Solutions theoretical exercises for STK4900/9900.

Exercise 1 Group 1 (Steroid) $N\left(\mu_{1}, \sigma^{2}\right), n_{1}=8$ observations.
Group 2 (Control) $N\left(\mu_{2}, \sigma^{2}\right), n_{2}=10$ observations.
90% confidence interval for $\mu_{1}-\mu_{2}$ is given by $\bar{x}_{1}-\bar{x}_{2} \pm c \cdot s e\left(\bar{x}_{1}-\bar{x}_{2}\right)$ where $c=1.746=95$ percentile of Student t-distribution with $n_{1}-1+n_{2}-1=16$ degrees of freedom (df) and $\operatorname{se}\left(\bar{x}_{1}-\bar{x}_{2}\right)=s_{p} \sqrt{1 / n_{1}+1 / n_{2}} \approx 1.21$ since the pooled standard deviation is calculated as

$$
s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}=\sqrt{\frac{7 \cdot 2.6^{2}+9 \cdot 2.5^{2}}{16}} \approx 2.54 .
$$

This gives 90% confidence interval $(-9.8,-5.6)$ (with one decimals accuracy).

Exercise 2 Significant difference in blood pressure between Calcium and control groups, same model as in Exercise 1. Here $n_{1}=10$ are the number of observations in calcium group and $n_{2}=11$ the number of individuals in the control group. Observed values are reduction in blood pressure.
Want to test whether calcium intake reduce blood pressure, thus a one sided test problem, i.e.

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2} \quad \text { vs. } \quad \mathrm{H}_{1}: \mu_{1}>\mu_{2}
$$

The test statistic is given as

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{s e\left(\bar{x}_{1}-\bar{x}_{2}\right)}=\frac{5-(-0.27)}{7.38 \sqrt{1 / 10+1 / 11}}=1.64 .
$$

If the null is true this value is drawn from a t-distribution with 19 degrees of freedom. From the t-table we then get a p-value between 0.05 and 0.10 , i.e. not significant (exact p-value becomes 0.059).

Exercise 3

a) We have two measurements on the same fabric, one with abraded and one with unabraded. It could then well be a dependence between the two measurements. In particular we here get a correlation between the measurements of 0.90 . Hence we do not have two independent samples and an independent two-sample t-test does not apply.
It would still be reasonable to check differences between the measurements by computing differences, finding the one-sample confidence interval of the (theoretical) mean of the difference and testing whether they are different from zero.
b) With $D_{i}=$ difference between strengths with abraded and unabraded we assume $D_{i} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ and independent. We get the average $\hat{\mu}=$ $\bar{D}=3.29$ and the empirical standard deviation of the D_{i} equal to $s=4.18$. A 95% confidence interval for the difference in strength μ is given as $\bar{D} \pm c \cdot s e(\bar{D})=\bar{D} \pm c \cdot s / \sqrt{n}$ where $n=7$ observations and $c=2.45$ is the 97.5 percentile of the t-distribution with 6 degrees of freedom.

The 95% confidence interval then equals ($-0.58,7.16$), containing the value zero, hence a significant difference has not been demonstrated.

