
Answers

Answer Ex. 1.4. 1: Setting pref=0.00002 Pa and p=100 000 Pa in the decibel
expression we get

20 log10

�
p

pref

�
= 20 log10

�
100000

0.00002

�
= 20 log10

�
105

2× 10−5

�

= 20 log10

�
1010

2

�
= 20 (10− log10 2) ≈ 194db.

Answer Ex. 1.4. 3: The important thing to note here is that there are two
oscillations present in Figure 1.1(b): One slow oscillation with a higher ampli-
tude, and one faster oscillation, with a lower amplitude. We see that there are
10 periods of the smaller oscillation within one period of the larger oscillation,
so that we should be able to reconstruct the figure by using frequencies where
one is 10 times the other, such as 440Hz and 4400Hz. Also, we see from the
figure that the amplitude of the larger oscillation is close to 1, and close to 0.3
for the smaller oscillation. A good choice therefore seems to be a = 1, b = 0.3.

Answer Ex. 1.4. 4: The code can look like this:

function playpuresound(f)

fs=44100;

t=0:(1/fs):3;

sd=sin(2*pi*f*t);

playerobj=audioplayer(sd,fs);

playblocking(playerobj)

Answer Ex. 1.4. 5: The code can look like this:

function playsquare(T)

% Play a square wave with period T over 3 seconds

318

fs=44100;

samplesperperiod=round(fs*T);

oneperiod=[ones(1,round(samplesperperiod/2)) ...

-ones(1,round(samplesperperiod/2))];

allsamples=zeros(1,floor(3/T)*length(oneperiod));

for k=1:floor(3/T)

allsamples(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end

playerobj=audioplayer(allsamples,fs);

playblocking(playerobj)

function playtriangle(T)

% Play a triangle wave with period T over 3 seconds

fs=44100;

samplesperperiod=round(fs*T);

oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...

linspace(1,-1,round(samplesperperiod/2))];

allsamples=zeros(1,floor(3/T)*length(oneperiod));

for k=1:floor(3/T)

allsamples(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end

playerobj=audioplayer(allsamples,fs);

playblocking(playerobj)

Answer Ex. 1.4. 6: The code can look like this:

function playdifferentfs()

[S fs]=wavread(’castanets.wav’);

playerobj=audioplayer(S,fs);

playblocking(playerobj);

playerobj=audioplayer(S,2*fs);

playblocking(playerobj);

playerobj=audioplayer(S,fs/2);

playblocking(playerobj);

function playreverse()

[S fs]=wavread(’castanets.wav’);

sz=size(S,1);

playerobj=audioplayer(S(sz:(-1):1,:),fs);

playblocking(playerobj);

Answer Ex. 1.4. 7: The code can look like this:

319

function playnoise(c)

[S fs]=wavread(’castanets.wav’);

sz=size(S,1);

newS=S+c*(2*rand(sz,2)-1);

newS=newS/max(max(abs(newS)));

playerobj=audioplayer(newS,fs);

playblocking(playerobj);

Answer Ex. 1.4. 8: The code can look like this:

function playwithecho(c,d)

[S fs]=wavread(’castanets.wav’);

sz=size(S,1);

newS=S((d+1):sz,:)-0.5*S(1:(sz-d),:);

newS=newS/max(max(abs(newS)));

playerobj=audioplayer(newS,fs);

playblocking(playerobj);

Answer Ex. 1.4. 9: The code can look like this:

function reducebass(k)

c=[1/2 1/2];

for z=1:(2*k-1)

c=conv(c,[1/2 1/2]);

end

c=(-1).^(0:(2*k)).*c;

[S fs]=wavread(’castanets.wav’);

N=size(S,1);

y=zeros(N,2);

y(1:k,:)=S(1:k,:);

for t=(k+1):(N-k)

for j=1:(2*k+1)

y(t,:)=y(t,:)+c(j)*S(t+k+1-j,:);

end

end

y((N-k+1):N,:)=S((N-k+1):N,:);

y=y/max(max(abs(y)));

playerobj=audioplayer(y,fs);

playblocking(playerobj);

320

function reducetreble(k)

c=[1/2 1/2];

for z=1:(2*k-1)

c=conv(c,[1/2 1/2]);

end

[S fs]=wavread(’castanets.wav’);

N=size(S,1);

y=zeros(N,2);

y(1:k,:)=S(1:k,:);

for t=(k+1):(N-k)

for j=1:(2*k+1)

y(t,:)=y(t,:)+c(j)*S(t+k+1-j,:);

end

end

y((N-k+1):N,:)=S((N-k+1):N,:);

playerobj=audioplayer(y,fs);

playblocking(playerobj);

Answer Ex. 2.1. 1: The function f(t) = 1√
t
= t−1/2 can be used since it has

the properties
�

T

0
f(t)dt = lim

x→0+

�
T

x

t−1/2dt = lim
x→0+

�
2t1/2

�T
x

= lim
x→0+

(2T 1/2 − 2x1/2) = 2T 1/2

�
T

0
f(t)2dt = lim

x→0+

�
T

x

t−1dt = lim
x→0+

[ln t]T
x

= lnT − lim
x→0+

lnx = ∞.

321

Answer Ex. 2.1. 4: For f(t) = t we get that a0 = 1
T

�
T

0 tdt = T

2 . We also get

an =
2

T

�
T

0
t cos(2πnt/T)dt

=
2

T

��
T

2πn
t sin(2πnt/T)

�T

0

− T

2πn

�
T

0
sin(2πnt/T)dt

�
= 0

bn =
2

T

�
T

0
t sin(2πnt/T)dt

=
2

T

��
− T

2πn
t cos(2πnt/T)

�T

0

+
T

2πn

�
T

0
cos(2πnt/T)dt

�
= − T

πn
.

The Fourier series is thus

T

2
−

�

n≥1

T

πn
sin(2πnt/T).

Note that this is almost a sine series, since it has a constant term, but no other
cosine terms. If we had subtracted T/2 we would have obtained a function
which is antisymmetric, and thus a pure sine series.
For f(t) = t2 we get that a0 = 1

T

�
T

0 t2dt = T
2

3 . We also get

an =
2

T

�
T

0
t2 cos(2πnt/T)dt

=
2

T

��
T

2πn
t2 sin(2πnt/T)

�T

0

− T

πn

�
T

0
t sin(2πnt/T)dt

�

=

�
− T

πn

��
− T

πn

�
=

T 2

π2n2

bn =
2

T

�
T

0
t2 sin(2πnt/T)dt

=
2

T

��
− T

2πn
t2 cos(2πnt/T)

�T

0

+
T

πn

�
T

0
t cos(2πnt/T)dt

�

= −T 2

πn
.

Here we see that we could use the expressions for the Fourier coefficients of
f(t) = t to save some work. The Fourier series is thus

T 2

3
+

�

n≥1

�
T 2

π2n2
cos(2πnt/T)− T 2

πn
sin(2πnt/T)

�
.

322

For f(t) = t3 we get that a0 = 1
T

�
T

0 t3dt = T
3

4 . We also get

an =
2

T

�
T

0
t3 cos(2πnt/T)dt

=
2

T

��
T

2πn
t3 sin(2πnt/T)

�T

0

− 3T

2πn

�
T

0
t2 sin(2πnt/T)dt

�

=

�
− 3T

2πn

��
−T 2

πn

�
=

3T 3

2π2n2

bn =
2

T

�
T

0
t3 sin(2πnt/T)dt

=
2

T

��
− T

2πn
t3 cos(2πnt/T)

�T

0

+
3T

2πn

�
T

0
t2 cos(2πnt/T)dt

�

= −T 3

πn
+

3T

2πn

T 2

π2n2
= −T 3

πn
+

3T 3

2π3n3
.

Also here we saved some work, by reusing the expressions for the Fourier coef-
ficients of f(t) = t2. The Fourier series is thus

T 3

4
+

�

n≥1

�
3T 3

2π2n2
cos(2πnt/T) +

�
−T 3

πn
+

3T 3

2π3n3

�
sin(2πnt/T)

�
.

We see that all three Fourier series converge slowly. This is connected to the
fact that none of the functions are continuous at the borders of the periods.

Answer Ex. 2.1. 5: Let us define an,k, bn,k as the Fourier coefficients of tk.
When k > 0 and n > 0, integration by parts gives us the following difference
equations:

an,k =
2

T

�
T

0
tk cos(2πnt/T)dt

=
2

T

��
T

2πn
tk sin(2πnt/T)

�T

0

− kT

2πn

�
T

0
tk−1 sin(2πnt/T)dt

�

= − kT

2πn
bn,k−1

bn,k =
2

T

�
T

0
tk sin(2πnt/T)dt

=
2

T

��
− T

2πn
tk cos(2πnt/T)

�T

0

+
kT

2πn

�
T

0
tk−1 cos(2πnt/T)dt

�

= −T k

πn
+

kT

2πn
an,k−1.

323

When n > 0, these can be used to express an,k, bn,k in terms of an,0, bn,0, for
which we clearly have an,0 = bn,0 = 0. For n = 0 we have that a0,k = T

k

k+1 for
all k. The following program computes an,k, bn,k recursively when n > 0.

function [ank,bnk]=findfouriercoeffs(n,k,T)

ank=0; bnk=0;

if k>0

[ankprev,bnkprev]=findfouriercoeffs(n,k-1,T)

ank=-k*T*bnkprev/(2*pi*n);

bnk=-T^k/(pi*n) + k*T*ankprev/(2*pi*n);

end

Answer Ex. 2.1. 7: The code can look like this:

function playsquaretrunk(T,N)

fs=44100;

t=0:(1/fs):3;

sd=zeros(1,length(t));

n=1;

while n<=N

sd = sd + (4/(n*pi))*sin(2*pi*n*t/T);

n=n+2;

end

playerobj=audioplayer(sd,fs);

playblocking(playerobj)

function playtriangletrunk(T,N)

fs=44100;

t=0:(1/fs):3;

sd=zeros(1,length(t));

n=1;

while n<=N

sd = sd - (8/(n^2*pî 2))*cos(2*pi*n*t/T);

n=n+2;

end

playerobj=audioplayer(sd,fs);

playblocking(playerobj)

324

Answer Ex. 2.2. 1: For n1 �= n2 we have that

�e2πin1t/T , e2πin2t/T � = 1

T

�
T

0
e2πin1t/T e−2πin2t/T dt =

1

T

�
T

0
e2πi(n1−n2)t/T dt

=

�
T

2πi(n1 − n2)
e2πi(n1−n2)t/T

�T

0

=
T

2πi(n1 − n2)
− T

2πi(n1 − n2)
= 0.

When n1 = n2 the integrand computes to 1, so that �e2πint/T � = 1.

Answer Ex. 2.2. 5: We obtain that

yn =
1

T

�
T/2

0
e−2πint/T dt− 1

T

�
T

T/2
e−2πint/T dt

= − 1

T

�
T

2πin
e−2πint/T

�T/2

0

+
1

T

�
T

2πin
e−2πint/T

�T

T/2

=
1

2πin

�
−e−πin + 1 + 1− e−πin+

�

=
1

πin

�
1− e−πin

�
=

�
0, if n is even;
2/(πin), if n is odd.

.

Instead using Theorem 2.11 together with the coefficients bn = 2(1−cos(nπ)
nπ

we
computed in Example 2.6, we obtain

yn =
1

2
(an − ibn) = −1

2
i

�
0, if n is even;
4/(nπ), if n is odd.

=

�
0, if n is even;
2/(πin), if n is odd.

when n > 0. The case n < 0 follows similarly.

Answer Ex. 2.2. 7: For f(t) = t we get

yn =
1

T

�
T

0
te−2πint/T dt =

1

T

��
− T

2πin
te−2πint/T

�T

0

+

�
T

0

T

2πin
e−2πint/T dt

�

= − T

2πin
=

T

2πn
i.

From Exercise 4 we had bn = − T

πn
, for which Theorem 2.11 gives yn = T

2πn i for
n > 0, which coincides with the expression we obtained. The case n < 0 follows
similarly.

325

For f(t) = t2 we get

yn =
1

T

�
T

0
t2e−2πint/T dt =

1

T

��
− T

2πin
t2e−2πint/T

�T

0

+ 2

�
T

0

T

2πin
te−2πint/T dt

�

= − T 2

2πin
+

T 2

2π2n2
=

T 2

2π2n2
+

T 2

2πn
i.

From Exercise 4 we had an = T
2

π2n2 and bn = −T
2

πn
, for which Theorem 2.11

gives yn = 1
2

�
T

2

π2n2 + iT
2

πn

�
for n > 0, which also is seen to coincide with what

we obtained. The case n < 0 follows similarly.
For f(t) = t3 we get

yn =
1

T

�
T

0
t3e−2πint/T dt =

1

T

��
− T

2πin
t3e−2πint/T

�T

0

+ 3

�
T

0

T

2πin
t2e−2πint/T dt

�

= − T 3

2πin
+ 3

T

2πin
(

T 2

2π2n2
+

T 2

2πn
i) = 3

T 3

4π2n2
+

�
T 3

2πn
− 3

T 3

4π3n3

�
i =

From Exercise 4 we had an = 3T 3

2π2n2 and bn = −T
3

πn
+ 3T 3

2π3n3 for which Theo-
rem 2.11 gives

yn =
1

2

�
3T 3

2π2n2
+ i

�
T 3

πn
− 3T 3

2π3n3

��
=

3T 3

4π2n2
+

�
T 3

2πn
− 3T 3

4π3n3

�
i

for n > 0, which also is seen to coincide with what we obtained. The case n < 0
follows similarly.

Answer Ex. 2.2. 8: If f is symmetric about 0 we have that bn = 0. Theo-
rem 2.11 then gives that yn = 1

2an, which is real. The same theorem gives that
that y−n = 1

2an = yn. This proves 1.
If f is antisymmetric about 0 we have that an = 0. Theorem 2.11 then gives
that yn = − 1

2bn, which is purely imaginary. The same theorem gives that that
y−n = 1

2bn = −yn. This proves 2.
When yn = y−n we can write

y−ne
2πi(−n)t/T + yne

2πint/T = yn(e
2πint/T + e−2πint/T) = 2yn cos(2πnt/T)

This is clearly symmetric, but then also
�

N

n=−N
yne2πint/T is symmetric since

it is a sum of symmetric functions. This proves 3.
When yn = −y−n we can write

y−ne
2πi(−n)t/T + yne

2πint/T = yn(−e2πint/T + e2πint/T) = 2iyn sin(2πnt/T)

This is clearly antisymmetric, but then also
�

N

n=−N
yne2πint/T is antisymmetric

since it is a sum of antisymmetric functions, and since y0 = 0. This proves 4.

326

Answer Ex. 2.4. 1: We obtain that

yn =
1

T

�
T/4

−T/4
e−2πint/T dt− 1

T

� −T/4

−T/2
e−2πint/T dt− 1

T

�
T/2

T/4
e−2πint/T dt

= −
�

1

2πin
e−2πint/T

�T/4

−T/4

+

�
1

2πin
e−2πint/T

�−T/4

−T/2

+

�
1

2πin
e−2πint/T

�T/2

T/4

=
1

2πin

�
−e−πin/2 + eπin/2 + eπin/2 − eπin + e−πin − e−πin/2

�

=
1

πn
(2 sin(πn/2)− sin(πn)) =

2

πn
sin(πn/2).

The square wave defined in this exercise can be obtained by delaying our original
square wave with −T/4. Using 3. in Theorem 2.18 with d = −T/4 on the

complex Fourier coefficients yn =

�
0, if n is even;
2/(πin), if n is odd.

which we obtained

for the square wave in Exercise 2.2.5, we obtain the Fourier coefficients

e2πin(T/4)/T

�
0, if n is even;
2/(πin), if n is odd.

=

�
0, if n is even;
2i sin(πn/2)

πin
, if n is odd.

=

�
0, if n is even;
2
πn

sin(πn/2), if n is odd.
.

This verifies the result.

Answer Ex. 2.4. 2: Since the real Fourier series of the square wave is
�

n≥1,n odd

4

πn
sin(2πnt/T),

Theorem 2.11 gives us that the complex Fourier coefficients are yn = − 1
2 i

4
πn

=
− 2i

πn
, and y−n = 1

2 i
4
πn

= 2i
πn

for n > 0. This means that yn = − 2i
πn

for all n,
so that the complex Fourier series of the square wave is

−
�

n odd

2i

πn
e2πint/T .

Using property 4 in Theorem 2.18 we get that the e−2πi4t/T (i.e. set d = −4)
times the square wave has its n’th Fourier coefficient equal to − 2i

π(n+4) . Using
linearity, this means that 2ie−2πi4t/T times the square wave has its n’th Fourier
coefficient equal to 4

π(n+4) . We thus have that the function

f(t) =

�
2ie−2πi4t/T , 0 ≤ t < T/2

−2ie−2πi4t/T , T/2 ≤ t < T

has the desired Fourier series.

327

Answer Ex. 3.2. 1: As in Example 3.9 we get

F4

2
3
4
5

 =
1

2

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

2
3
4
5

=
1

2

2 + 3 + 4 + 5
2− 3i− 4 + 5i
2− 3 + 4− 5
2 + 3i− 4− 5i

 =

7
−1 + i
−1

−1− i

 .

Answer Ex. 3.2. 2: For N = 6 the entries are on the form 1√
6
e2πink/6 =

1√
6
eπink/3. This means that the entries in the Fourier matrix are the numbers

1√
6
eπi/3 = 1√

6
(1/2 + i

√
3/2), 1√

6
e2πi/3 = 1√

6
(−1/2 + i

√
3/2), and so on. The

matrix is thus

F6 =

1 1 1 1 1 1
1 1/2 + i

√
3/2 −1/2 + i

√
3/2 −1 −1/2− i

√
3/2 1/2− i

√
2/2

1 −1/2 + i
√
3/2 −1/2− i

√
3/2 1 −1/2 + i

√
3/2 −1/2− i

√
3/2

1 −1 1 −1 1 −1
1 −1/2− i

√
3/2 −1/2 + i

√
3/2 1 −1/2− i

√
3/2 −1/2 + i

√
3/2

1 1/2− i
√
2/2 −1/2− i

√
3/2 −1 −1/2 + i

√
3/2 1/2 + i

√
3/2

The cases N = 8 and N = 12 follow similarly, but are even more tedious. For
N = 8 the entries are 1√

8
eπink/4, which can be expressed exactly since we can

express exactly any sines and cosines of a multiple of π/4. For N = 12 we get
the base angle π/6, for which we also have exact values for sines and cosines for
all multiples.

Answer Ex. 3.2. 3: We get

yn =
1√
N

N−1�

k=0

cke−2πink/N =
1√
N

N−1�

k=0

(ce−2πin/N)k

=
1√
N

1− (ce−2πin/N)N

1− ce−2πin/N
=

1√
N

1− cN

1− ce−2πin/N
.

Answer Ex. 3.2. 5: The code can look like this

function x=IDFTImpl(y)

N=length(y);

FN=zeros(N);

328

for k=1:N

FN(k,:)=exp(2*pi*1i*(k-1)*(0:(N-1))/N)/sqrt(N);

end

x=FN*y;

Answer Ex. 3.3. 1: We have that λS(ω) =
1
2 (1 + cosω). This clearly has the

maximum point (0, 1), and the minimum point (π, 0).

Answer Ex. 3.3. 2: We have that |λT (ω)| = 1
2 (1−cosω). This clearly has the

maximum point (π, 1), and the minimum point (0, 0). The connection between
the frequency responses is that λT (ω) = λS(ω + π).

Answer Ex. 3.3. 3: The sum of two digital filters is again a digital filter, and
the first column in the sum can be obtained by summing the first columns in
the two matrices. This means that the filter coefficients in 1

2 (S1 + S2) can be
obtained by summing the filter coefficients of S1 and S2, and we obtain

1

2
({1, 0, . . . , 0, c}+ {1, 0, . . . , 0,−c}) = {1}.

This means that 1
2 (S1 + S2) = I, since I is the unique filter with e0 as first

column. The interpretation in terms of echos is that the echo from S2 cancels
that from S1.

Answer Ex. 3.3. 4: The matrix for time reversal is the matrix

0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0

This is not a circulant Toeplitz matrix, since all diagonals assume the values 0
and 1, so that they are not constant on each diagonal. Time reversal is thus not
a digital filter.
Let S denote time reversal. Clearly Se1 = eN−2. If S was time-invariant we
would have that Se0 = eN−3, where we have delayed the input and output.
But this clearly is not the case, since by definition Se0 = eN−1.

Answer Ex. 3.3. 5: The matrix for the operation which keeps every second

329

component is

0 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0
0 0 · · · 0 1

,

where 0 and 1 are repeated in alternating order along the main diagonal. Since
the matrix is not constant on the main diagonal, it is not a circulant Toeplitz
matrix, and hence not a filter.

Answer Ex. 3.3. 13: . The eigenvalues of S are 1, 5, 9, and are found by
computing a DFT of the first column (and multiplying by

√
N = 2). The

eigenvectors are the Fourier basis vectors. 1 has multiplicity 2. Matlab uses
some numeric algorithm to find the eigenvectors. However, eigenvectors may
not be unique, so you have no control on which eigenvectors Matlab actually
selects. In particular, here the eigenspace for λ = 1 has dimension 2, so that
any linear combination of the two eigenvectors from this eigenspace also is an
eigenvector. Here it seems that Matlab has chosen a linear combination which
is different from a Fourier basis vector.

Answer Ex. 3.3. 14: Her we have that s0 = t0 = 3, s1 = t1 = 4, s2 = t2 = 5,
and s3 = t3 = 6 (first formula), and sN−2 = t−2 = 1, sN−1 = t−1 = 2 (second
formula). This means that the matrix of S is

S =
1

4

3 2 1 0 0 6 5 4
4 3 2 1 0 0 6 5
5 4 3 2 1 0 0 6
6 5 4 3 2 1 0 0
0 6 5 4 3 2 1 0
0 0 6 5 4 3 2 1
1 0 0 6 5 4 3 2
2 1 0 0 6 5 4 3

The frequency response is

λS(ω) = e2iω + 2eiω + 3 + 4e−iω + 5e−2iω + 6e−3iω.

Answer Ex. 3.3. 15: Here we have that t−1 = 1/4, t0 = 1/4, t1 = 1/4, and
t2 = 1/4. We now get that s0 = t0 = 1/4, s1 = t1 = 1/4, and s2 = t2 = 1/4
(first formula), and sN−1 = s7 = t−1 = 1/4 (second formula). This means that

330

the matrix of S is

S =
1

4

1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1
1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1

The frequency response is

λS(ω) =
1

4
(eiω + 1 + e−iω + e−2iω) =

eiω(1− e−4iω)

4(1− e−iω)
= e−iω/2 sin(2ω)

sin(ω/2)

Answer Ex. 3.3. 16: The filter coefficients are t0 = s0 = 1, t1 = s1 = 1 (first
formula), and t−1 = sN−1 = 1, t−2 = sN−2 = 1, t−3 = sN−3 = 1 (second
formula). All other tk are zero. This means that the filter can be written as
{1, 1, 1, 1, 1}, using our compact notation.

Answer Ex. 3.3. 17: The frequency response is

k�

s=0

cse−isω =
1− ck+1e−i(k+1)ω

1− ce−iω
= .

It is straightforward to compute the limit as ω → 0 as ck(k + 1). This means
that as we increase k or c, this limit also increases. The value of k also dictates
oscillations in the frequency response, since the numerator oscillates fastest.
When c = 1, k dictates how often the frequency response hits 0.

Answer Ex. 3.3. 18: If we write S1 = FH

N
D1FN and S2 = FH

N
D2FN we get

S1 + S2 = FH

N
(D1 +D2)FN S1S2 = FH

N
D1FNFH

N
D2FN = FH

N
D1D2FN

This means that the eigenvalues of S1 + S2 are the sum of the eigenvalues of
S1 and S2, and the eigenvalues of S1S2 are the product of the eigenvalues of S1

and S2. The actual eigenvalues which are added and multiplied are dictated by
the index of the frequency response, i.e. λS1S2,n = λS1,nλS2,n, and λS1+S2,n =
λS1,n+λS2,n. In general there is no reason to believe that there is a formula for
the eigenvalues for the sum or product of two matrices, based on eigenvalues of
the individual matrices. However, when the same argument as for filters holds
in all cases where the eigenvectors are equal.

331

Answer Ex. 3.4. 2: We first see that d0,3 =
�

1
3 and dk,3 =

�
2
3 for k = 1, 2.

We also have that

cos

�
2π

n

2N

�
k +

1

2

��
= cos

�
π
n

3

�
k +

1

2

��
,

so that the DCT matrix can be written as

D3 =

�
1
3

�
1
3

�
1
3�

2
3 cos

�
π

3
1
2

� �
2
3 cos

�
π

3
3
2

� �
2
3 cos

�
π

3
5
2

�
�

2
3 cos

�
2π
3

1
2

� �
2
3 cos

�
2π
3

3
2

� �
2
3 cos

�
2π
3

5
2

�

=

�
1
3

�
1
3

�
1
3�

2
3 cos(π/6)

�
2
3 cos(π/2)

�
2
3 cos(5π/6)�

2
3 cos(π/3)

�
2
3 cos(π)

�
2
3 cos(5π/3)

=

�
1
3

�
1
3

�
1
3�

2
3 (
√
3/2 + i/2) 0

�
2
3 (−

√
3/2 + i/2)�

2
3 (1/2 +

√
3i/2) −

�
2
3

�
2
3 (1/2−

√
3i/2)

Answer Ex. 3.4. 4: The code can look like this:

function y=filterT(t,x)

N=length(x);

y=zeros(length(x),1);

E=length(t)-1;

n=0;

while n<E

y(n+1)= t(1)*x(n+1);

for k=1:n

y(n+1) = y(n+1) + t(k+1)*(x(n+k+1)+x(n-k+1));

end

for k=(n+1):E

y(n+1) = y(n+1) + t(k+1)*(x(n+k+1)+x(n-k+N+1));

end

n=n+1;

end

while n<(N-E)

y(n+1)= t(1)*x(n+1);

for k=1:E

y(n+1) = y(n+1)+ t(k+1)*(x(n+k+1)+x(n-k+1));

332

end

n=n+1;

end

while n<N

y(n+1) = t(1)*x(n+1);

for k=1:(N-1-n)

y(n+1) = y(n+1) + t(k+1)*(x(n+k+1)+x(n-k+1));

end

for k=(N-1-n+1):E

y(n+1) = y(n+1) + t(k+1)*(x(n+k-N+1)+x(n-k+1));

end

n=n+1;

end

Answer Ex. 4.1. 1: By inserting N = 2r and xr = M2r in MN = 2MN/2+2N
we get first xr = 2xr−1+2·2r. Inserting r+1 for r we get xr+1−2xr = 4·2r. The
homogeneous equation xr+1 − 2xr = 0 has the general solution (xh)r = C2r.
For a particular solution to the equation xr+1 − 2xr = 4 · 2r, we should try
(xp)r = Ar2r (since 2 is a root in the homogeneous equation), and we get that
A = 2, so that (xp)r = 2r2r, and the general solution to the difference equation
is xr = 2r2r + C2r. This means that

MN = M2r = 2r2r + C2r = 2N log2 N + CN = O(2N log2 N),

since the first terms dominates in this expression, in particular, it does not
matter what C is (although we can find C from x0 = 0, since a DFT for N = 1
requires no multiplications).

Answer Ex. 4.1. 2: When we compute e−2πin/N , we do some multiplications
in the exponent. These are not counted because the multilication do not depend
on x, and may therefore be precomputed. We also have a multiplication with
1√
2
. These are typically not counted because one often defines a DFT so that

this multiplication is absorbed in the definition.

Answer Ex. 4.1. 4: From the formula we see that the first third of the Fourier
cofficients can be written

yn =
1√
3

�
FN/3x1 +DN/3FN/3x2 +D2

N/3FN/3x3

�
.

where DN/3 is defined in the same way as DN/2, but as a (N/3)×(N/3)-matrix,
and where x1,x2,x3 denotes the splitting of x into vectors for the corresponding

333

indices. The second third of the Fourier cofficients can be written

yN/3+n =
1√
N

N−1�

k=0

xke
−2πi(N/3+n)k/N

=
1√
N

N/3−1�

k=0

x3ke
−2πi(N/3+n)3k/N +

1√
N

N/3−1�

k=0

x3k+1e
−2πi(N/3+n)(3k+1)/N

+
1√
N

N/3−1�

k=0

x3k+2e
−2πi(N/3+n)(3k+2)/N

=
1√
N

N/3−1�

k=0

x3ke
−2πin3k/N +

1√
N

e−2πi(N/3+n)/N
N/3−1�

k=0

x3k+1e
−2πin3k/N

+
1√
N

e−2πi(N/3+n)2/N
N/3−1�

k=0

x3k+2e
−2πin3k/N

=
1√
3

�
FN/3x1 + e−2πi/3DN/3FN/3x2 + e−2πi2/3D2

N/3FN/3x3

�
.

The third part of the Fourier coefficients can be written

y2N/3+n =
1√
N

N−1�

k=0

xke
−2πi(2N/3+n)k/N

=
1√
N

N/3−1�

k=0

x3ke
−2πi(2N/3+n)3k/N +

1√
N

N/3−1�

k=0

x3k+1e
−2πi(2N/3+n)(3k+1)/N

+
1√
N

N/3−1�

k=0

x3k+2e
−2πi(2N/3+n)(3k+2)/N

=
1√
N

N/3−1�

k=0

x3ke
−2πin3k/N +

1√
N

e−2πi(2N/3+n)/N
N/3−1�

k=0

x3k+1e
−2πin3k/N

+
1√
N

e−2πi(2N/3+n)2/N
N/3−1�

k=0

x3k+2e
−2πin3k/N

=
1√
3

�
FN/3x1 + e−2πi2/3DN/3FN/3x2 + e−2πi4/3D2

N/3FN/3x3

�

=
1√
3

�
FN/3x1 + e−2πi2/3DN/3FN/3x2 +D2

N/3FN/3x3

�

We get a similar factorization as in Theorem 4.4, but with the block matrix
replaced by

1√
3

FN/3 DN/3FN/3 D2

N/3FN/3

FN/3 e−2πi/3DN/3FN/3 e−2πi2/3D2
N/3FN/3

FN/3 e−2πi2/3DN/3FN/3 D2
N/3FN/3

 .

334

We see that MN = 3MN/3+2N when we count complex multiplications, so that
MN = 3MN/3 + 8N when we count real multiplications. We get a difference
equation of the form xr+1 = 3xr + 24 · 3r. A particular solution to this is
(xp)r = 8r3r. Solving as above we get MN = O(8N log3 N). log3 N can be
written on the form c log2 N for a constant c, this is on the form O(c log2 N) for
some c.
It is clear that this procedure can be developed also for numbers divisible by 5,
7, and so on (the number of blocks in the block matrix increase, though). In
particular, we can develop a procedure for any factorization into prime numbers.

Answer Ex. 5.2. 1: We have that f(t) =
�

N−1
n=0 cnφ0,n, where cn are the co-

ordinates of f in the basis {φ0,0,φ0,1, . . . ,φ0,N−1}. We now get that

f(k) =
N−1�

n=0

cnφ0,n(k) = ck,

since φ0,n(k) = 0 when n �= k. This shows that (f(0), f(1),f(N − 1)) are
the coordinates of f .

Answer Ex. 5.2. 2: We have that

proj
V0
(f) =

N−1�

n=0

��
N

0
f(t)φ0,n(t)dt

�
φ0,n =

N−1�

n=0

��
n+1

n

f(t)dt

�
φ0,n,

where we have used the orthogonal decomposition formula. Note also that, if
f(t) ∈ V1, and fn,1 is the value f attains on [n, n + 1/2), and fn,2 is the value
f attains on [n+ 1/2, n+ 1), we have that

proj
V0
(f) =

N−1�

n=0

��
n+1

n

f(t)dt

�
φ0,n(t)

=
N−1�

n=0

�
1

2
fn,1 +

1

2
fn,2

�
φ0,n(t) =

N−1�

n=0

fn,1 + fn,2
2

φ0,n(t),

which is the function which is (fn,1 + fn,2)/2 on [n, n+1). This proves the first
part of Proposition 5.13.

Answer Ex. 5.2. 3: We have that

�f − proj
V0
(f)�2 = �f − proj

V0
(f), f − proj

V0
(f)�

= �f, f� − 2�f, proj
V0
(f)�+ �proj

V0
(f), proj

V0
(f)�

Now, note that

�proj
V0
(f), proj

V0
(f)� =

N−1�

n=0

��
n+1

n

f(t)dt

�2

335

from what we just showed in Exercise 2 (use that the φ0,n are orthonormal).
This means that the above can be written

= �f, f� − 2
N−1�

n=0

�
N

0

��
n+1

n

f(s)ds

�
φ0,n(t)f(t)dt+

N−1�

n=0

��
n+1

n

f(t)dt

�2

= �f, f� − 2
N−1�

n=0

�
n+1

n

��
n+1

n

f(s)ds

�
f(t)dt+

N−1�

n=0

��
n+1

n

f(t)dt

�2

= �f, f� − 2
N−1�

n=0

��
n+1

n

f(t)dt

�2

+
N−1�

n=0

��
n+1

n

f(t)dt

�2

= �f, f� −
N−1�

n=0

��
n+1

n

f(t)dt

�2

.

Answer Ex. 5.2. 4: Since φ ∈ V0 we must have that T (φ) = φ. Since ψ is
in the orthogonal complement of V0 in V1 we must have that T (ψ) = 0. The
columns in the matrix of T are [T (φ0,0)]C1 , [T (ψ0,0)]C1 , [T (φ0,1)]C1 , [T (ψ0,1)]C1 ,
and so on, which is [φ0,0]C1 , [0]C1 , [φ0,1]C1 , [0]C1 , and so on, which is e0, 0, e2, 0,
and so on. It follows that the matrix of T relative to C1 is given by the diagonal
matrix where 1 and 0 are repeated alternatingly on the diagonal, N times (i.e.
1 at the even indices, 0 at the odd indices). (c) follows in the same way.

Answer Ex. 5.2. 5: From lemma 5.9 it follows that

proj
V0
(φ1,2n) = φ0,n/

√
2

proj
V0
(φ1,2n+1) = φ0,n/

√
2

This means that

[proj
V0
(φ1,2n)]φ0

= en/
√
2

[proj
V0
(φ1,2n+1)]φ0

= en/
√
2.

These are the columns in the matrix for proj
V0

relative to the bases φ1 and φ0.
This matrix is thus

1√
2

1 1 0 0 0 · · · 0 0 0
0 0 1 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1 1

.

Similarly, from lemma 5.12 it follows that

proj
W0

(φ1,2n) = ψ0,n/
√
2

proj
W0

(φ1,2n+1) = −ψ0,n/
√
2

336

This means that

[proj
W0

(φ1,2n)]ψ0
= en/

√
2

[proj
W0

(φ1,2n+1)]ψ0
= −en/

√
2.

These are the columns in the matrix for proj
W0

relative to the bases φ1 and ψ0.
This matrix is thus

1√
2

1 −1 0 0 0 · · · 0 0 0
0 0 1 −1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 1 −1

.

Answer Ex. 5.2. 6: The orthogonal decomposition theorem gives that

proj
W0

(f) =
N−1�

n=0

�f,ψ0,n�ψ0,n(t) =
N−1�

n=0

��
N

0
f(t)ψ0,n(t)dt

�
ψ0,n(t)

=
N−1�

n=0

��
n+1

n

f(t)ψ0,n(t)dt

�
ψ0,n(t)

=
N−1�

n=0

��
n+1/2

n

f(t)dt−
�

n+1

n+1/2
f(t)dt

�
ψ0,n(t),

where we used that ψ0,n is nonzero only on [n, n+ 1), and is 1 on [n, n+ 1/2),
and −1 on [n + 1/2, n + 1). Note also that, if f(t) ∈ V1, and fn,1 is the value
f attains on [n, n+ 1/2), and fn,2 is the value f attains on [n+ 1/2, n+ 1), we
have that

proj
W0

(f) =
N−1�

n=0

��
n+1/2

n

f(t)dt−
�

n+1

n+1/2
f(t)dt

�
ψ0,n(t)

=
N−1�

n=0

�
1

2
fn,1 −

1

2
fn,2

�
ψ0,n(t) =

N−1�

n=0

fn,1 − fn,2
2

ψ0,n(t),

which is the function which is (fn,1−fn,2)/2 on [n, n+1/2), and −(fn,1−fn,2)/2
on [n+ 1/2, n+ 1). This proves the second part of Proposition 5.13.

Answer Ex. 5.3. 1: Since φm,n ∈ Vm we must have that T (φm,n) = φm,n.
Since ψm,n is in the orthogonal complement of Vm in Vm+1 we must have that
T (ψm,n) = 0. The columns in the matrix of T are [T (φm,0)]Cm+1 , [T (ψm,0)]Cm+1 ,
[T (φm,1)]Cm+1 , [T (ψm,1)]Cm+1 , and so on, which is [φm,0]Cm+1 , [0]Cm+1 , [φm,1]Cm+1 ,
[0]Cm+1 , and so on, which is e0, 0, e2, 0, and so on. It follows that the matrix of

337

T relative to Cm+1 is given by the diagonal matrix where 1 and 0 are repeated
alternatingly on the diagonal, 2mN times (i.e. 1 at the even indices, 0 at the
odd indices). (c) follows in the same way.

Answer Ex. 5.3. 2: If f ∈ Vm we can write f(t) =
�2mN−1

n=0 cm,nφm,n(t). We
now get

g(t) = f(2t) =
2mN−1�

n=0

cm,nφm,n(2t) =
2mN−1�

n=0

cm,n2
m/2φ(2m2t− n)

=
2mN−1�

n=0

cm,n2
−1/22(m+1)/2φ(2m+1t− n) =

2mN−1�

n=0

cm,n2
−1/2φm+1,n(t).

This shows that g ∈ Vm+1. To prove the other way, assume that g(t) = f(2t) ∈
Vm+1. This means that we can write g(t) =

�2m+1
N−1

n=0 cm+1,nφm+1,n(t). We
now have

f(t) = g(t/2) =
2m+1

N−1�

n=0

cm+1,nφm+1,n(t/2) =
2m+1

N−1�

n=0

cm+1,n2
(m+1)/2φ(2mt− n)

=
2mN−1�

n=0

cm+1,n2
(m+1)/2φ(2mt− n) +

2m+1
N−1�

n=2mN

cm+1,n2
(m+1)/2φ(2mt− n)

=
2mN−1�

n=0

cm+1,n2
(m+1)/2φ(2mt− n) +

2mN−1�

n=0

cm+1,n+2mN2(m+1)/2φ(2mt− n− 2mN)

=
2mN−1�

n=0

cm+1,n2
(m+1)/2φ(2mt− n) +

2mN−1�

n=0

cm+1,n+2mN2(m+1)/2φ(2mt− n)

=
2mN−1�

n=0

(cm+1,n + cm+1,n+2mN)21/22m/2φ(2mt− n)

=
2mN−1�

n=0

(cm+1,n + cm+1,n+2mN)21/2φm,n(t) ∈ Vm

The thing which made this a bit difficult was that the range of the n-indices
here was outside [0, 2mN − 1] (which describe the legal indices in the basis Vm),
so that we had to use the periodicty of φ.

Answer Ex. 5.3. 3: By definition, [T1]B1 ⊕ [T2]B2 ⊕ · · · ⊕ [Tn]Bn is a block
matrix where the blocks on the diagonal are the matrices [T1]B1 , [T2]B2 , and so
on. If bi are the basis vectors in Bi, the columns in [Ti]Bi are [T (bj)]Bi . This
means that [T1]B1 ⊕ [T2]B2 ⊕ · · ·⊕ [Tn]Bn has [T (bj)]Bi in the j’th block, and 0
elsewhere. This means that we can write it as

0⊕ · · ·0⊕ [T (bj)]Bi ⊕ 0 · · ·0.

338

On the other hand, [T1⊕T2⊕ . . .⊕Tn]B1⊕B2⊕...⊕Bn is a matrix of the same size,
and the corresponding column to that of the above is

[(T1 ⊕ T2 ⊕ . . .⊕ Tn)(0⊕ · · ·0⊕ bj ⊕ 0 · · ·0)]B1⊕B2⊕...⊕Bn

= [0⊕ · · ·0⊕ T (bj)⊕ 0 · · ·0]B1⊕B2⊕...⊕Bn

= 0⊕ · · ·0⊕ [T (bj)]Bi ⊕ 0 · · ·0.

Here bj occurs as the i’th summand. This is clearly the same as what we
computed for the right hand side above.

Answer Ex. 5.3. 4: Assume that λ is an eigenvalue common to both T1 and
T2. Then there exists a vector v1 so that T1v1 = λv1, and a vector v2 so that
T2v2 = λv2. We now have that

(T1 ⊕ T2)(v1 ⊕ v2) =

�
T1 0
0 T2

��
v1

v2

�

=

�
T1v1

T2v2

�
=

�
λv1

λv2

�

= λ

�
v1

v2

�
= λ(v1 ⊕ v2).

This shows that λ is an eigenvalue for λ also, and that v1⊕v2 is a corresponding
eigenvector.

Answer Ex. 5.3. 5: We have that

(A⊕B)(A−1 ⊕B−1) =

�
A 0
0 B

��
A−1 0
0 B−1

�

=

�
AA−1 0

0 BB−1

�
=

�
I 0
0 I

�
= I

where we have multiplied as block matrices. This proves that A⊕B is invertible,
and states what the inverse is.

Answer Ex. 5.3. 6: We have that

(A⊕B)(C ⊕D) =

�
A 0
0 B

��
C 0
0 D

�
=

�
AC 0
0 BD

�
= (AC)⊕ (BD)

where we again have multiplied as block matrices.

Answer Ex. 5.3. 8: The following code achieves this:

[S,fs]=wavread(’castanets.wav’);

339

newx=DWTHaarImpl(S(1:2^17,1),2);

plot(0:(2^17-1),newx(1:2^17,1))

axis([0 2^17 -1 1]);

The values from V0 corresponds to the first 1/4 values in the plot, the values
from W0 corresponds to the next 1/4 values in the plot, while the values from
W1 correspond to the last 1/2 of the values in the plot.

Answer Ex. 5.3. 9: The following code achieves the task

function playDWTlower(m)

[S fs]=wavread(’../castanets’);

newx=DWTHaarImpl(S(1:2^17,1),m);

len=length(newx);

newx((len/2^m+1):length(newx))=zeros(length(newx)-len/2^m,1);

newx=IDWTHaarImpl(newx,m);

playerobj=audioplayer(newx,fs);

playblocking(playerobj);

For m = 2 we clearly hear a degradation in the sound. For m = 4 and above
most of the sound is unrecognizable. There is no reason to believe that sound
samples returned by the function lie in [−1, 1]. you can check this by printing
the maximum value in the returned array on screen inside this method.

Answer Ex. 5.3. 11: The following code can be used

function playDWTlowerdifference(m)

[S fs]=wavread(’../castanets’);

newx=DWTHaarImpl(S(1:2^17,1),m);

len=length(newx);

newx(1:(len/2^m))=zeros(len/2^m,1);

newx=IDWTHaarImpl(newx,m);

playerobj=audioplayer(newx,fs);

playblocking(playerobj);

Answer Ex. 5.3. 12: Note first that, similarly to the computation in Exer-
cise 5.2.6, we have that

�
N

0
f(t)ψm,n(t)dt = 2m/2

�� (n+1/2)2−m

n2−m

f(t)dt−
� (n+1)2−m

(n+1/2)2−m

f(t)dt

�
.

With f(t) = 1 − 2|1/2 − t/N | we have two possibilities: when n < N2m−1 we

340

have that [n2−m, (n+ 1)2−m) ⊂ [0, N/2], so that f(t) = 2t/N , and we get

wm,n = 2m/2

�� (n+1/2)2−m

n2−m

2t/Ndt−
� (n+1)2−m

(n+1/2)2−m

2t/Ndt

�

= 2m/2[t2/N](n+1/2)2−m

n2−m − 2m/2[t2/N](n+1)2−m

(n+1/2)2−m

=
2−3m/2

N

�
2(n+ 1/2)2 − n2 − (n+ 1)2

�
= −2−3m/2−1

N
.

When n ≥ N2m−1 we have that f(t) = 2−2t/N , and using that
�
N

0 ψm,n(t)dt =

0 we must get that wm,n = 2−3m/2−1

N
.

For f(t) = 1/2 + cos(2πt/N)/2, note first that this has the same coefficients as
cos(2πt/N)/2, since

�
N

0 ψm,n(t)dt = 0. We now get

wm,n = 2m/2

�� (n+1/2)2−m

n2−m

cos(2πt/N)/2dt−
� (n+1)2−m

(n+1/2)2−m

cos(2πt/N)/2dt

�

= 2m/2[N sin(2πt/N)/(4π)](n+1/2)2−m

n2−m − 2m/2[N sin(2πt/N)/(4π)](n+1)2−m

(n+1/2)2−m

=
2m/2−2N

π

�
2 sin(2π(n+ 1/2)2−m/N)− sin(2πn2−m/N)− sin(2π(n+ 1)2−m/N)

�
.

There seems to be no more possibilities for simplification here.

Answer Ex. 5.3. 13: We get

wm,n = 2m/2

�� (n+1/2)2−m

n2−m

(t/N)kdt−
� (n+1)2−m

(n+1/2)2−m

(t/N)kdt

�

= 2m/2[tk+1/((k + 1)Nk)](n+1/2)2−m

n2−m − 2m/2[tk+1/((k + 1)Nk)](n+1)2−m

(n+1/2)2−m

=
2−m(k+1/2)

(k + 1)Nk

�
2(n+ 1/2)k+1 − nk+1 − (n+ 1)k+1

�
.

The leading term nk+1 will here cancel, but the others will not, so there is no
room for further simplification here.

Answer Ex. 5.4. 1: Let us write f(t) =
�

N−1
n=0 cnφ0,n(t). If k is an integer we

have that

f(k) =
N−1�

n=0

cnφ0,n(k) =
N−1�

n=0

cnφ(k − n).

Clearly the only integer for which φ(s) �= 0 is s = 0 (since φ(0) = 1), so that
the only n which contributes in the sum is n = k. This means that f(k) = ck,
so that [f]φ0

= (f(0), f(1), . . . , f(N − 1)).

341

Answer Ex. 5.4. 2: We have that

�φ0,n,φ0,n� =
�

n+1

n−1
(1− |t− n|)2dt

=

�
n+1

n−1

�
1− 2|t− n|+ (t− n)2

�
dt

= 2− 2 +

�
1

3
(t− n)3

�n+1

n−1

=
2

3
.

We also have

�φ0,n,φ0,n+1 =

�
n+1

n

(1− (t− n))(1 + (t− n− 1))dt =

� 1

0
(1− u)(1 + u− 1)du

=

� 1

0
(t− t2)dt =

1

2
− 1

3
=

1

6
.

Finally, the supports of φ0,n and φ0,n±k are disjoint for k > 1, so that we must
have �φ0,n,φ0,n±k� = 0 in that case.

Answer Ex. 5.4. 3: We have that

χ[−1/2,1/2) ∗ χ[−1/2,1/2)(x) =

� ∞

−∞
χ[−1/2,1/2)(t)χ[−1/2,1/2)(x− t)dt.

The integrand here is 1 when −1/2 < t < 1/2 and −1/2 < x − t < 1/2, or
in other words when max(−1/2,−1/2 + x) < t < min(1/2, 1/2 + x) (else it is
0). When x > 0 this happens when −1/2 + x < t < 1/2, and when x < 0 this
happens when −1/2 < t < 1/2 + x. This means that

χ[−1/2,1/2) ∗ χ[−1/2,1/2)(x) =

�� 1/2
−1/2+x

dt = 1− x , x > 0
� 1/2+x

−1/2 dt = 1 + x , x < 0.

But this is by definition φ.

Answer Ex. 5.5. 1: a. The function ψ̂ is a sum of the functions ψ = φ1,1, φ,
and φ0,1 (i.e. we have set n = 0 in Equation (5.54)). All these are continuous

342

and piecewise linear, and we can write

φ1,1(t) =

2t 0 ≤ t < 1/2

2− 2t 1/2 ≤ t < 1

0 elsewhere

φ(t)(t) =

1 + t −1 ≤ t < 0

1− t 0 ≤ t < 1

0 elsewhere

φ0,1(t) =

t 0 ≤ t < 1

2− t 1 ≤ t < 2

0 elsewhere
.

It follows that ψ̂(t) = φ1,1(t) − αφ(t) − βφ1,1 is piecewise linear, and linear on
the segments [−1, 0], [0, 1/2], [1/2, 1], [1, 2].
On the segment [−1, 0] only the function φ is seen to be nonzero, and since
φ(t) = 1 + t here, we have that ψ̂(t) = −α(1 + t) = −α− αt here.
On the segment [0, 1/2] all three functions are nonzero, and

φ1,1(t) = 2t

φ(t)(t) = 1− t

φ0,1(t) = t

on this interval. This means that ψ̂(t) = 2t− α(1− t)− βt = (2 + α− β)t− α
on [0, 1/2].
On the segment [0, 1/2] all three functions are nonzero, and

φ1,1(t) = 2− 2t

φ(t)(t) = 1− t

φ0,1(t) = t

on this interval. This means that ψ̂(t) = 2−2t−α(1−t)−βt = (α−β−2)t−α+2
on [1/2, 1].
On the segment [1, 2] only the function φ0,1 is seen to be nonzero, and since
φ0,1(t) = 2− t here, we have that ψ̂(t) = −β(2− t) = βt−2β here. For all other
values of t, ψ̂ is zero. This proves the formulas for ψ̂ on the different intervals.

343

b. We can write
�

N

0
ψ̂(t)dt =

� 2

−1
ψ̂(t)dt =

� 0

−1
ψ̂(t)dt+

� 1/2

0
ψ̂(t)dt+

� 1

1/2
ψ̂(t)dt+

� 2

1
ψ̂(t)dt

=

� 0

−1
(−α− αt)dt+

� 1/2

0
(2 + α− β)t− α)dt

+

� 1

1/2
((α− β − 2)t− α+ 2)dt+

� 2

1
(βt− 2β)dt

=

�
−αt− 1

2
αt2

�0

−1

+

�
1

2
(2 + α− β)t2 − αt

�1/2

0

+

�
1

2
(α− β − 2)t2 + (2− α)t

�1

1/2

+

�
1

2
βt2 − 2βt

�2

1

= −α+
1

2
α+

1

8
(2 + α− β)− 1

2
α+

3

8
(α− β − 2) +

1

2
(2− α) +

3

2
β − 2β

=
1

2
− α− β,

�
N

0 tψ̂(t)dt is computed similarly, so that we in the end arrive at 1
4 − β.

c. The equation system

1

2
− α− β = 0

1

4
− β = 0

has the unique solution α = β = 1
4 , which we already have found.

Answer Ex. 5.5. 2: a. In order for ψ to have vanishing moments we must
have that

�
ψ̂(t)dt =

�
tψ̂(t)dt = 0 Substituting ψ̂ = ψ − αφ0,0 − βφ0,1 we see

that, for k = 0, 1,
�

tk (αφ0,0 + βφ0,1) dt =

�
tkψ(t)dt.

The left hand side can here be written
�

tk (αφ0,0 + βφ0,1) dt = α

�
tkφ0,0dt+ β

�
tkφ0,1(t)dt

= α

� 1

−1
tk(1− |t|)dt+ β

� 2

0
tk(1− |t− 1|)dt = αak + βbk.

The right hand side is
�

tkψ(t)dt =

�
tkφ1,1(t)dt =

� 1

0
(1− 2|t− 1/2|)dt = ek.

344

The following program sets up the corresponding equation systems, and solves
it by finding α,β.

A=zeros(2);

b=zeros(2,1);

for k=0:1

A(k+1,:) = [quad(@(t)t.^k.*(1-abs(t)),-1,1)...

quad(@(t)t.^k.*(1-abs(t-1)),0,2)];

b(k+1)=quad(@(t)t.^k.*(1-2*abs(t-1/2)),0,1);

end

A\b

b. Similarly to a., Equation (5.60) gives that
�

tk (αφ0,0 + βφ0,1 + γφ0,−1 + δφ0,2) dt =

�
tkψ(t)dt.

The correspodning equation system is deduced exactly as in a. The following
program sets up the corresponding equation systems, and solves it by finding
α,β, γ, δ.

A=zeros(4);

b=zeros(4,1);

for k=0:3

A(k+1,:) = [quad(@(t)t.^k.*(1-abs(t)),-1,1)...

quad(@(t)t.^k.*(1-abs(t-1)),0,2)...

quad(@(t)t.^k.*(1-abs(t+1)),-2,0)...

quad(@(t)t.^k.*(1-abs(t-2)),1,3)];

b(k+1)=quad(@(t)t.^k.*(1-2*abs(t-1/2)),0,1);

end

A\b

c. The function ψ̂ now is supported on [−2, 3], and can be plottes as follows:

t=linspace(-2,3,100);

plot(t, (t>=0).*(t<=1).*(1-2*abs(t-0.5)) ...

-coeffs(1)*(t>=-1).*(t<=1).*(1-abs(t))...

-coeffs(2)*(t>=0).*(t<=2).*(1-abs(t-1))...

-coeffs(3)*(t>=-2).*(t<=0).*(1-abs(t+1))...

-coeffs(4)*(t>=1).*(t<=3).*(1-abs(t-2)))

e. If we define

ψ̂ = ψ0,0 −
K�

k=0

(αkφ0,−k − βkφ0,k+1) ,

we have 2k unknowns. These can be determined if we require 2k vanishing
moments.

345

Answer Ex. 5.6. 1: You can set for instance H0 = {1/4, 1/2, 1/4}, and H1 =
{1} (when you write down the corresponding matrix you will see that A0,1 = 1/2,
A1,0 = 0, so that the matrix is not symmetric)

Answer Ex. 5.6. 2: It turns out that this is wrong. In fact, the Haar wavelet
is a counterexample!

Answer Ex. 5.6. 4: The following code can be used:

function xnew=DWTImpl(h0,h1,x,m)

for mres=1:m

len=length(x)/2^(mres-1);

x(1:len)=rowsymmmratrans(h0,h1,x(1:len));

% Reorganize the coefficients

l=x(1:2:(len-1));

h=x(2:2:len);

x(1:len)=[l h];

end

xnew=x;

Answer Ex. 5.6. 5: The following code can be used:

function x=IDWTImpl(g0,g1,xnew,m)

[a0,a1]=changecolumnrows(g0,g1);

for mres=m:(-1):1

len=length(xnew)/2^(mres-1);

% Reorganize the coefficients first

l=xnew(1:(len/2));

h=xnew((len/2+1):len);

xnew(1:2:(len-1))=l;

xnew(2:2:len)=h;

xnew(1:len)=rowsymmmratrans(a0,a1,xnew(1:len));

end

x=xnew;

Answer Ex. 5.6. 6: a. We have that H0 = 1
5{1, 1, 1, 1, 1}, and H1 = 1

3{−1, 1,−1}.

346

The frequency responses are

λH0(ω) =
1

5
e2iω +

1

5
eiω +

1

5
+

1

5
e−iω

1

5
e−2iω

=
2

5
cos(2ω) +

2

5
cosω +

1

5

λH1(ω) = −1

3
eiω +

1

3
− 1

3
e−iω = −2

3
cosω +

1

3
.

Both filters are symmetric, and we have that h0=(1/5, 1/5, 1/5), and h1=(1/3,−1/3).
b. We have that G0 = {1/4, 1/2, 1/4}, and G1 = {1/16,−1/4, 3/8,−1/4, 1/16}.
The frequency responses are

λG0(ω) =
1

4
eiω +

1

2
+

1

4
e−iω

=
1

2
cos(ω) +

1

2

λG1(ω) =
1

16
e2iω − 1

4
eiω +

3

8
− 1

4
e−iω

1

16
e−2iω

=
1

8
cos(2ω)− 1

2
cosω +

3

8
.

Both filters are symmetric, and we have that g0=(1/2, 1/4), and g1=(3/8,−1/4, 1/16).

Answer Ex. 5.6. 7: a. We have that H0 = {1/16, 1/4, 3/8, 1/4, 1/16}, and
H1 = {−1/4, 1/2,−1/4}. The frequency responses are

λH0(ω) =
1

16
e2iω +

1

4
eiω +

3

8
+

1

4
e−iω

1

16
e−2iω

=
1

8
cos(2ω) +

1

2
cosω +

3

8

λH1(ω) = −1

4
eiω +

1

2
− 1

4
e−iω

= −1

2
cos(ω) +

1

2
.

The two first rows in PC1←φ1
are

�
3/8 1/4 1/16 0 · · · 1/16 1/4
−1/4 1/2 −1/4 0 · · · 0 0

�

The remaining rows are obtained by translating these in alternating order.
b. We have that G0 = 1

3{1, 1, 1}, and G1 = 1
5{1,−1, 1,−1, 1}. The frequency

responses are

λG0(ω) =
1

3
eiω +

1

3
+

1

3
e−iω =

2

3
cosω +

1

3

λG1(ω) =
1

5
e2iω − 1

5
eiω +

1

5
− 1

5
e−iω

1

5
e−2iω

=
2

5
cos(2ω)− 2

5
cosω +

1

5

347

The two first columns in Pφ1←C1 are

1/3 −1/5
1/3 1/5
0 −1/5
0 1/5
0 0
...

...
0 0

1/3 1/5

The remaining columns are obtained by translating these in alternating order.

Answer Ex. 5.6. 8: The following code can be used:

function playDWTfilterslower(m,h0,h1,g0,g1)

[S fs]=wavread(’../castanets’);

newx=DWTImpl(h0,h1,S(1:2^17,1),m);

len=length(newx);

newx((len/2^m+1):length(newx))=zeros(length(newx)-len/2^m,1);

newx=IDWTImpl(g0,g1,newx,m);

playerobj=audioplayer(newx,fs);

playblocking(playerobj);

Answer Ex. 5.6. 9: The following code can be used:

function playDWTfilterslowerdifference(m,h0,h1,g0,g1)

[S fs]=wavread(’../castanets’);

newx=DWTImpl(h0,h1,S(1:2^17,1),m);

len=length(newx);

newx(1:(len/2^m))=zeros(len/2^m,1);

newx=IDWTImpl(g0,g1,newx,m);

playerobj=audioplayer(newx,fs);

playblocking(playerobj);

After the replacements in the function playDWTall, we get code which looks
like this

function playDWTalldifference(m)

disp(’Haar wavelet’);

playDWTlowerdifference(m);

disp(’Wavelet for piecewise linear functions’);

playDWTfilterslowerdifference(m,[sqrt(2)],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

348

[1/sqrt(2)]);

disp(’Wavelet for piecewise linear functions, alternative version’);

playDWTfilterslowerdifference(m,[3/(2*sqrt(2)) 1/(2*sqrt(2)) -1/(4*sqrt(2))],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[3/(4*sqrt(2)) -1/(4*sqrt(2)) -1/(8*sqrt(2))]);

Answer Ex. 5.6. 10: The code which can be used looks like this a.

newx=IDWTImpl([1/sqrt(2) 1/(2*sqrt(2))],[1/sqrt(2)],...

[-coeffs(1); -coeffs(2); -coeffs(4); 0; 0; 0; 0; ...

-coeffs(3); 1; 0; 0; 0; 0; 0; 0; 0],1);

b.

g1=newx(2:6)’;

[g1(5:(-1):3) g1(2:5)] % compact filter notation

g0=[1/sqrt(2) 1/(2*sqrt(2))];

omega=linspace(0,2*pi,100);

plot(omega,g1(1)+g1(2)*2*cos(omega)+g1(3)*2*cos(2*omega)...

+g1(4)*2*cos(3*omega)+g1(5)*2*cos(4*omega))

c.

alpha=1/(g0(1)*g1(1)+2*g0(2)*g1(2));

h0=alpha*(-1).^(0:(length(g1)-1)).*g1;

h1=alpha*(-1).^(0:(length(g0)-1)).*g0;

d.

for m=1:4

m

playDWTfilterslower(m,h0,h1,g0,g1);

playDWTfilterslowerdifference(m,h0,h1,g0,g1);

end

Answer Ex. 7.1. 1: We have that

((I ⊗ T)(x⊗ y))i,j = xi(T (y))j

= xi

1

2
(yj+1 − yj−1) =

1

2
xiyj+1 −

1

2
xiyj−1 =

1

2
(x⊗ y)i,j+1 −

1

2
(x⊗ y)i,j−1.

The same type of equation holds if we replace x ⊗ y with any matrix X, and
we see that this corresponds to placing the computational molecule

1

2

0 0 0
−1 0 1
0 0 0

349

over the image samples, which is seen to coincide with the molecule from Equa-
tion 6.6 in Example 6.18.

Answer Ex. 7.1. 2: In Example 7.9 we showed that ((T⊗I)X)i,j =
1
2 (Xi+1,j−

1
2Xi−1,j . Using the previous exercise we get that

((T ⊗ T)X)i,j = ((T ⊗ I)((I ⊗ T)X))i,j

=
1

2
(((I ⊗ T)X))i+1,j −

1

2
((I ⊗ T)X))i−1,j

=
1

2

�
1

2
Xi+1,j+1 −

1

2
Xi+1,j−1

�
− 1

2

�
1

2
Xi−1,j+1 −

1

2
Xi−1,j−1

�

=
1

4
Xi+1,j+1 −

1

4
Xi+1,j−1 −

1

4
Xi−1,j+1 +

1

4
Xi−1,j−1.

This is the same as placing the computational molecule

1

4

1 0 −1
0 0 0
−1 0 1

over the image samples, which is seen to coincide with the molecule from Equa-
tion 6.9 in Example 6.18

Answer Ex. 7.1. 5: We have that

F (αx1 + βx2,y) = (αx1 + βx2)⊗ y = (αx1 + βx2)y
T

= αx1y
T + βx2y

T = α(x1 ⊗ y) + β(x⊗ y)

= αF (x1,y) + βF (x1,y).

The second statement follows similarly.

Answer Ex. 7.1. 6: Multiplicaton with the matrix

T =

0 0 0 · · · 0 0 1
0 0 0 · · · 0 1 0
...

...
...

...
...

...
...

0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0

reverses the elements in a vector. This means that

((T ⊗ I)(x⊗ y))i,j = ((Tx)⊗ y)i,j = (Tx)iyj = xM−1−iyj = (x⊗ y)M−1−i,j .

This means that also ((T ⊗ I)X)i,j = XM−1−i,j for all X, so that T ⊗ I reverses
rows, and thus is a solution to a.. Similarly one shows that I ⊗ T reverses

350

columns, and is thus a solution to b.. It turns out that it is impossible to find
S and T so that transposing a matrix X corresponds to computing (S ⊗ T)X.
To see why, S and T would need to fulfill

(S ⊗ T)(ei ⊗ ej) = (Sei)⊗ (Tej) = ej ⊗ ei,

since ej ⊗ ei is the transpose of ei ⊗ ej . This would require that Sei = ej for
all i, j, which is impossible.

Answer Ex. 7.2. 1: The following code can be used:

function newX=FFT2Impl(X)

for k=1:2

for s=1:size(X,2)

X(:,s)=FFTImpl(X(:,s));

end

X=X’;

end

newX=X;

function newX=IFFT2Impl(X)

for k=1:2

for s=1:size(X,2)

X(:,s)=IFFTImpl(X(:,s));

end

X=X’;

end

newX=X;

function newX=DCT2Impl(X)

for k=1:2

for s=1:size(X,2)

X(:,s)=DCTImpl(X(:,s));

end

X=X’;

end

newX=X;

function newX=IDCT2Impl(X)

for k=1:2

for s=1:size(X,2)

X(:,s)=IDCTImpl(X(:,s));

end

X=X’;

end

newX=X;

351

Answer Ex. 7.2. 2: The following code can be used:

function newX=transform2jpeg(X)

numblocksx=size(X,1)/8;

numblocksy=size(X,2)/8;

for bx=0:(numblocksx-1)

for by=0:(numblocksy-1)

X((1+8*bx):8*(bx+1),(1+8*by):8*(by+1))=...

DCT2Impl(X((1+8*bx):8*(bx+1),(1+8*by):8*(by+1)));

end

end

newX=X;

function X=transform2invjpeg(newX)

numblocksx=size(newX,1)/8;

numblocksy=size(newX,2)/8;

for bx=0:(numblocksx-1)

for by=0:(numblocksy-1)

newX((1+8*bx):8*(bx+1),(1+8*by):8*(by+1))=...

IDCT2Impl(newX((1+8*bx):8*(bx+1),(1+8*by):8*(by+1)));

end

end

X=newX;

Answer Ex. 8.1. 1: The following code can be used:

function Xnew=DWT2HaarImpl(X,m)

for mres=1:m

l1=size(X,1)/2^(mres-1);

l2=size(X,2)/2^(mres-1);

for s=1:l2

X(1:l1,s)=DWTHaarImpl(X(1:l1,s),1);

end

X=X’;

for s=1:l1

X(1:l2,s)=DWTHaarImpl(X(1:l2,s),1);

end

X=X’;

end

Xnew=X;

function X=IDWT2HaarImpl(Xnew,m)

for mres=m:(-1):1

352

l1=size(Xnew,1)/2^(mres-1);

l2=size(Xnew,2)/2^(mres-1);

for s=1:l2

Xnew(1:l1,s)=IDWTHaarImpl(Xnew(1:l1,s),1);

end

Xnew=Xnew’;

for s=1:l1

Xnew(1:l2,s)=IDWTHaarImpl(Xnew(1:l2,s),1);

end

Xnew=Xnew’;

end

X=Xnew;

Answer Ex. 8.1. 2: The following code achieves the task

function showDWTlower(m)

img=double(imread(’mm.gif’,’gif’));

newimg=DWT2HaarImpl(img,m);

[l1,l2]=size(img);

tokeep=newimg(1:(l1/(2^m)),1:(l2/(2^m)));

newimg=zeros(size(newimg));

newimg(1:(l1/(2^m)),1:(l2/(2^m)))=tokeep;

newimg=IDWT2HaarImpl(newimg,m);

imageview(abs(newimg));

There is no reason to believe that image samples returned by the function lie
in [0, 255]. You can check this by printing the maximum value in the returned
array on screen inside this method.

Answer Ex. 8.1. 3: The following code can be used

function showDWTlowerdifference(m)

img=double(imread(’mm.gif’,’gif’));

newimg=DWT2HaarImpl(img,m);

[l1,l2]=size(img);

newimg(1:(l1/2^m),1:(l2/2^m))=zeros(l1/2^m,l1/2^m);

newimg=IDWT2HaarImpl(newimg,m);

imageview(abs(newimg));

Answer Ex. 8.1. 4: The following code can be used:

function Xnew=DWT2Impl(h0,h1,X,m)

353

for mres=1:m

l1=size(X,1)/2^(mres-1);

l2=size(X,2)/2^(mres-1);

for s=1:l2

X(1:l1,s)=DWTImpl(h0,h1,X(1:l1,s),1);

end

X=X’;

for s=1:l1

X(1:l2,s)=DWTImpl(h0,h1,X(1:l2,s),1);

end

X=X’;

end

Xnew=X;

function X=IDWT2Impl(g0,g1,Xnew,m)

for mres=m:(-1):1

l1=size(Xnew,1)/2^(mres-1);

l2=size(Xnew,2)/2^(mres-1);

for s=1:l2

Xnew(1:l1,s)=IDWTImpl(g0,g1,Xnew(1:l1,s),1);

end

Xnew=Xnew’;

for s=1:l1

Xnew(1:l2,s)=IDWTImpl(g0,g1,Xnew(1:l2,s),1);

end

Xnew=Xnew’;

end

X=Xnew;

Answer Ex. 8.1. 5: The following code can be used:

function showDWTfilterslower(m,h0,h1,g0,g1)

img=double(imread(’mm.gif’,’gif’));

newimg=DWT2Impl(h0,h1,img,m);

[l1,l2]=size(img);

tokeep=newimg(1:(l1/(2^m)),1:(l2/(2^m)));

newimg=zeros(size(newimg));

newimg(1:(l1/(2^m)),1:(l2/(2^m)))=tokeep;

newimg=IDWT2Impl(g0,g1,newimg,m);

imageview(abs(newimg));

354

Answer Ex. 8.1. 6: The following code can be used:

function showDWTfilterslowerdifference(m,h0,h1,g0,g1)

img=double(imread(’mm.gif’,’gif’));

newimg=DWT2Impl(h0,h1,img,m);

[l1,l2]=size(img);

newimg(1:(l1/2^m),1:(l2/2^m))=zeros(l1/2^m,l1/2^m);

newimg=IDWT2Impl(g0,g1,newimg,m);

imageview(abs(newimg));

After the replacements in the function showDWTall, we get code which looks
like this

function showDWTalldifference(m)

disp(’Haar wavelet’);

showDWTlowerdifference(m);

disp(’Wavelet for piecewise linear functions’);

showDWTfilterslowerdifference(m,[sqrt(2)],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[1/sqrt(2)]);

disp(’Wavelet for piecewise linear functions, alternative version’);

showDWTfilterslowerdifference(m,[3/(2*sqrt(2)) 1/(2*sqrt(2)) -1/(4*sqrt(2))],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[3/(4*sqrt(2)) -1/(4*sqrt(2)) -1/(8*sqrt(2))]);

Answer Ex. 9.3. 3: You can argue in many ways here: For instance the deriva-
tive of f2(x) is 2f(x)f �(x), so that extremal points of f are also extremal points
of f2.

Answer Ex. 9.3. 7: a. If ci,j = 0 the function to be minimized is

α
�

i≤n

ciix
2
i
−

n�

j=1

µjxj .

The gradient of this function is 2αCx − µ, where µ is the vector with µ in all
entries. Lagrange multipliers thus gives that 2αCx − µ = λ, where λ is the
vector with λ in all entries. This gives that xi = µ+λ

2αci
. If

�
xi = 1 we must

have that µ+λ

2α

� 1
ci

= 1, so that λ = −µ+ 2α�
1/ci

.
b. When n = 2, we have that x2 = 1− x1, so that

f(x1, x2) = αc11x
2
1 + αc22x

2
2 + α(c12 + c21)x1x2 − µx1 − µx2

= αc11x
2
1 + αc22(1− x1)

2 + α(c12 + c21)x1(1− x1)− µx1 − µ(1− x1)

= α(c11 + c22 − c12 − c21)x
2
1 + α(−2c22 + c12 + c21)x1 + αc22 − µ

355

The derivative of this is 2α(c11+ c22− c12− c21)x1+α(−2c22+ c12+ c21), which
is 0 when x1 = − −2c22+c12+c21

2(c11+c22−c12−c21)
. This is not dependent on α.

Answer Ex. 9.3. 8: a. We have that f(x) =
�

i
qixi, so that ∂f

∂xi
= qi, so

that ∇f(x) = q. Clearly ∂
2
f

∂xi∂xj
= 0, so that ∇2f(x) = 0.

b. Note that, in the text of the exercise, we should also have assumed that A is
symmetric. We have that

f(x) =
1

2

�

i,j

xiAijxj =
1

2

�

i

Aiix
2
i
+

1

2

�

i,j,i �=j

xiAijxj ,

so that

∂f

∂xi

= Aiixi +
1

2

�

j,j �=i

xj(Aij +Aji) =
1

2

�

j

xj(Aij +Aji)

=
1

2

�

j

(Aij + (AT)ij)xj = (
1

2
(A+AT)x)i

This gives ∇f = 1
2 (A + AT)x. In particular, when A is symmetric, this gives

∇f = Ax. Finally we get

∂f

∂xi∂xj

=
∂

∂xj

(
1

2

�

j

(Aij + (AT)ij)xj) =
1

2

�

j

(Aij + (AT)ij),

so that ∇2f = 1
2 (A+AT). In particular, when A is symmetric we get ∇2f = A.

Answer Ex. 9.3. 9: First note that f(0, 0) = 3, and that f(2, 1) = 8 We have
that ∇f = (2x1 + 3x2, 3x1 − 10x2), and that ∇f(0, 0) = (0, 0), and ∇f(2, 1) =
(7,−4). The first order Taylor approximation at (0, 0) is thus

f(0, 0) +∇f(0, 0)T (x− (0, 0)) = 3.

The first order Taylor approximation at (2, 1) is

f(2, 1) +∇f(2, 1)T (x− (2, 1)) = 8 + (7,−4)T (x1 − 2, x2 − 1)

= 8 + 7(x1 − 2)− 4(x2 − 1) = 7x1 − 4x2 − 2.

Answer Ex. 9.3. 11: If A is positive definite then its eigenvalues λi are posi-
tive. The eigenvalues of A−1 are 1/λi, which also are positive, so that A−1 also
is positive definite.

356

Answer Ex. 10.3. 1: The function f(x, y, z) = x2 + y2 − z is convex (the
Hessian is positive semidefinite). The set in question can be written as the
points where f(x, y, z) ≤ 0, which is a sublevel set, and therefore convex.

Answer Ex. 10.3. 5: Write B in row echelon form, to see which are pivot
variables. Express these variables in terms of the free variables, and replace the
pivot variables in all the equations. Ax ≥ b then takes the form Cx ≥ b (where
x now is a shorter vector), and this can be written as −Cx ≤ −b, which is
on the new form with H = −C, h = −b. Note that this strategy rewrites the
vector c to a shorter vector.

Answer Ex. 10.3. 6: Let y =
�

t

j=1 λjxj and z =
�

t

j=1 µjxj , where all
λj , µj ≥ 0, and

�
t

j=1 λj = 1,
�

t

j=1 µj = 1. For any 0 ≤ λ ≤ 1 we have
that

(1− λ)y + λz = (1− λ)
t�

j=1

λjxj + λ
t�

j=1

µjxj =
t�

j=1

((1− λ)λj + λµj)xj .

The sum of the coefficients here is
t�

j=1

((1− λ)λj + λµj) = (1− λ)
t�

j=1

λj + λ
t�

j=1

µj = 1− λ+ λ = 1,

so that C is a convex set.

Answer Ex. 10.3. 7: Follows from Proposition 10.3, since f(x) = ex is con-
vex, and H(x) =

�
n

j=1 xj is affine.

Answer Ex. 10.3. 9: a. λf is convex if λ ≥ 0, concave if λ ≤ 0.
b. min{f, g} may be neither convex or concave, consider the functions f(x) =
x2, g(x) = (x− 1)2.
c. |f | may be neither convex or concave, consider the function f(x) = x2 − 1.

Answer Ex. 11.2. 1: F (x) = 0 is equivalent to �F (x)�2 =
�

i
Fi(x) = 0,

where Fi are the component functions of F . Solving F (x) = 0 thus is equivalent
to showing that 0 is the minimum value of

�
i
Fi(x).

Answer Ex. 11.2. 2: Here we construct the function f(x) = T (x)−x = x/2−
3x3/2, which has derivative f �(x) = 1/2 − 9x2/2. We can then run Newton’s
method as follows:

newtonmult(sqrt(5/3),@(x)(0.5*x-1.5*x^3),@(x)(0.5-4.5*x^2))

357

This converges to the zero we are looking for, which we easily compute as
x =

�
1/3.

Answer Ex. 11.2. 4: a. The function x → �Ax� is continuous, and any con-
tinuous function achieves a supremum in a closed set (here �x� = 1).
b. For n = 2, it is clear that the sublevel set is the square with corners (1, 0),
(−1, 0), (0, 1), (0,−1). The function f(x) = �Ax� is the composition of a con-
vex function and an affine function, so that it must be convex. If x ∈ Rn and
�x�1 = 1, we can write x =

�
n

i=1 λivi, where 0 ≤ λi ≤ 1,
�

n

i=1 λi = 1, and
vi = ±ei (i.e. it absorbs the sign of the ith component). If w is the vector
among {±ej}j so that f(±ej) ≤ f(w) for all j and all signs, Jensen’s inequality
(Theorem 10.4) gives

f(x) = f

�
n�

i=1

λivi

�
≤

n�

i=1

λif(vi) ≤
n�

i=1

λif(w) = f(w),

so that f assumes its maximum in w. For this particular f , if w = ±ek, the
maximum is

�Aw�1 = �± colkA� =
n�

i=1

| ± aik| =
n�

i=1

|aik|.

It is now clear that �A� = sup
k

�
n

i=1 |aik|.

Answer Ex. 11.2. 5: We are asked to find for which A we have that �Ax�1 <
�x�1 for any x. From the previous exercise we know that this happens if and
only if �A� < 1, i.e. when

�
n

i=1 |aik| < 1 for all k.

Answer Ex. 11.2. 6: You can write

newtonmult(x0,...

@(x)([x(1)^2-x(1)/x(2)^3+cos(x(1))-1; 5*x(1)^4+2*x(1)^3-tan(x(1)*x(2)^8)-3]),...

@(x)([2*x(1)-1/x(2)^3-sin(x(1)) 3*x(1)/x(2)^4; ...

20*x(1)^3+6*x(1)^2-x(2)^8/(cos(x(1)*x(2)^8))^2 -8*x(1)*x(2)^7/(cos(x(1)*x(2)^8))^2])...

)

Answer Ex. 12.2. 4: The gradient of f is ∇f = (4 + 2x1, 6 + 4x2), and the

Hessian matrix is ∇2f =

�
2 0
0 4

�
, which is positive definite. The only stationary

point is (−2,−3/2), which is a minimum.
The gradient of g is ∇g = (4 + 2x1, 6− 4x2), and the Hessian matrix is ∇2g =

358

�
2 0
0 −4

�
, which is indefinite. The only stationary point is (−2, 3/2), which

must be a saddle point.

Answer Ex. 12.2. 5: The gradient is ∇f = (−400x1(x2−x2
1)−2(1−x1), 200(x2−

x2
1)). The Hessian matrix is

∇2f =

�
1200x2

1 − 400x2 + 2 −400x1

−400x1 200

�
.

Clearly the only stationary point is x = (1, 1), and we get that

∇2f(1, 1) =

�
802 −400
−400 200

�
.

It is straightforward to check that this matrix is positive definite, so that (1, 1)
is a local minimum.

Answer Ex. 12.2. 6: The steepest descent method takes the form

xk+1 = xk − αk∇f(xk),

where ∇f(xk) = Axk − b. We have that

f(xk+1) = (1/2)xT

k+1Axk+1 − b
T
xk+1

=
1

2

�
∇f(xk)

TA∇f(xk)
�
α2
k
− 1

2

�
x
T

k
A∇f(xk) +∇f(xk)

TAxk

�
αk

+
1

2
x
T

k
Axk − b

T (xk − αk∇f(xk))

=
1

2

�
∇f(xk)

TA∇f(xk)
�
α2
k

+

�
b
T∇f(xk)−

1

2

�
x
T

k
A∇f(xk) +∇f(xk)

TAxk

��
αk

+
1

2
x
T

k
Axk − b

T
xk.

Now, since we claim that ∇f(xk) is an eigenvector, and that A is symmetric,
we get that A∇f(xk) = λ∇f(xk) and ∇f(xk)TA = λ∇f(xk)T , where λ is the
corresponding eigenvalue. This means that the above can be written

f(xk+1) =
1

2
λ�∇f(xk)�2α2

k
+
�
b
T∇f(xk)− x

T

k
A∇f(xk)

�
αk+

1

2
x
T

k
Axk−b

T
xk

If we take the derivative of this w.r.t. αk and set this to 0 we get

αk = −b
T∇f(xk)− x

T

k
A∇f(xk)

λ�∇f(xk)�2
=

�
x
T

k
A− b

T

�
∇f(xk)

λ�∇f(xk)�2

=
(Axk − b)T ∇f(xk)

λ�∇f(xk)�2
=

∇f(x)T∇f(xk)

λ�∇f(xk)�2
=

1

λ
.

359

This means that αk = 1
λ

is the step size we should use when we perform exact
line search. We now compute that

∇f(xk+1) = Axk+1 − b = A

�
xk − 1

λ
∇f(xk)

�
− b

= Axk − 1

λ
A∇f(xk)− b = Axk −∇f(xk)− b

= ∇f(xk)−∇f(xk) = 0,

which shows that the minimum is reached in one step.

Answer Ex. 12.2. 7: a. This is simply Exercise 9.3.8.
b. If ∇2f(x) is positive definite, its eigenvalues are positive, so that the deter-
minant is positive, and that the matrix is invertible. h = −∇2f(xk)−1∇f(xk)
follows after multiplying with the inverse.

Answer Ex. 12.2. 8: Here we have said nothing about the step length, but
we can implement this as in the function newtonbacktrack as follows:

function [xopt,numit]=steepestdescent(f,df,x0)

epsilon=10^(-3);

xopt=x0;

maxit=100;

for numit=1:maxit

d=-df(xopt);

eta=-df(xopt)’*d;

if eta/2<epsilon

break;

end

alpha=armijorule(f,df,xopt,d);

xopt=xopt+alpha*d;

end

The algorithm can be tested on the first function from Exercise 4 as follows:

f=@(x)(4*x(1)+6*x(2)+x(1)^2+2*x(2)^2);

df=@(x)([4+2*x(1);6+4*x(2)])

steepestdescent(f,df,[-1;-1])

Answer Ex. 12.2. 9: The function can be implemented as follows:

function alpha=armijorule(f,df,x,d)

beta=0.2; s=0.5; sigma=10^(-3);

m=0;

360

while (f(x)-f(x+beta^m*s*d) < -sigma *beta^m*s *(df(x))’*d)

m=m+1;

end

alpha = beta^m*s;

Answer Ex. 12.2. 10: The function can be implemented as follows:

function [xopt,numit]=newtonbacktrack(f,df,d2f,x0)

epsilon=10^(-3);

xopt=x0;

maxit=100;

for numit=1:maxit

d=-d2f(xopt)\df(xopt);

eta=-df(xopt)’*d;

if eta/2<epsilon

break;

end

alpha=armijorule(f,df,xopt,d);

xopt=xopt+alpha*d;

end

Answer Ex. 13.3. 3: This is the same as finding the minimum of f(x1, . . . , xn) =
−x1x2 · · ·xn. This boils down to the equations −

�
i �=j

xi = 1, since clearly the
minimum is not attained when there are any active constraints. This implies
that x1 = . . . = xn, so that all xi = 1/n. It is better to give a direct argument
here that this must be a minimum, than to attempt to analyse the second order
conditions for a minimum.

Answer Ex. 13.3. 4: We can formulate the problem as finding the minimum
of f(x1, x2) = (x1 − a1)2 + (x2 − a2)2 subject to the constraint h1(x1, x2) =
x2
1 +x2

2 = 1. The minimum can be found geometrically by drawing a line which
passes through a and the origin, and reading the intersection with the unit
circle. This follows also from that ∇f is parallel to x− a, ∇h1 is parallel to x,
and from that the KKT-conditions say that these should be parallel.

Answer Ex. 13.3. 6: We rewrite the constraint as g1(x1, x2) = x2
1+x2

2−1 = 0,
and get that ∇g1(x1, x2) = (2x1, 2x2). Clearly all points are regular, since
∇g1(x1, x2) �= 0 whenever g1(x1, x2) = 0. Since ∇f = (1, 1) we get that the
gradient of the Lagrangian is

�
1
1

�
+ λ

�
2x1

2x2

�
= 0,

361

which gives that x1 = x2. This gives us the two possible feasible points
(1/

√
2, 1/

√
2) and (−1/

√
2,−1/

√
2). For the first we see that λ = −1/

√
2,

for the second we see that λ = 1/
√
2. The Hessian of the Lagrangian is

λ

�
2 0
0 2

�
. For the point (1/

√
2, 1/

√
2) this is negative definite since λ is nega-

tive, for the point (−1/
√
2,−1/

√
2) this is positive definite since λ is positive.

From the second order conditions it follows that the minimum is attained in
(−1/

√
2,−1/

√
2).

If we instead eliminated x2 we must write x2 = −
�

1− x2
1 (since the positive

square root gives a bigger value for f), so that we must minimize f(x) = x −√
1− x2 subject to the constraint −1 ≤ x ≤ 1. The derivative of this is 1 +
x√

1−x2 , which is zero when x = − 1√
2
, which we found above. We also could

have found this by considering the two inequality constraints −x − 1 ≤ 0 and
x− 1 ≤ 0.
If the first one of these is active (i.e. x = −1), the KKT conditions say that
f �(−1) > 0. However, this is not the case since f �(x) → −∞ when x → −1+.
If the second constraint is active (i.e. x = 1), the KKT conditions say that
f �(1) < 0. This is not the case since f �(x) → ∞ when x → 1−. When we have
no active constraint, the problem boils down to setting the derivative to zero,
in which case we get the solution we already have found.

Answer Ex. 13.3. 9: We define h1(x1, . . . , xn) = x1 + . . . + xn − 1, and find
that ∇h1 = (1, 1, . . . , 1). The stationary points are characterized by ∇f +
λ
T (1, 1, . . . , 1) = 0, which has a solution exactly when ∂f

∂x1
= ∂f

∂x2
= . . . = ∂f

∂xn
.

Answer Ex. 13.3. 10: We substitute xn = 1−x1−. . .−xn−1 in the expression
for f , to turn the problem into one of minimizing a function in n− 1 variables.

Answer Ex. 13.3. 11: The problem can be rewritten to the following mini-
mation problem:

min{−x
TAx : g1(x) = �x� − 1 = 0}.

We have that ∇f(x) = −Ax, and ∇g1(x) =
2x

2�x� = x
�x� . Clearly all points are

regular, and we get that

∇f + λ∇g1 = −Ax+ λ
x

�x� = 0.

Since we require that �x� = 1 we get that Ax = λx. In other words, the optimal
point x is an eigenvector of A, and the Lagrange multiplier is the corresponding
eigenvalue.

362

Answer Ex. 13.3. 12: Define f(x1, x2, x3) = (1/2)(x2
1+x2

2+x2
3) and g1(x1, x2, x3) =

x1+x2+x3. We have that ∇f = (x1, x2, x3), ∇g1 = (1, 1, 1). Clearly all points
are regular points. If there are no active constraints, we must have that ∇f = 0,
so that x1 = x2 = x3 = 0, which does not fulfill the constraint. If teh constraint
is active we must have that (x1, x2, x3)+µ(1, 1, 1) = 0 for some µ ≤ 0, which is
satisfied when x1 = x2 = x3 < 0. Clearly we must have that x1 = x2 = x3 = −2.
The Hessian of L(x,λ,µ) is easily computed to be positive definite, so that we
have found a minimum.

Answer Ex. 13.3. 13: We need to minimze f(x1, x2) = (x1−3)2+(x2−5)2+
x1x2 subject to the constraints

g1(x1, x2) = −x1 ≤ 0

g2(x1, x2) = −x2 ≤ 0

g3(x1, x2) = x1 − 1 ≤ 0

g4(x1, x2) = x2 − 1 ≤ 0.

We have that ∇f = (2(x1 − 3) + x2, 2(x2 − 5) + x1), and ∇g1 = (−1, 0),
∇g2 = (0,−1), ∇g3 = (1, 0), ∇g4 = (0, 1). If there are no active constraints the
KKT conditions say that ∇f = 0, so that

2x1 + x2 = 6x1 + 2x2 = 10

which gives that x1 = 2/3 and x2 = 14/3. This point does not satisfy the
constraints, however.
Assume now that we have one active constraint. We have four possibilities in
this case (and any solution will be regular). If the first constraint is active the
KKT conditions say that

�
2x1 + x2 − 6
x1 + 2x2 − 10

�
+ µ

�
−1
0

�
= 0

Setting x1 = 0 we get that x2 − 6 = µ and 2x2 − 10 = 0, so that x2 = 5, which
does not satisfy the constraints.
If the second constraint is active we get similarly that 2x1 − 6 = 0, which also
does not satisfy the constraints.
If the third constraint is active we get 2x2 − 9 = 0, which does not satisfy the
constraints.
If the fourth constraint is active we get 2x1 − 5 = 0, which does not satisfy the
constraint.
Assume that we have two active constraints. Also here there are four possibilities
(and any solution will be regular):
x1 = x2 = 0: The KKT consitions say that (−6,−10) + (−µ1,−µ2) = 0, which
is impossible since µ1, µ2 are positive.
x1 = 0, x2 = 1: The KKT conditions say that (−5,−8) + (−µ1, µ4) = 0, which
also is impossible

363

x1 = 1, x2 = 0: The KKT conditions say that (−4,−9) + (µ3,−µ2) = 0, which
also is impossible
x1 = x2 = 1: The KKT conditions say that (−3,−7) + (µ3, µ4), which has a
solution.
Clearly it is not possible to have more than two active constraints. The minimum
point is therefore (1, 1).

Answer Ex. 13.3. 14: We can define g1(x1, x2) = x2
1+x2

2−2, so that the only
constraint is g1(x1, x2) ≤ 0. We have that ∇g1 = (2x1, 2x2), and this can be
zero if and only if x1 = x2 = 0. However g1(0, 0) = −2 < 0, so that the equality
is not active. This means that all points are regular for this problem.
We compute that ∇f = (1, 1). If g1 is not an active inequality, the KKT
conditions say that ∇f = 0, which is impossible. If g1 is active, we get that

∇f(x1, x2) + µ∇g1(x1, x2) =

�
1
1

�
+ µ

�
2x1

2x2

�
=

�
0
0

�
,

so that 1 = −2µx1 and 1 = −2µx2 for some µ ≥ 0. This is satisfied if x1 = x2

is negative. For g1 to be active we must have that x2
1 + x2

2 = 2, which implies
that x1 = x2 = −1. We have that f(−1,−1) = −2.

Answer Ex. 13.3. 15: We define gj(x) = −xj for j = 1, . . . , n, and gn+1(x) =�
n

j=1 xj−1. We have that ∇gj = −ej for 1 ≤ j ≤ n, and ∇gn+1 = (1, 1, . . . , 1).
If there are no active inequalities, we must have that ∇f(x) = 0. If the last
constraint is not active we have that

∇f =
�

j∈A(x),j≤n

µjej ,

i.e. ∇f points into the cone spanned by ej , j ∈ A(x). If the last constraint is
active also , we see that

∇f =
�

j �∈A(x),j≤n

−µn+1ej

�

j∈A(x),j≤n

(µj − µn+1)ej .

∇f is on this form whenever components outside the active set are equal and
≤ 0, and all are components are greater than or equal to this.

Answer Ex. 14.2. 1: The constraint Ax = b actually yields one constraint
per row in A, and the gradient of the i’th constraint is the i’th row in A. This
gives the following sum in the KKT conditions:

m�

i=1

∇giλi =
m�

i=1

aT
i·λi ==

m�

i=1

(AT)·iλi = ATλ.

364

The gradient of f(xk) + ∇f(xk)Th + 1
2h

T∇2f(xk)h is ∇f(xk) + ∇2f(xk)h.
The KKT conditions are thus ∇f(xk) + ∇2f(xk)h + ATλ = 0 and Ah = 0.
This can be written as the set of equations

∇2f(xk)h+ATλ = −∇f(xk)

Ah+ 0λ = 0,

from which the stated equation system follows.

Answer Ex. 14.2. 2: a. We can set g1(x, y) = −x, g2(x, y) = −y, A =�
−1 1

�
, and b =

�
1
�
.

c. The barrier problem here is to minimize x+ y− µ lnx− µ ln y subject to the
constraint y−x = 1. The gradient of the Lagrangian is (1−µ/x, 1−µ/y)+ATλ.
If this is 0 we must have that 1 − µ/x = µ/y − 1, so that 2xy = µ(x + y) The
constraint gives that y = x + 1, so that 2x(x + 1) = µ(2x + 1). This can be
written as 2x2 + (2− µ)x− µ = 0, which has the solution

x =
−(2− µ)±

�
(2− µ)2 + 8µ

4
=

−(2− µ)± (2 + µ)

4
,

which gives the two solutions (x, y) = (µ/2, µ/2+ 1) and (x, y) = (−1, 0). Only
the first solution here is within the domain of definition for f , so the barrier
method obtains this minimum.
d. By inserting y = x + 1 for the constraint we see that we need to minimize
g(x) = 2x + 1 subject to x ≥ 0, which clearly has a minimum for x = 0, and
then y = 1. This gives the same minimum as in c.
e. The KKT conditions takes one of the following forms:

•If there are no active inequalities:

∇f +ATλ = (1, 1) + λ(−1, 1) = 0,

which has no solutions.

•The first inequality is active (i.e. x = 0):

∇f+ATλ+µ1∇g1 = (1, 1)+λ(−1, 1)+µ1(−1, 0) = (1−λ−µ1, 1+λ) = 0,

which gives that λ = −1 and µ1 = µ1 = 2. When x = 0 the equaility
constraint gives that y = 1, so that (0, 1) satisfies the KKT conditions.

•The second inequality is active (i.e y = 0): The first constraint then gives
that x = −1, which does not give a feasible point.

In conclusion, (0, 1) is the only point which satisfies the KKT conditions. If
we attempt the second order test, we will see that it is inconclusive, since the

365

Hessian of the Lagrangian is zero. To prove that (1, 0) must be a minimum,
you can argue that f is very large outside any rectangle, so that it must have a
minimum on this rectangle (the rectangle is a closed and bounded set).
f. With the barrier method we obtained the solution x(µ) = (µ/2, µ/2+1). Since
this converges to (0, 1) as µ → 0, the central path converges to the solution we
have found.

Answer Ex. 14.2. 3: You can use the following code:

IPBopt(@(x)(x(1)+x(2)),@(x)(-x(1)),@(x)(-x(2)),...

@(x)([1;1]),@(x)([-1;0]),@(x)([0;-1]),...

@(x)(zeros(2)),@(x)(zeros(2)),@(x)(zeros(2)),...

[-1 1],1,[4;5])

Answer Ex. 14.2. 4: Here we have that ∇f = 2x, ∇g1 = −1, ∇g2 = 1. If
there are no active constraints the KKT conditions say that 2x = 0, so that
x = 0, which is outside the domain of definition for f .
If the first constraint is active we get that 2x−µ1 = 4−µ1 = 0, so that µ1 = 4.
This is a candidate for the minimum (clearly the second order conditions for a
minimum is fulfilled here as well, since the Hessian of the Lagrangian is 2).
If the second constraint is active we get that 2x + µ2 = 4 + µ2 = 0, so that
µ2 = −4, so that this gives no candidate for a solution.
It is impossible for both constraints to be active at the same time, so x = 2 is
the unique minimum.

Answer Ex. 14.2. 6: You can use the following code:

IPBopt2(@(x)((x-3).^2),@(x)(2-x),@(x)(x-4),...

@(x)(2*(x-3)),@(x)(-1),@(x)(1),...

@(x)(2),@(x)(0),@(x)(0),3.5)

366

