Solutions theoretical exercises for STK4900/9900.

Exercise 7

a) With $n_{M}=7180$ the number of men interviewed and $X_{M}=1630$ classified as binge drinkers we estimate the proportion of binge drinkers among men p_{M} to be $\hat{p}_{M}=X_{M} / n_{M}=1630 / 7180=0.227$. Similarly the estimated proportion female binge drinkers equals $\hat{p}_{F}=X_{F} / n_{F}=$ $1684 / 9916=0.170$.
The 95% confidence intervals for the true proportions p_{M} and p_{F} becomes

$$
\begin{aligned}
& \hat{p}_{M} \pm 1.96 \sqrt{\frac{\hat{p}_{M}\left(1-\hat{p}_{M}\right)}{n_{M}}}=(0.217,0.237) \\
& \hat{p}_{F} \pm 1.96 \sqrt{\frac{\hat{p}_{F}\left(1-\hat{p}_{F}\right)}{n_{F}}}=(0.162,0.177)
\end{aligned}
$$

b) The risk difference $p_{M}-p_{F}$ is estimated as $\hat{p}_{M}-\hat{p}_{F}=0.227-0.170=$ 0.057 . The 95% confidence interval for the risk difference is given as

$$
\hat{p}_{M}-\hat{p}_{F} \pm 1.96 \sqrt{\frac{\hat{p}_{M}\left(1-\hat{p}_{M}\right)}{n_{M}}+\frac{\hat{p}_{F}\left(1-\hat{p}_{F}\right)}{n_{F}}}=(0.045,0.069)
$$

Since this interval does not contain the value zero we can conclude that the proportions among men and women are significantly different,
c) More formally we test the null hypothesis $\mathrm{H}_{0}: p_{M}=p_{F}$ vs. alternative $\mathrm{H}_{0}: p_{M} \neq p_{F}$ by the test statistic

$$
Z=\frac{\hat{p}_{M}-\hat{p}_{F}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n_{M}}+\frac{\hat{p}(1-\hat{p})}{n_{F}}}}
$$

where $\hat{p}=\left(X_{M}+X_{F}\right) /\left(n_{M}+n_{F}\right)=0.199$ is the estimate of the common proportion under the null hypothesis. This test statistic will be approximately standard normally distributed under the null.

Plugging in the data we observe $Z=9.34$, this corresponds to a very small p-value (from R 10^{-20}).
d) The full 2 x 2 table over men/women and binge drinking becomes

	Freq. binge drinkers	Not freq. binge dr.	Total
Males	1630	5550	7180
Women	1684	8232	9916
Total	3314	13782	17096

e) With $T_{i \bullet}$ the total in row $i, T_{\bullet j}$ the total in column j and $T_{\bullet \bullet}=17096$ the overall total of the 2 x 2 table we get the expected values in cell (i, j) as $E_{i j}=T_{\bullet j} T_{\bullet \bullet} / T_{\bullet \bullet}$.

Perhaps simpler we get $E_{11}=\hat{p} n_{M}, E_{12}=(1-\hat{p}) n_{M}, E_{21}=\hat{p} n_{F}$ and $E_{22}=(1-\hat{p}) n_{F}$. Doing the calculation the 2 x 2 matrix of expected values becomes

	Freq. binge drinkers	Not freq. binge dr.	Total
Males	1391.8	5788.2	7180
Women	1922.2	7993.8	9916
Total	3314	13782	17096

e) The (Pearson) chi-square statistic is given as

$$
X^{2}=\sum_{i, j} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

where $O_{i j}$ are the numbers in the 2 x 2 table of the observations and the sum is taken over all cells in the 2×2 tables.
Under the null hypothesis $\mathrm{H}_{0}: p_{M}=p_{F}$ this statistic follows a chisquare distribution with 1 degree of freedom (since 2 x 2 table). We reject with large values of X^{2}.
Here we get $X^{2}=87.17$ which correspond to a tiny p-value. In fact it becomes 10^{-20} (from R) just as the p -value in question c). This correspond to the fact that $87.17=9.34^{2}$ where 9.34 was test statistic from question c).
We actually have the algebraic identity $X^{2}=Z^{2}$ where X^{2} is the chisquare statistic and Z is the standard normal statistic (for all such 2 x 2 tables).

