
STK4990 - Statistical Methods and Applications

How to write a mandatory assignment

Vinnie Ko

February 14, 2020

This document is an example of how one can write a mandatory assignment in a reasonable way.
We solve Exercise 6 from week 1 as if it is a mandatory assignment that has to be handed in.

For those of you who are not familiar with LATEX, but wish to use it, this document also functions as
a template that you can follow and modify. Please note that the use of LATEX is not compulsory for
the mandatory assignment. You are free to use any other word processor (e.g. Microsoft Word). Yet,
regardless of which program you use, you have to make sure that your R code, its output and plots are
clearly and properly displayed.

Dos and don’ts
• You are only allowed to hand in a single PDF file.
• The PDF file should contain your name, course and assignment number.
• All texts, tables and plots should be clearly readable.
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Figure 1: Left: A plot that is badly scaled. Right: Same plot as left, but now properly scaled.

• You should include all the codes that you used, including its output.
• Your code should be placed in the corresponding part of the problems. It should not be included as
an appendix at the end of the document.
• Comment your code. So that other people can easily understand your code.
• “normal texts” (e.g. interpretation of the result) should not be written as a comment in R code.
• Answer all the questions that are asked.
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Problem 1

a)

I used the following code to create a scatter plot.

1 > # Read the data into R from the web.

2 > HERS.data = read.table("http://www.uio.no/studier/emner/matnat/math/STK4900/v17/

hers.sample.txt", header=T)

3 >

4 > # First observations in the data.

5 > head(HERS.data)

6 age sbp

7 1 75 168

8 2 73 116

9 3 69 96

10 4 64 119

11 5 54 137

12 6 72 163

13 >

14 > # Last observations in the data.

15 > tail(HERS.data)

16 age sbp

17 271 64 126

18 272 56 115

19 273 53 126

20 274 74 156

21 275 66 143

22 276 62 175

23 >

24 > # Create a scatter plot

25 > # Open a pdf device.

26 > pdf("./Exercise_6_a.pdf", width = 6, height = 6)

27 > # Create a scatter plot

28 > plot(

29 + x=HERS.data[,"age"],

30 + y=HERS.data[,"sbp"],

31 + xlab="age",

32 + ylab="sbp"

33 + )

34 > # Turn off the device.

35 > dev.off ()

36 null device

37 1

Figure 2 shows the scatter plot between sbp (systolic blood pressure) and age generated by the code
above. We can observe a weak positive correlation between sbp and age. However, at a first glance, the
relationship looks quite weak. We need to run more analysis such as Pearson correlation coefficient and
linear regression to determine whether there is a (positive) relationship between the two variables.
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Figure 2: A scatter plot between sbp and age from a subset of HERS data.

b)

By using lm() we fitted a linear regression model to HERS data. As instructed in the problem text, we
used sbp as outcome variable (y) and age as predictor (x).

1 > # Fit a linear model.

2 > lm.obj.1 = lm(sbp~age , data=HERS.data)

3 > # Show the result.

4 > summary(lm.obj.1)

5

6 Call:

7 lm(formula = sbp ~ age , data = HERS.data)

8

9 Residuals:

10 Min 1Q Median 3Q Max

11 -43.550 -13.520 -2.431 12.578 62.736

12

13 Coefficients:

14 Estimate Std. Error t value Pr(>|t|)

15 (Intercept) 105 .7130 12 .4024 8.524 1.05e -15 ***

16 age 0.4405 0.1865 2.363 0.0188 *

17 ---

18 Signif. codes:

19

20 Residual standard error: 19.76 on 274 degrees of freedom

21 Multiple R-squared: 0.01997 , Adjusted R-squared: 0.01639

22 F-statistic: 5.582 on 1 and 274 DF , p-value: 0.01884

23

24 >

25 > # Extract estimated parameters

26 > beta.0.hat = lm.obj.1$coefficients [1]
27 > names(beta.0.hat) = NULL

28 > beta.1.hat = lm.obj.1$coefficients [2]
29 > names(beta.1.hat) = NULL

30 >
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31 > # Create a scatter plot with fitted regression line

32 > # Open a pdf device.

33 > pdf("./Exercise_6_b.pdf", width = 6, height = 6)

34 > # Create a scatter plot

35 > plot(

36 + x=HERS.data[,"age"],

37 + HERS.data[,"sbp"],

38 + xlab="age",

39 + ylab="sbp"

40 + )

41 > # Plot the fitted linear model.

42 > abline(a=beta.0.hat , b=beta.1.hat , col="blue")

43 > # Turn off the device.

44 > dev.off ()

45 null device

46 1

47 >

From the summary of the fitted linear model (lm.obj.1), we can read off the following estimated pa-

rameter values: β̂0 = 105.7130, β̂1 = 0.4405.
The fitted regression line is visualized with the original data points in Figure 3.

The slope (β̂1) can be interpreted as “expected change in systolic blood pressure (sbp) when the age of
a woman increases by 1 year”. We also have to mention what the unit of sbp is, but that information is
not given in the exercise text.

Further, we see, from the summary of the fitted linear model, that the p-value corresponding to β̂1 is
0.0188. This p-value comes from the t-test with following null and alternative hypothesis:

H0 : β1 = 0, HA : β1 6= 0.

If we would use the significance level of α = 0.05, we can reject H0 and conclude that age has a significant
(linear) effect on systolic blood pressure.

However, if we use the significance level of α = 0.01, we have 0.0188 > 0.01 and we cannot reject H0. In
this case, we conclude that age has no significant (linear) effect on systolic blood pressure.

The intercept (β̂0) can be interpreted as “expected value of systolic blood pressure (y) when age (x) is
set to 0”.
However, this interpretation is not meaningful since age cannot be 0.
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Figure 3: A scatter plot with fitted linear regression line from Problem 1 b).

c)

To get more meaningful interpretation of the intercept β0, we subtract 67 from the predictor (age) and
fit linear regression with the following code.

1 > # Fit a linear regression with "age - 67" as predictor.

2 > lm.obj.2 = lm(sbp~I(age -67), data=HERS.data)

3 > # Show the result.

4 > summary(lm.obj.2)

5

6 Call:

7 lm(formula = sbp ~ I(age - 67), data = HERS.data)

8

9 Residuals:

10 Min 1Q Median 3Q Max

11 -43.550 -13.520 -2.431 12.578 62.736

12

13 Coefficients:

14 Estimate Std. Error t value Pr(>|t|)

15 (Intercept) 135 .2284 1.1985 112 .829 <2e-16 ***

16 I(age - 67) 0.4405 0.1865 2.363 0.0188 *

17 ---

18 Signif. codes:

19

20 Residual standard error: 19.76 on 274 degrees of freedom

21 Multiple R-squared: 0.01997 , Adjusted R-squared: 0.01639

22 F-statistic: 5.582 on 1 and 274 DF , p-value: 0.01884

23

24 >

25 > # Summary of the result.

26 > result.table = data.frame(

27 + lm.1 = lm.obj.1$coefficients ,
28 + lm.2 = lm.obj.2$coefficients
29 + )

30 > rownames(result.table) = c("beta.0.hat","beta.1.hat")
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31 > result.table

32 lm.1 lm.2

33 beta.0.hat 105 .7129691 135 .2283886

34 beta.1.hat 0.4405286 0.4405286

From the output, we have following least squares estimates.

not centered centered

β̂0 105.71 135.23

β̂1 0.44 0.44

Tip: https://www.tablesgenerator.com/# is a handy website if you want to draw a table in LATEX.

We can see that centering changed the intercept (β̂0), but the slope (β̂1) remains unchanged. This is
logical since centering is nothing more than “shifting” all data points with the same amount.

The intercept (β̂0) can now be interpreted as “expected value of systolic blood pressure (y) when centered
age (x− 67) is set to 0”.
In other words, the intercept can now be interpreted as “expected value of systolic blood pressure (y)
when age (x) is set to 67”.
This is a meaningful interpretation, without any biological nonsense like in a).

d)

We fit a new linear regression with
age

10
as predictor by using the following code.

1 > # Fit a linear regression with age/10 as predictor.

2 > lm.obj.3 = lm(sbp~I(age/10), data=HERS.data)

3 > # Show the result.

4 > summary(lm.obj.3)

5

6 Call:

7 lm(formula = sbp ~ I(age/10), data = HERS.data)

8

9 Residuals:

10 Min 1Q Median 3Q Max

11 -43.550 -13.520 -2.431 12.578 62.736

12

13 Coefficients:

14 Estimate Std. Error t value Pr(>|t|)

15 (Intercept) 105 .713 12.402 8.524 1.05e -15 ***

16 I(age/10) 4.405 1.865 2.363 0.0188 *

17 ---

18 Signif. codes:

19

20 Residual standard error: 19.76 on 274 degrees of freedom

21 Multiple R-squared: 0.01997 , Adjusted R-squared: 0.01639

22 F-statistic: 5.582 on 1 and 274 DF , p-value: 0.01884

23

24 >

25 > # Summary of the result.

26 > result.table = cbind(result.table , lm.3 = lm.obj.3$coefficients)
27 > result.table

28 lm.1 lm.2 lm.3

29 beta.0.hat 105 .7129691 135 .2283886 105 .712969

30 beta.1.hat 0.4405286 0.4405286 4.405286

31 >

From the output, we have following least squares estimates.
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age age/10

β̂0 105.71 105.71

β̂1 0.44 4.41

We can see that intercept remains unchanged. This is because we only “scaled” the predictor (x) and
did not “shift” it.
For the slope (β̂1) , we can observe that it is increased by the factor of 10.

On slide 43 from Lecture 2. β̂1 is defined as

β̂1 =
1

n−1

∑n
i=1(xi − x)(yi − y)

s2x
.

Dividing age by 10 is equal to: replacing xi by
xi
10

, replacing x by
x

10
and replacing sx by

sx
10

.

So, the slope becomes

1
n−1

∑n
i=1( 1

10xi −
1
10x)(yi − y)(

1
10sx

)2 =
1

n−1102
∑n

i=1
1
10 (xi − x)(yi − y)

s2x

=
1

n−1102 · 1
10

∑n
i=1(xi − x)(yi − y)

s2x

= 10 ·
1

n−1

∑n
i=1(xi − x)(yi − y)

s2x

= 10 β̂1.

Hence, we can see that dividing the predictor (x) by 10 results in that the slope increases by 10.

THE END
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