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• Supplementary material on Poisson distribution  
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Example: Emission of alpha particles 

In an experiment from 1910 Ernest Rutherford and Hans Geiger 

recorded the number of alpha-particles emitted from a polonium 

source in each of 2608 eighth-minute intervals   

We need a distribution that describes such counts 

Example: Occurrence of anencephaly in Edinburgh 1956-66  

Anencephaly is a serious disorder which causes the brain of a fetus not 

to develop properly. The number of children born with anencephaly in 

Edinburgh in the 132 months from 1955 to 1966 were: 
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Poisson distribution 

3 

A random variable Y is Poisson distributed with parameter     if 

Short we may write: 

We have that: 

The Poisson distribution arises as: 
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Poisson approximation to the binomial distribution 

When  n  is large and  p  is small,  we have with   = np 

Illustration: 
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The Poisson distribution is often an appropriate model for 

"rare events" 
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Poisson process 

We are observing events (marked by x) happening over time: 

Assume that: 

0 2 4 6 8 100 1 2 3 4 5 6 7 8 9 10

•   the rate of events     is constant over time 

    (rate = expected number of events per unit of time) 

•   the number of events in disjoint time-intervals are independent   

•   events do not occur together   

Let Y  be the number of events in an interval of length  t  

Then: ~ Po( )Y tl

Then we have a Poisson process  

The Poisson process is an appropriate  model for events that are  

 happening "randomly over time" 
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In a similar manner we may have a Poisson process in the plane: 

0 2 4 6 8 10

0
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0

sample(cumsum(rexp(100, l)))

Assume that: 

•   the rate of points     is constant over  

    the region (rate = expected number of        

    points in an area of size one) 

•   the number of points in disjoint areas      

    are independent   

•   points do not coincide    

Then we have a Poisson process in the plane (spatial process) 

Let Y  be the number of events in an area of size  a  

Then: ~ Po( )Y al

This is a model for "randomly occurring" points 

One way of checking whether the Poisson distribution is 

appropriate for a sample                        is to compare                     
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For a Poisson distribution, the expected value and the 

variance are equal 

Overdispersion 
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For a Poisson distribution both         and          are estimates 

of   !,  so they should not differ too much   

y 2s

We may compute the coefficient of dispersion:  
2s

CD
y

=

If  CD  is (substantially) larger than 1, it is a sign of overdispersion 
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For the alpha particles  we have 

 

                            and 
 

which gives 

3.88y = 2 3.70s =

3.70
0.95

3.88
CD = =

For the anencephaly data we have 

 

                            and 
 

which gives 

1.97y = 2 2.41s =

2.41
1.22

1.97
CD = =

The two examples show no signs of overdispersion 



Null hypothesis H0:  data are Poisson distributed 
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Data:  

Test of Poisson distribution 

1 2, ,...., ny y y

Procedure: 

•  Estimate (MLE): ˆ yl =

•  Compute expected frequencies under H0 :  ( ) ˆˆ !j

jE n j e ll -= ×

•  Compute observed frequencies:  number of  equal to  j iO y j=

•  Aggregate groups with small expected numbers, so that  all Ej's are 

   at least five. Let K  be the number of groups thus obtained 

•  Under H0 the Pearson  statistic is approximately chi-squared 

   distributed  with  K – 2 degrees of freedom 

•  Compute Pearson chi-squared statistic:  
( )2

2c
-

=å j j

j
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Example: Emission of alpha particles 

There is a good agreement between observed and expected frequencies:  

We aggregate  the three last groups, leaving us with K = 12 groups   

Pearson chi-squared statistic:  
2 10.42 ( 10)dfc = =

P-value:  40.4%  

The Poisson distribution fits nicely to the data 

Example: Occurrence of anencephaly in Edinburgh 1956-66  

# observed  
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Here as well there  is a good agreement between observed and 

expected frequencies:  

# expected  18.4 36.3 35.7 23.5 11.5 4.5 1.5 0.4 0.1 0.03 
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We aggregate  the five last groups, leaving us with K = 6 groups   

Pearson chi-squared statistic:  
2 3.3 ( 4)dfc = =

P-value:  50.9%  

The Poisson distribution fits nicely to the data 

Example: Mite infestations on orange trees 

# observed  
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A mite is capable of damaging the bark of orange trees 
 

 An inspection of a sample of 100 orange trees gave the following 

numbers of mite infestations found on the trunk of each tree:  

# expected  44.5 36.0 14.6 3.9 0.8 0.13 0.02 0.00 0.00 
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We aggregate  the six last groups, leaving us with K = 4 groups   

Pearson chi-squared statistic:  
2 12.6 ( 2)dfc = =

P-value:  0.2%  

The Poisson distribution does not fit the data  



Poisson regression 
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So far we have considered the situation where the observations are a 

sample from a Poisson distribution with parameter   !!(which is the 

same for all observations)!

We will now consider the situation where the Poisson parameter may 

depend on covariates, and hence is not the same for all observations 

We assume that we have independent data for each of  n  subjects:  

a count for subject no.iy i=

predictor  (covariate) no.  for subject no.jix j i=

1 2, , ,..., 1,...,i i i piy x x x i n=

In general we assume that the responses        are realizations of 

independent  Poisson distributed random variables                         

where                                        is a function of the covariates!

~ Po( )i iY l
iy

1 2( , ,...., )i i i pix x xl l=
14 

We will consider regression models for the rates of the form: 

( )0 1 1 2 2exp ....i i p pix x xb b b b= + + + +

1 2( , ,...., )i i i pix x xl l=

This ensures that the rates are positive, as they should 

If we consider two subjects with values                and  x1 , for 

the first covariate and the same values for all the others,  

their rate ratio (RR) becomes 

1 2

1 2

( , ,...., )
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In particular          is the rate ratio corresponding to one unit's 

increase in the value of the first covariate holding all other 

covariates constant 

1eb

1x + D
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Example: Insurance claims 

We consider data on accidents in a portfolio of private cars in an  

English insurance company during a three months period 
 

The variables in the data set are as follows: 

•  Age of the driver  (1=less than 30 year, 2= 30 years or more) 

•  Motor volume of the car  (1=less than 1 litre, 2=1-2 litres, 3=more than 2 litres) 

•  Number of insured persons in the group (defined by age and  motor volume) 

•  Number of accidents in the group 
  

age  vol      num       acc 

   1     1       846       137 

   1     2     2421       444 

   1     3        207          52 

   2     1     4101       402 

   2     2  14412    1869 

   2     3     1372       247 
   

In many applications we have data on an aggregated form 

We then record counts for groups of individuals who share the 

same values of the covariates 
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When our observations  are aggregated counts, an observation                      

is a realization of �

where  the weight        is the number of subjects in group i 

~ Po( ) (*)i i iY wl

iw

iy

When we combine (*) with the regression model on slide 14,                

we may write:�

( ) ii iE Y w l=

( )0 1 1 2 2exp ....i i pi p ix x xw b b b b= + + + +

( )0 1 1 2 2exp .log( ...) i i p pii x xw xb b b b= + + + + +

Formally                 is a  "covariate"  where the regression coefficient is 

known to equal 1. Such a "covariate" is called an offset �

log( )iw



•                             is  expected number of claims for a driver younger  

     than 30 years with a small car 
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R commands:  
car.claims=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/car-claims.txt", header=T) 

fit.claims=glm(acc~offset(log(num))+factor(age)+factor(vol), data=car.claims,family=poisson) 

summary(fit.claims) 
 

R output (edited): 
  

   Estimate  Std. Error  z value       Pr(>|z|)     

(Intercept)   -1.916      0.055   -34.83    < 2e-16 

factor(age)2 -0.376      0.044      -8.45    < 2e-16  

factor(vol)2    0.244      0.048        5.09   3.57e-07  

factor(vol)3    0.570      0.072        7.90   2.85e-15   

Example: Insurance claims 

1.916 0.147e- =

Note e.g. that 

•                             is  the rate ratio for a driver 30 years or older 

     compared with a driver younger than 30 years (with same type of car) 

0.376 0.687e- =

Maximum likelihood estimation 
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We have :  
( )

( ) exp( )
!

iy

i i
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l
l= = -

The likelihood is the simultaneous distribution 

considered as a function of the parameters                         for the 

observed values of the  yi 
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The maximum likelihood estimates (MLE)                           

maximize the likelihood, or equivalently the log-likelihood  

 

0 1
ˆ ˆ ˆ, ,...., pb b b

logl L=
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Wald tests and confidence intervals 

95%  confidence interval for       : ˆ ˆ1.96 ( )j jseb b± ×jb
 

                          is the rate ratio for one unit's increase in the 

value of the j-th  covariate holding all other covariates constant 
 

exp( )j jRR b=

We obtain a 95% confidence interval for  RRj  by transforming the 

lower and upper limits of the confidence interval for  
jb

ˆ MLE for j jb b· =

ˆ ˆ( ) standard error for  j jse b b· =

To test the null hypothesis                     we use the Wald test statistic: 
0 : 0j jH b =

ˆ

ˆ( )

j

j

z
se

b

b
=

0 jHwhich is approximately N(0,1)-distributed under  
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R command (using the function from slide 10 of Lecture 7):  

expcoef(fit.claims) 

Rate ratios with confidence intervals for the insurance example  

R output  (edited): 

 

  expcoef         lower         upper 

(Intercept)   0.1472   0.1321   0.1639 

factor(age)2  0.6867   0.6293   0.7493 

factor(vol)2  1.2758   1.1616   1.4013 

factor(vol)3  1.7678   1.5347   2.0364 
   



•    Deviances                         and   

Deviance and likelihood ratio tests 

Procedure:  
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We want to test the null hypothesis H0  that  q  of the           are equal to 

zero, or equivalently that there are q  linear restrictions among the  

 

'sjb
'sjb

ˆ2( )D l l= -   ˆ)                

•       is the maximum possible value of the log-likelihood,  

    obtained  for the saturated model with no  restrictions on the  

ll    

il

•                     is the log-likelihood for the full Poisson regression model ˆ ˆlogl L=

•                      is the log-likelihood under H0  0 0
ˆ ˆlogl L=

0 0
ˆ2( )D l l= -0 0
ˆ )0 00 00 0

•    Test statistic                                                                                               

      is chi-squared distributed with q df under H0  

0G D D= - ( )0
ˆ ˆ2log L L= -
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R commands:  
fit.null=glm(acc~offset(log(num)), data=car.claims,family=poisson) 

fit.age=glm(acc~offset(log(num))+factor(age), data=car.claims,family=poisson) 

fit.age.vol=glm(acc~offset(log(num))+factor(age)+factor(vol), data=car.claims,family=poisson) 

fit.interaction=glm(acc~offset(log(num))+factor(age)+factor(vol) +factor(age):factor(vol), 

                             data=car.claims,family=poisson) 

anova(fit.null,fit.age,fit.age.vol,fit.interaction,test="Chisq") 

R output (edited): 
  

Analysis of Deviance Table 
 

Model 1: acc ~ offset(log(num)) 

Model 2: acc ~ offset(log(num)) + factor(age) 

Model 3: acc ~ offset(log(num)) + factor(age) + factor(vol) 

Model 4: acc ~ offset(log(num)) + factor(age) + factor(vol) + factor(age):factor(vol) 
 

   Resid. Df  Resid. Dev  Df  Deviance  P(>|Chi|)     

1                 5      126.11                           

2                   4         63.93    1     62.18   3.132e-15 

3                   2           1.98    2     61.95   3.534e-14 

4                   0           0.00    2        1.98       0.371  

Example: Insurance claims 

We end up with model 3 with no interaction (cf slides 17 and 19)  

Generalized linear models  
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The models for�

•  Multiple linear regression 

•  Logistic regression 

•  Poisson regression 

are the most common generalized linear models (GLMs) �

A GLM consists of three parts�

•  A family of distributions 

•  A link function 

•  A linear predictor 

Example GLM: (standard) Poisson-regression  

  The three parts are for Poisson-regression�

•  Family: The observations       are independent and           

    Poisson distributed with means     

    

•  The linear predictor: A linear expression in regression   

                        parameters and covariates 

 

 

•  The link function: Linking       and  

 

 

 
   

( ) log( )i i igh m m= =

0 1 1 2 2 ....i i i p pix x xh b b b b= + + + +

iY

( )i iE Ym =

im ih

For the usual multiple regression model the family is normal and 

the link function is an identity function  

 

For logistic regression: binary / binomial family and link function is 
the logit function    �

( )i i igh m m= =

( ) log
1

i
i i

i

g
m

h m
m

æ ö
= = ç ÷-è ø
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Other link function may also be specified: 

For binary responses: 

•  Complementary log-log link: 

( ) log( log(1 ))i i igh m m= = - -

•  Probit link:                                       where             is the  

   cumulative N(0,1)-distribution  

1( ) ( )i i igh m m-= =F ( )zF

For Poisson responses:�

•  Identity link: ( )i i igh m m= =

•  Square root link:                                       ( )i i igh m m= =
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Statistical inference  in GLMs is performed as illustrated for logistic 

regression and Poisson regression �

Estimation:�

•  Maximum likelihood (MLE) 

Testing:�

•  Wald tests 

•  Deviance/likelihood ratio tests 
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A particular feature of the GLMs is the variance function            which 

is specific for each family of distributions. The variance functions 

describe how the variance depends on the mean    . �

• For the Poisson distribution: 

 

• For binary data: 

 

• For normal data we define 

  since the variance does not depend on the mean 

  thus   

 

( )V m

m

( )V m m=

( ) (1 )V m m m= -

( ) 1V m =

2 2Var( ) ( )s s m= =i iY V

As discussed previously in these slides there may be overdispersion 

relative to a Poisson model. This could be allowed for by specifying a 

model  �Var( ) ( )f m=i iY V

Example: Number of sexual partners 

Study of sexual habits, National Institute of Public Health, 1987/1992  
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       no. sex-partners, �

•  Age, being single, having had HIV-test and was higher for men 

However, the data was overdispersed.  A “Pearson X2” statistic is�

iY = 1,..., 8553i n= =
A Poisson-regression indicated that the expected value increased with �

2
2

1

ˆ( )
51927

ˆ

n
i i

i i

Y
X

m
m=

-
= =å

which is large compared with residual degrees of freedom 8544. An 
overdispersion term�

2

1

ˆ( )1 51927
ˆ 6.08

ˆ 8544

n
i i

i i

Y

n p

m
f

m=

-
= = =

- å

and should have been close to 1 if the Poisson model was correct. 

 

Standard errors and inference needs correction for overdispersion! 



Correction for overdispersion 
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A overdispersed Poisson model is given by 

•     

•   

0 1 1 2 2log( ) ....i i i p pix x xm b b b b= + + + +

Var( ) fm=i iY

This model can be fitted as a standard Poisson-

regression, but the standard errors must be corrected to 

* ˆse se f=

where      is the standard error from the Poisson-

regression and the overdispersion       is estimated as on 

the previous slide. Similarly the z-values become  

se

f̂

* ˆ/z z f=

 and p-values must be corrected correspondingly 

Count data with over-dispersion – Quasi-likelihood  
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 Although the corrections for overdispersion shown on the previous  

slide should be simple to carry out it is convenient that it is already 
implemented in R through a so-called    

•  Quasi-likelihood 

The family-specification in the glm-command is given as “quasi” with 
arguments�

•  var=“mu” 

•  link=log 

glm(partners~Gender+Married+factor(HIVtest)+factor(agegr), 

        family=quasi(link=log,var="mu"),data=part) 
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(Intercept)          1.82862    0.07665    23.857     < 2e-16 *** 

Gender               -0.49038    0.02145   -22.859    < 2e-16 *** 

Married              -0.43997    0.02521   -17.449    < 2e-16 *** 

factor(HIVtest)2 0.35017    0.03254     10.763    < 2e-16 *** 

factor(HIVtest)3 0.14901    0.05657       2.634    0.00845 ** 

factor(agegr)2    0.57142    0.06721       8.502    < 2e-16 *** 

factor(agegr)3    0.90489    0.06767     13.372    < 2e-16 *** 

factor(agegr)4    1.04673    0.06550     15.981    < 2e-16 *** 

factor(agegr)5    0.84322    0.06806     12.389    < 2e-16 *** 

--- 

(Dispersion parameter for quasi family taken to be 6.07765) 

Null deviance:         53136 on 8553 degrees of freedom 

Residual deviance: 40002 on 8544 degrees of freedom 

Estimate   Std. Error   z value     Pr(>|z|) 

Results from over-dispersed Poisson model on  

no. of sexual partner data.  

Although the associations are still all strongly significant they have been 

scaled down a factor   ˆ2.45 6.08 f= =
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Heteroscedastic linear model  

Assume that the linear structure �

0 1 1 2 2( ) ....i i i i p piE Y x x xm b b b b= = + + + +

was found acceptable, but that the variance depended on       as  �im
Var( ) fm»i iY

One way to handle the non-constant variance could then be to specify 
a quasi-likelihood model with identity link and variance function “mu” �

R can also handle variance structures        and   �
3fm2fm



33 

Generalized additive models (GAM)  

We have encountered GAMs for 

•  Multiple linear regression 

•  Logistic regression 

Any generalized linear model (GLM) can be extended to a GAM 
including Poisson regression models  

A GAM consists of three parts 

•  A family of distributions 

•  A link function 

•  An additive predictor 
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GAM, continued  

Thus the first two components of a GAM are the same as for a GLM, 
but for the last component we replace the linear predictor 

0 1 1 2 2 ....i i i p pix x xh b b b b= + + + +

with an additive predictor  

0 1 1 2 2( ) ( ) .... ( )i i i p pif x f x f xh b= + + + +

where the linear terms           are replaced by smooth functions  j jixb ( )j jif x

Before fitting and plotting a GAM-model the library gam must be 

invoked (and installed). 

 

Examples of use of GAM is found in Lecture 5, slide 18 and Lecture 7, 
slide 37.  


