropriate degrees of freedom) may be used to test the following null hypotheses:

$$
\begin{aligned}
& H_{0}: \text { all }(\alpha \beta)_{j k}=0 \quad \text { (no interaction) } \\
& H_{0}: \text { all } \alpha_{j}=0 \quad \text { (no main effect of } \mathrm{A} \text {) } \\
& H_{0}: \text { all } \beta_{k}=0 \quad \text { (no main effect of } \mathrm{B} \text {) }
\end{aligned}
$$

Higher level ANOVA

Consider for illustration the situation with three factors, A, B, and C.

Data:
$y_{i j k l}=$ observation number i for level a_{j} of factor A , level b_{k} of factor B, and level c_{l} of factor C

Model with interaction:

$$
y_{i j k l}=\mu+\alpha_{j}+\beta_{k}+\gamma_{l}+(\alpha \beta)_{j k}+(\alpha \gamma)_{j l}+(\beta \gamma)_{k l}+(\alpha \beta \gamma)_{j k l}+\varepsilon_{i j k l}
$$

For the example:

R commands:

anova(fit)

R output:

Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
ftemp	2	332.11	166.06	55.35	$8.76 \mathrm{e}-06$
fcat	2	1520.11	760.06	253.35	$1.23 \mathrm{e}-08$
ftemp:fcat	4	38.56	9.64	3.213	0.067
Residuals	9	27.00	3.00		

The result of a three-way ANOVA may be summarized in the table

Source	df*	Sum of squares	Mean sum of squares
Factor A	$S S A$	$S S A / d f$	F statistics
Factor B	$S S B$	$S S B / d f$	F_{A}
Factor C	$S S C$	$S S C / d f$	F_{B}
Interaction AB	$S S A B$	$S S A B / d f$	F_{C}
Interaction AC	$S S A C$	$S S A C / d f$	$F_{A B}$
Interaction BC	$S S B C$	$S S B C / d f$	$F_{B C}$
Interaction ABC	$S S A B C$	$S S A B C / d f$	$F_{A B C}$
Residual	$R S S$	$R S S / d f$	
Total	$n-1$	$T S S$	

*) can be found on computer output
The decomposition of the total sum of squares is unique if the design is balanced

Hypothesis testing is similar to two-way ANOVA

