Exercise 22: Poisson regression – cancer data

The dataset cancer gives lung cancer cases and person-years at risk for British physicians. The data are from a study of lung cancer incidence as a function of cigarette smoking, and we will use it to illustrate Poisson regression¹³. The data are available on the course web-page, and a summary is given in the table below.

Column Contains

- 1 Age groups. Values are midpoints of the age groups 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, and 75-79
- Number of cigarettes smoked per day. Each value is the average within a range; the ranges are 0, 1–9, 10–14, 15–19, 20–24, 25–34, and 35+.
- 3 Number of man-years at risk in that category.
- 4 Number of cases of lung cancer.
- 1. Perform poisson regression on the cancer data with number of cases being responsivariable and years of cigarette smoking and number of cigrarettes smoked per day being covariates.
- 2. Are the two covariates significant important? Perform a formal test for each of the covariates.
- 3. Extend the model from 1) by including second order and interaction terms. Use stepwise regression procedures for chosing the "best" model.

Age	Cigarettes per day						
	Non-smokers	1-9	10 - 14	15 - 19	20 - 24	25 – 34	> 35
15-20	1 (10366)	0 (3121)	0 (3577)	0 (4317)	0 (5683)	0 (3042)	0 (670)
20-25	0 (8162)	0(2397)	1(3286)	0(4214)	1(6385)	1(4050)	0 (1166)
25-30	0 (5969)	0(2288)	1(2546)	0(3185)	1(5483)	4(4290)	0 (1482)
30-35	0 (4496)	0(2015)	2(2219)	4(2560)	6 (4687)	9 (4268)	4 (1580)
35-40	0 (3152)	1(1648)	0(1826)	0(1893)	5(3646)	9(3529)	6 (1336)
40-45	0 (2201)	2(1310)	1(1386)	2(1334)	12(2411)	11(2424)	10 (924)
45-50	0 (1421)	0(927)	2(988)	2(849)	9(1567)	10(1409)	7 (556)
50-55	0 (1121)	3(710)	4(684)	2(470)	7 (857)	5(663)	4(255)
55-60	2 (826)	0 (606)	3 (449)	5 (280)	7 (416)	3 (284)	1 (104)

Table: Lung cancer deaths (with the number of person-years in parenthesis) broken down on age and the daily cigarette consumption.

¹³From E. L. Frome (1983), The analysis of rates using Poisson regression models, Biometrics Vol 39, 665–674.