
STK4900/9900  -   Lecture 2 

 

Program 
 

1. Comparing two or more groups 

2. One-way analysis of variance (ANOVA) 

3. Covariance and correlation 

4. Simple linear regression 

 

 
• Section 2.4 

• Sections 3.1.4, 3.2 (not 3.2.2), 3.3 

• Supplementary material on covariance,  

       correlation and one-way ANOVA  
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Comparing two groups 
 

In Lecture 1 we considered an example where we measured bone 

mineral density (in g/cm2) for rats given isoflavone and for rats in a 

control group: 

 

 

 

 

 

 

 

 

 

 

 

Question: Does isoflavone have an effect on bone mineral density? 
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A boxplot gives a graphical comparison of the two groups: 
 

We would like to determine a confidence interval for the treatment 

effect and test if the difference is statistically significant (cf. next slide)  
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R-commands: 
 

cont=c(0.228, 0.207, 0.234, 0.220, 0.217, 0.228, 0.209, 0.221, 0.204, 0.220,  

             0.203, 0.219, 0.218, 0.245, 0.210) 

treat=c(0.250, 0.237, 0.217, 0.206, 0.247, 0.228, 0.245, 0.232, 0.267, 0.261,  

             0.221, 0.219, 0.232, 0.209, 0.255) 

boxplot(treat, cont,names=c("Treatment","Control")) 

t.test(treat, cont , var.equal=T) 

 R-output (slightly edited) 
 

Two Sample t-test 
 

data:  treat and cont  

t = 2.844,  df = 28,  p-value = 0.0082 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 0.0045    0.0279  

sample estimates: 

mean of x  mean of y  

0.2351   0.2189  



 

Suppose that the data for the two groups are random samples 

from                     and                     , respectively    
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1( , )N m s 2

2( , )N m s
 

Consider testing the null hypothesis                          versus 

the alternative  
 

Test statistic: 

 
 

where 

 
 

with 

0 1 2:H m m=

1 2:AH m m¹

| |tWe reject H0 for large values of   
 

 

P-value (two-sided) :  P = 2 P(T >|t|),  

where  T  is t-distributed with n1+ n2 – 2 df. 

 

In an experiment 24 rats were randomly allocated to four different 

diets, and the blood coagulation time (in seconds) was measured for 

each animal 

 

 

 

 

 

 

 

 

 

 
 

Question: Does diet have an effect on coagulation time? 
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Comparing more than two groups: one-way ANOVA 

 

We may compare two and two diets, using two sample procedures 

We would, however, also like to have an overall test 
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In general we have observations from K groups:  
 

 

Total number of observations: k

k

n n=å

,

1 1
Overall mean: ik k k

i k k

x x n x
n n

= =å å

observation number  in group 

( 1,..., 1,..., )

ik

k

x i k

i n k K

=

= =

 

We assume that all observations are independent and that the 

observations from group  k  are a random sample from  
 

 

2( , )kN m s

Notation: 

1
Mean in group : k ik

ik

k x x
n

= å
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We want to test the null hypothesis                                  versus the 

alternative that  not  all the        are equal 

 

Introduce the sums of squares:  

TSS MSS RSS= +

Important decomposition: 

( )
2

k k

k

MSS n x x= -å

( )
2

,

ik k

i k

RSS x x= -å

0 1: ..... KH m m= =

km

( )
2

,
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i k

TSS x x= -å (total sum of squares) 

(model sum of squares) 

(residual sum of squares) 
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Unbiased estimator of         :  

/( 1)

/( )

MSS K
F

RSS n K

-
=

-

However, when the null hypothesis does not hold, the latter 

estimate tends to be larger than  

2 /( )s RSS n K= -

2s

Under the null hypothesis           may also be estimated by :    
2s

/( 1)MSS K -

2s

We reject the null hypothesis for large values of the test statistic  

The test statistic is F-distributed with K – 1 and n – K  degrees of 

freedom under the null hypothesis 
 

This result is used to compute the P-value  
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The result may be summarized in an ANOVA table: 

Source           df        Sum of           Mean sum               F statistic           P-value

                                 squares          of squares                                                       

/( 1)
Model         1 /( 1)

/( )

Residual     /( )

Total           1          

MSS K
K MSS MSS K F P

RSS n K

n K RSS RSS n K

n TSS

-
- - =

-

- -

-

The P-value is found by: 

 

 

where   F   is F-distributed with  K – 1 and  n – K  degrees of freedom  

( observed value of )P P F F= >

In Lecture 3 we will see how one-way ANOVA is a special case of 

multiple linear regression 
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rats=read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v11/ 

         rats.txt",header=T) 

rats$diet=factor(rats$diet)      # defines diet to be a categorical variable 

aov.rats=aov(time~diet,data=rats) 

summary(aov.rats) 

R commands for coagulation times:   

       Df  Sum Sq       Mean Sq  F value        Pr(>F)     

diet               3        228               76.0                  13.6      4.7e-05  

Residuals    20        112                 5.6  

R output (edited):   
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2 /(2 1)

/( 2)

MSS
t F

RSS n

-
= =

-

Consider the situation with two groups, i.e.  K = 2 

Relation to two-sample t-test (two-sided) 

 

Will test the null hypothesis                          versus the                  

alternative hypothesis   
 

t-test statistic: 

 
 

 
 

0 1 2:H m m=

1 2:AH m m¹

| |tWe reject H0 for large values of   
 

We may show that  

The usual (two-sided) t-test for two samples is a special 

case of the F-test in one-way ANOVA 
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R-commands for bone density example: 

 

bonedensity=read.table("http://www.uio.no/studier/emner/matnat/math/ 

                        STK4900/v11/bonedensity.txt",header=T) 

aov.density=aov(density~group,data=bonedensity) 

summary(aov.density) 

 R-output (edited) 

 

      Df     Sum Sq     Mean Sq  F value     Pr(>F)    

group           1  0.00197   0.00197   8.09   0.0082  

Residuals   28  0.00681   0.000243  

Note that  
 

2 22.844 8.09t F= = =
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Two numerical variables 

For one-way ANOVA we study how a numerical variable (e.g. blood 

coagulation time) depends on a categorical variable (e.g. diet) 

Often we  want to study the relation between two numerical variables 

Example A: When water flows across a field, some of the soil will be washed 

away (eroded). An experiment has been performed in order to investigate how 

the amount of water affects the amount of soil that is eroded.  

Example B: Forced vital capacity (FVC) and peak expiratory flow (PEF) 

have been measured for 12 adults (in liter and liter per minute, respectively). 

What is the relation between these two measures of lung function? 
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We will consider two situations:  

 

1. The data  (x1,y1) , … , (xn,yn)  are considered as independent 

replications of a pair of random variables  (X ,Y ) 
 

2. The data are described by a linear regression model                         

                                                                                                         

Here  y1 , … , yn  are the outcomes that are considered to be 

realizations of random variables, while  x1 , … , xn  are considered 

to be fixed (i.e. non-random)  and the   i's  are random errors (noise) 
 

Situation 1 occurs for observational studies (like Example B), while 

situation 2 occurs for planned experiments, where the values of the xi's 

are under the control of the experimenter (like Example A) 
 

In situation 1 we will often condition on the observed values of the xi's, 

and analyze the data as if they are from situation 2 

 

We start out by considering situation 1 

0 1 , 1,....,i i iy x i nb b e= + + =
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Bivariate distributions 
 

We describe the joint distribution of a pair of random variables  (X ,Y ) 

through their bivariate probability density,  f (x,y) 
 

This is defined so that 

 

 

 

  
The bivariate normal distribution 

depends on the parameters:  

1Mean of :X m

2Mean of :Y m

1Standard deviation of :X s

2Standard deviation of :Y s

Correlation : r
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Covariance and correlation 
 

The dependence between X and Y  may be summarized by the 

covariance: 

 

 

 

or by the correlation coefficient: 

 

 

Important properties of the correlation coefficient: 

•  corr(X,Y) takes values between  -1  and  1 

•  corr(X,Y) describes the linear relationship between Y and X 

•   If  X and Y  are independent, then  corr(X,Y)=0 

    (but not necessarily the other way around) 
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Examples of correlated data: 

20 

Examples of uncorrelated data: 



21 

Empirical correlation 
 

The empirical correlation coefficient is an estimator of the theoretical 

correlation coefficient, and it takes the form  

 

 

 

 

Here  sx  and  sy  are the empirical standard deviations of the xi's and 

the yi's 

 

r  is called the Pearson correlation coefficient 

 

The properties of the Pearson correlation coefficient are similar to 

those of the theoretical correlation coefficient 

1
( )( ) /( 1)

n

i ii

x y

x x y y n
r

s s
=

- - -
=

×

å
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Consider the example with measures of lung function: 

R-commands and results: 

fvc=c(3.9,5.6,4.1,4.2,4.0,3.6,5.9,4.5,3.6,5.0,2.9,4.3) 

pef=c(455,603,456,523,458,460,629,435,490,640,399,526) 

cov(fvc,pef) 

cov(fvc,pef)/(sd(fvc)*sd(pef)) 

0.856 
 

cor(fvc,pef) 

0.856 

3.0 3.5 4.0 4.5 5.0 5.5 6.0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

fvc

p
e
f

23 

Test and confidence interval for correlation 
 

We assume that  (x1,y1) , … , (xn,yn)  are a random sample 

from a bivariate normal distribution  
 

Consider testing the null hypothesis                        versus the 

alternative  
 

Test statistic: 

 

 

 

We reject H0 for large values of   

Under H0 the test statistic is t-distributed with n – 2 df 
 

It is more complicated to describe how one may obtain a 

confidence interval for  �  (but one is obtained by the R code 

on the following slide) 

0 : 0H r =

0 : 0H r ¹

2

2

1

r n
t

r

-
=

-

| |t
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R-command and results: 

 

cor.test(fvc,pef) 

 

        Pearson's product-moment correlation 

 

data:  fvc and pef  

t = 5.23,  df = 10,  p-value = 0.00038 

alternative hypothesis: true correlation is not equal to 0  

95 percent confidence interval: 

 0.554     0.959  

sample estimates: 

      cor  

0.856  

Note that the confidence interval is not symmetric 
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Spearman (rank) correlation 
 

The Pearson correlation is sensitive to outliers in the data.      

 

An alternative correlation measure is the Spearman correlation: 

 

The smallest  xi  is replaced by rank ri =1,  

the second smallest  xi  is replaced by rank ri =2, and so on to 

the largest  xi  which is replaced by rank ri = n. 
 

Similarly, the yi are replaced by ranks si . 

 
The Spearman correlation is then simply the Pearson 

correlation of the ranks  (r1,s1) , … , (rn,sn).  

 

In R: 
> cor(fvc, pef, method="spearman") 

[1] 0.669 
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Simple linear regression 
 

We have data  (x1,y1) , … , (xn,yn) 
 

( | )i i i iy E y x e= +

 

Here:  

Model:  

where the xi's are considered to be fixed quantities, and the  

 i's  are independent error terms ("noise") that are assumed to 

be  2(0, )-distributedN es

outcome  
       (or response)
       (or dependent variable)

iy =

predictor  
       (or covariate)
       (or explanatory variable)
       (or independent variable)

ix =

0 1 i ixb b e= + +

27 

Consider the erosion example: 
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Least squares 

We estimate the regression coefficients  using the method of 

least squares, i.e.  the estimates         and          are obtained as 

the values of        and       that  minimize the sum of squares 
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R-commands: 

water=c(0.31,0.85,1.26,2.47,3.75) 

erosion=c(0.82,1.95,2.18,3.02,6.07) 

fit=lm(erosion~water) 

summary(fit) 

plot(water,erosion,pch=19) 

abline(fit) 

 

R-output (edited) 

Coefficients: 

                       Estimate Std. Error      t value        Pr(>|t|)    

(Intercept)        0.406      0.445           0.912          0.429    

water               1.390      0.210           6.630          0.007  

  

Residual standard error: 0.580 on 3 degrees of freedom 

Multiple R-squared: 0.936,     Adjusted R-squared: 0.915  

F-statistic: 44.0 on 1 and 3 DF,  p-value: 0.007  

"Estimate"  denotes  the least  squares estimates (the meaning of 

the other parts of the output will be made clear in the following)  
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Fitted regression line: erosion 0.406 1.390 water= + ´
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Fitted values and residuals 

Fitted values: 

0 1
ˆ ˆˆ

i iy xb b= +

Residuals: 

ˆ
i i ir y y= -

The residuals are 

estimates of the 

unobserved  �i's   
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Sums of squares 
 

In a similar manner as for one-way ANOVA, we have the sums of squares:  

TSS MSS RSS= +

Decomposition: 

( )
2

1

ˆ

n

i

i

MSS y y
=

= -å

( )
2

1

ˆ

n

i i

i

RSS y y
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= -å

( )
2

1

n

i

i

TSS y y
=

= -å (total sum of squares) 

(model sum of squares) 

(residual sum of squares) 
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Standard errors 
 

Unbiased estimator of         :  

2

|
ˆVar( ) /( 2)y xs RSS ne = = -

2

es

        is the "residual standard error" in the R output  |y xs

 

The variance of        is estimated by  :  

2

|

1 2
ˆˆVar( )

( 1)

y x

x

s

n s
b =

-

1b̂

where                                                is the sample variance of the  xi's    2 2

1
( ) /( 1)

n

x ii
s x x n

=
= - -å

 

Standard error:  1 1
ˆ ˆˆ( ) Var( )se b b=

 

Similar formulas hold for the variance and standard error of 0b̂

The standard errors are denoted "Std. Error" in the R output  
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Hypothesis tests 
 

Consider testing the null hypothesis                      versus the 

alternative  
 

Test statistic: 

0 1: 0H b =

1: 0AH b ¹

1

1

ˆ

ˆ( )
t

se

b

b
=

Under H0 the test statistic is t-distributed with n – 2 df  

| |tWe reject H0 for large values of   
 

 

P-value (two-sided) :  P = 2 P(T >|t|),  

where  T  is t-distributed with  n – 2 df. 
 

Testing the null hypothesis                      is performed similarly        

(but is usually not of much interest)  

 

t-statistics and P-values are given in the R output  as "t value" and  "Pr(>|t|)"  

0 0: 0H b =
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Confidence intervals 
 

95% confidence interval for        :  1b

where c is the upper 97.5% percentile in the t-distribution with  n – 2 df 

1 1
ˆ ˆ( )c seb b± ×

95% confidence interval in the erosion example: 

1.39 3.18 0.210± ×

i.e.   from   0.72  to   2.06  

Note that the confidence interval does not contain 0 if and only if 

the P-value for the test is less than 5%  
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Correlation and regression 
 

The least squares estimate for the slope is given by:  

 

where 

 

 

 

 

is the Pearson correlation coefficient  (and  sx  and  sy  are the 

empirical standard deviations of the xi's and the yi's) 

 
Further the test for                      in a linear regression model (slide 33) 

is numerically equivalent to the test for                      for bivariate data 

(slide 23)    

1
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i ii

x y

x x y y n
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s s
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1
ˆ y

x

s
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s
b =

0 1: 0H b =

0 : 0H r =
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Coefficient of determination 

The coefficient of determination is given by  

This may be interpreted as the proportion of the total variability in the 

outcomes (TSS) that is accounted for by the model (MSS) 

 

R2  is given as  " Multiple R-squared" in the R output 

 

 

For the simple linear regression model  R2  is just the square of the 

Pearson correlation coefficient: 

 

 

2 1
MSS RSS

R
TSS TSS

= = -

2 2R r=


