Answers

Answer Ex. 1.4. 1: Setting p;or=0.00002 Pa and p=100 000 Pa in the decibel
expression we get

» 100000 10°
201 — 201 — 201 0
9810 <pref) 810 (0.00002 810 | 55 105

101
= 20log;, (T) =20 (10 — log,( 2) =~ 194db.

Answer Ex. 1.4. 3: The important thing to note here is that there are two
oscillations present in Figure 1.1(b): One slow oscillation with a higher ampli-
tude, and one faster oscillation, with a lower amplitude. We see that there are
10 periods of the smaller oscillation within one period of the larger oscillation,
so that we should be able to reconstruct the figure by using frequencies where
one is 10 times the other, such as 440Hz and 4400Hz. Also, we see from the
figure that the amplitude of the larger oscillation is close to 1, and close to 0.3
for the smaller oscillation. A good choice therefore seems to be a = 1,6 = 0.3.

Answer Ex. 1.4. 4: The code can look like this:

function playpuresound(f)
£s=44100;
t=0: (1/£fs) :3;
sd=sin(2*pixf*t) ;
playerobj=audioplayer(sd,fs) ;
playblocking(playerobj)

Answer Ex. 1.4. 5: The code can look like this:

function playsquare(T)
% Play a square wave with period T over 3 seconds
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£s=44100;
samplesperperiod=round (fs*T) ;
oneperiod=[ones(1,round(samplesperperiod/2)) ...
-ones(1,round(samplesperperiod/2))];
allsamples=zeros(1,floor(3/T)*length(oneperiod)) ;
for k=1:floor(3/T)
allsamples(((k-1)*length(oneperiod)+1) :k*length(oneperiod))=oneperig
end
playerobj=audioplayer(allsamples,fs) ;
playblocking(playerobj)

function playtriangle(T)

% Play a triangle wave with period T over 3 seconds

£s=44100;

samplesperperiod=round (fs*T) ;

oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...

linspace(1,-1,round(samplesperperiod/2))];

allsamples=zeros(1,floor(3/T)*length(oneperiod)) ;

for k=1:floor(3/T)
allsamples(((k-1)*length(oneperiod)+1) :k*length(oneperiod))=oneperigq

end

playerobj=audioplayer(allsamples,fs) ;

playblocking(playerobj)

Answer Ex. 1.4. 6: The code can look like this:

function playdifferentfs()

[S fs]=wavread(’castanets.wav’);
playerobj=audioplayer(S,fs) ;
playblocking(playerobj) ;
playerobj=audioplayer(S,2*fs) ;
playblocking(playerobj) ;
playerobj=audioplayer(S,fs/2) ;
playblocking(playerobj) ;

function playreverse()
[S fs]=wavread(’castanets.wav’);
sz=size(S,1);
playerobj=audioplayer(S(sz:(-1):1,:),fs);
playblocking(playerobj) ;

Answer Ex. 1.4. 7: The code can look like this:
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function playnoise(c)
[S fs]=wavread(’castanets.wav’);
sz=size(S,1);
newS=S+c* (2*rand(sz,2)-1) ;
newS=newS/max (max(abs(newS))) ;
playerobj=audioplayer (newS,fs) ;
playblocking(playerobj) ;

Answer Ex. 1.4. 8: The code can look like this:

function playwithecho(c,d)
[S fs]l=wavread(’castanets.wav’);
sz=size(S,1);
newS=S((d+1) :sz,:)-0.5%S(1: (sz-d),:);
newS=newS/max (max (abs(news))) ;
playerobj=audioplayer (newS,fs) ;
playblocking(playerobj) ;

Answer Ex. 1.4. 9: The code can look like this:

function reducebass(k)
c=[1/2 1/2]1;
for z=1:(2%k-1)
c=conv(c, [1/2 1/2]);
end
c=(-1) .7 (0: (2%k) ) . *c;
[S fs]=wavread(’castanets.wav’);
N=size(S,1);

y=zeros(N,2) ;
y(1:k,:)=S(1:k,:);
for t=(k+1) : (N-k)
for j=1:(2#k+1)
y(t, D=y (t, :)+c(G)*S(t+k+1-j,:);
end
end
y((N-k+1) :N, : )=S((N-k+1) :N,:);
y=y/max(max(abs(y))) ;

playerobj=audioplayer(y,fs) ;
playblocking(playerobj) ;
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function reducetreble(k)
c=[1/2 1/2];
for z=1:(2%k-1)
c=conv(c, [1/2 1/2]);
end
[S fs]=wavread(’castanets.wav’);
N=size(S,1);

y=zeros(N,2) ;
y(1:k,:)=S(1:k,:);
for t=(k+1): (N-k)
for j=1:(2%k+1)
y(t, )=y(t, :)+c(G)*S(t+k+1-j,:);
end
end
y((N-k+1) :N, :)=S((N-k+1) :N, :);

playerobj=audioplayer(y,fs) ;
playblocking(playerobj) ;

Answer Ex. 2.1. 1: The function f(t) = % = t~1/2 can be used since it has
the properties

T T T
/ f(t)dt = lim t=V2dt = lim {Qtl/ﬂ
0

x—0+ x—0+ x
= lim (2 T1/2 2z1/2) = 211/2

z—0+
/ F(t)2dt = Jim t’ldt: lim [In¢]”
z z—0+

=InT — lim Inz = co.
rz—0+
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Answer Ex. 2.1. 4: For f(t) =t we get that ap = + fOT tdt = % We also get

9 (T
an, = —/ t cos(2mnt/T)dt
T Jo
2 ([T oo o7
-7 ([27mtsin(27mt/T)}0 - %/0 sin(27mt/T)dt> =
9 (T
by, = —/ tsin(2mnt/T)dt
T Jo
2 T oo T T
== ([—27mtcos(27mt/T)}0 + %/o cos(27mt/T)dt> =

The Fourier series is thus
T T .
3 nil P sin(2wnt/T).

Note that this is almost a sine series, since it has a constant term, but no other
cosine terms. If we had subtracted T//2 we would have obtained a function
which is antisymmetric, and thus a pure sine series.

. 2
For f(t) = t* we get that ag = 7 jOT t2dt = L-. We also get

9 (T
ap = T/ t? cos(2mnt /T dt

T

({ﬁ sin 27mt/T)} - / tsin( 27mt/T)dt>
0

(. TN(.T\_T
- ™ ) w2n?

9 T
b, = —/ t?sin(27mnt/T)dt
T Jo
9 T, T p T
== ({_zmt cos(27rnt/T)L + E/o tCOS(27Tnt/T)dt)
T2
=——

Here we see that we could use the expressions for the Fourier coefficients of
f(t) =t to save some work. The Fourier series is thus

T2 T2 T2 |
-+ Z (W cos(2mnt/T) — — sm(27mt/T)) .

3
n>1
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For f(t) =t we get that ag = f t3dt = 3. We also get

9 (T
apn, = T/ 3 cos(2mnt/T)dt
T T
2 . 3T ) .
=7 <{ t° sin 27rmf/T)}0 3, t sn1(27mt/T)dt>
_ (3TN (LT 3T
N 2 ™m 2m2n?
by, = z (2mnt/T)dt
T 3 sin(2mn
T T
2 3T
= 3 cos 27rnt/T) +— t? cos(2mnt/T)dt
T 2mn
B T3 37 T2 T° 3T3
T 2mnan? wn | 2703

Also here we saved some work, by reusing the expressions for the Fourier coef-
ficients of f(t) = t2. The Fourier series is thus

T3 313 T 373\ |
T + (2 2,2 cos(2nnt/T) + ( - — 4+ 5,3 3) sm(27mt/T)) .
n>1

We see that all three Fourier series converge slowly. This is connected to the
fact that none of the functions are continuous at the borders of the periods.

Answer Ex. 2.1. 5: Let us define a, , by 1 as the Fourier coefficients of tk.
When k£ > 0 and n > 0, integration by parts gives us the following difference
equations:

9 (T
A = —/ th cos(2mnt /T)dt
) T O

T
2 T . kT .
=% ({mt" sin(27rmf/T)}0 3 /. tkfl sin(27mt/T)dt>
kT
=———Dbpp_
2mn k=1

9 (T
= —/ t* sin(27nt /T dt
T Jo

T 2mn Jq

Tk kT
—— + —n k1.
m™m 21

T T
2 ({_QT#C COS(2wnt/T)} T e cos(%nt/T)dt)
™
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When n > 0, these can be used to express an i, by i in terms of ay 0,by,0, for

which we clearly have a, o = b, 0 = 0. For n = 0 we have that ag = kT—fl for
all k. The following program computes a, k, by 1 recursively when n > 0.

function [ank,bnk]=findfouriercoeffs(n,k,T)
ank=0; bnk=0;
if k>0
[ankprev,bnkprev] =findfouriercoeffs(n,k-1,T)
ank=-k*Txbnkprev/ (2*pi*n) ;
bnk=-T"k/ (pi*n) + k*Txankprev/(2*pi*n) ;
end

Answer Ex. 2.1. 7: The code can look like this:

function playsquaretrunk(T,N)
£s=44100;
t=0: (1/£fs) :3;
sd=zeros(1,length(t));
n=1;
while n<=N
sd = sd + (4/(nxpi))*sin(*pi*n*t/T) ;
n=n+2;
end
playerobj=audioplayer(sd,fs) ;
playblocking(playerobj)

function playtriangletrunk(T,N)
£5=44100;
t=0: (1/£fs) :3;
sd=zeros(1,length(t));
n=1;
while n<=N
sd = sd - (8/(n~24pi~2))*cos(2*xpi*nxt/T) ;
n=n+2;
end
playerobj=audioplayer(sd,fs) ;
playblocking(playerobj)
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Answer Ex. 2.2. 1: For n; # ny we have that

T T
<627rin1t/T’627m'n2t/T> _ %/ e?wilet/Ttef?wingt/Tdt _ %/ eQm'(nlfng)t/Tdt
0

0
T
_ Le%ri(nlfnz)t/T
2mi(ny — ng) 0
T T

= - =0.
2mi(ny —ng)  2mi(ny — ng)

When n; = ny the integrand computes to 1, so that [e>™"*/T|| = 1.

Answer Ex. 2.2. 5: We obtain that

1 T/2 1 T
Un / e—Qﬂint/Tdt - / 6—27Tint/Tdt
0 T/2

T T
T/2 T
_ 7& T 6727rint/T / + l ief%rint/T
T | 2mwin 0 T [ 2min T/2

_ 1 (_efwin + 1 + 1— e*ﬂ'in_’_)

2min
B i (1 7 677”%) _ 0, . ?f n 15 even; .

Tin 2/(min), if nis odd.

Instead using Theorem 2.11 together with the coefficients b,, = W we
computed in Example 2.6, we obtain

1 ) 1.]0, if n is even; 0, if n is even;
Yn = 7(an - an) =—5? . . = . . .
2 2 |4/(nm), ifnisodd. 2/(min), if n is odd.

when n > 0. The case n < 0 follows similarly.

Answer Ex. 2.2. 7: For f(t) =t we get

T 1 T , T T ,
n = — te™ ﬂzn//Tdt —— T ¢ —27int/T / 727rznt/Tdt
Yn =1 /o ‘ 7\ | 2rin'* o)y 2min©

T T .

- 1.
2min 2w

From Exercise 4 we had b,, = —%, for which Theorem 2.11 gives y,, = %z for
n > 0, which coincides with the expression we obtained. The case n < 0 follows

similarly.
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For f(t) = t% we get

1 (7 ; 1 T T ;
_ - t2 —Qﬂznt/Tdt _ - t2 —27'rznt/T 2/ t —27'rznt/Tdt
= /0 ¢ T\ | 2rin 0 + 0 2min ¢

T2 T2 T2 T2
C2min + omn?  2n2n2 + 27rnl'

From Exercise 4 we had a, = 732 > and b, = T2 , for which Theorem 2.11

gives Yy, = % (772712 +i— ) for n > 0, which also is seen to coincide with what

we obtained. The case n < 0 follows similarly.
For f(t) = t® we get

1 /7T ) 1 T r 7 .
—— t3 —Qﬂznt/Tdt —— t3 —27Tznt/T 3/ t2 —27r1nt/Tdt
T /0 ¢ T\ | 2win 0 * o 2min ¢

T3 +3 T ( T2 T? ) T3 T3 T3 )
=— — ) =3—— - 33— i=
2min 2min  2m2n2  2mn 4m2n2 2mn 4m3n3
From Exercise 4 we had a,, = QSEZZ and b, = —— + 271'3 = for which Theo-

rem 2.11 gives

1 RYA i T3 RYA 373 + T3 313 .
n===—=+i|l — — = —_—— |2
Y 2 \ 2m2n?2 T  2mw3ns 472n?2 2rn  4m3n3
for n > 0, which also is seen to coincide with what we obtained. The case n < 0
follows similarly.

Answer Ex. 2.2. 8 If f is symmetric about 0 we have that b, = 0. Theo-
rem 2.11 then gives that y, = an, which is real. The same theorem gives that
that y_, = an = yp. This proves 1.

If fis antlsymmetmc about 0 we have that a,, = 0. Theorem 2.11 then gives
that y, = —%bn, which is purely imaginary. The same theorem gives that that
Y p = %bn = —y,. This proves 2.

When y,, = y_,, we can write

y_n627ri(7n)t/T + yn€27rint/T _ yn(827rint/T + 8727rint/T) — 2yn cos(27mt/T)

This is clearly symmetric, but then also Zg:_ N yne2mint/T
it is a sum of symmetric functions. This proves 3.

When y,, = —y_,, we can write

is symmetric since

y7n627ri(7n)t/T + yne%rint/T _ yn(_627rint/T + 627rint/T) = iy, sin(27mt/T)

This is clearly antisymmetric, but then also Zng N Yn e2mint/T i antisymmetric

since it is a sum of antisymmetric functions, and since yo = 0. This proves 4.
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Answer Ex. 2.4. 1: We obtain that

1 T/4 ) 1 —-T/4 ) 1 T/2 )
Yp = ?/ e—27‘rznt/Tdt _ 7/ e—Zﬂznt/Tdt _ f/ e—QﬂZnt/Tdt

—T/4 T -T/2 T/4
1 ) T/4 ‘ ~T/4 . T/2
— [ i 672mnt/T:| + [ i 6727rmt/T:| + |: : 6727rmt/T:|
2min ~T/4 2min —1/2 2min T/4
1

_ i (_efﬂ'zn/Q + e7T’L7’L/2 + e7r’in/2 _ eﬂ'in + effri’n _ e*Tk”LTL/?)
2min

= L (9sin(rn/2) — sin(en)) = - sin(zn/2).
™ ™
The square wave defined in this exercise can be obtained by delaying our original
square wave with —7'/4. Using 3. in Theorem 2.18 with d = —T/4 on the
0, if n is even;
2/(mwin), if n is odd.
for the square wave in Exercise 2.2.5, we obtain the Fourier coefficients

complex Fourier coefficients y,, = which we obtained

(2min(T/4)/T 0, if n is even; _ (),‘ . if n is even;
2/(min), if nis odd. %, if n is odd.
0, if n is even;
B 2 gin(mn/2), ifnisodd.

This verifies the result.

Answer Ex. 2.4. 2: Since the real Fourier series of the square wave is

4
— sin(2mnt/T
Z 7rnsm( mnt/T),

n>1,n odd
Theorem 2.11 gives us that the complex Fourier coefficients are y,, = f%i% =
—f—; ,and y_, = %zﬂi‘n = % for n > 0. This means that y, = —7% for all n,

so that the complex Fourier series of the square wave is
-3 20 oming/T
™m
n odd

Using property 4 in Theorem 2.18 we get that the e 2™/ (ie. set d = —4)
times the square wave has its n’th Fourier coefficient equal to — Using
—2mi4t/T

27
m(n+4) "
times the square wave has its n’th Fourier
We thus have that the function

linearity, this means that 2ie

coefficient equal to ﬁ.

£(6) = 2ie=2m4t/T 0 <t <T)/2
| =26 TMT T/2<t<T

has the desired Fourier series.
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Answer Ex. 3.2. 1: As in Example 3.9 we get

2 1 1 1 1 2
3 111 — -1 1 3
Bly =31 o1 1 = 4
5 1 ¢ -1 — 5
24+3+4+4+5 7
71 2—3i—4+5i B -1+
T2 2-34+4-5 - -1
2+4+3i—4—5i —1—1
Answer Ex. 3.2. 2: For N = 6 the entries are on the form %62””'“/6 =
%e”"’“/ 3. This means that the entries in the Fourier matrix are the numbers

%e”/:‘ = %(1/2 +iv/3/2), %627”'/3 = %(—1/2 +iv/3/2), and so on. The
matrix is thus

1 1 1 1 1
1/2+iv3/2 —1/2+iV3/2 —1 —1/2—iV3/2 1/2—iV/2/2
—1/2+4v3/2 —1/2—iV3/2 1 —1/2+4+iV3/2 —1/2—i/3/2

1 1 -1 1 -1
-1/2-14v3/2 —1/2+iV3/2 1 —1/2—iV3/2 —1/2+i/3/2
1/2—iv2/2  —1/2—iV3/2 —1 —1/2+iV3/2 1/2+iV3/2

Fs

— = e e

The cases N = 8 and N = 12 follow similarly, but are even more tedious. For
N = 8 the entries are %e’”"k/‘l, which can be expressed exactly since we can
express exactly any sines and cosines of a multiple of /4. For N = 12 we get
the base angle 7/6, for which we also have exact values for sines and cosines for

all multiples.

Answer Ex. 3.2. 3: We get

1 N—-1 1 N-1
_ k —2mink/N __ —2min/N\k
n — c e = — ce
"N v e
11— (ce”?mm/N)N 1—cV

T VN l—ce /N~ /N1 ce 2mn/N’

Answer Ex. 3.2. 5: The code can look like this

function x=IDFTImpl(y)
N=length(y) ;
FN=zeros(N) ;
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for k=1:N

FN(k, :)=exp(2*pi*x1i* (k-1)*(0: (N-1))/N) /sqrt(N) ;
end
x=FN*y;

Answer Ex. 3.3. 1: We have that As(w) = 3(1 4 cosw). This clearly has the
maximum point (0,1), and the minimum point (7, 0).

Answer Ex. 3.3. 2: We have that [Ar(w)| = 1(1—cosw). This clearly has the
maximum point (7, 1), and the minimum point (0,0). The connection between
the frequency responses is that Ar(w) = Ag(w + 7).

Answer Ex. 3.3. 3: The sum of two digital filters is again a digital filter, and
the first column in the sum can be obtained by summing the first columns in
the two matrices. This means that the filter coefficients in %(Sl + S3) can be
obtained by summing the filter coefficients of S; and Ss, and we obtain

%({LO,...,O,C}—&-{LO,...,0,—0}) — .

This means that %(Sl + S9) = I, since I is the unique filter with ey as first
column. The interpretation in terms of echos is that the echo from Ss cancels
that from S.

Answer Ex. 3.3. 4: The matrix for time reversal is the matrix

o0 --- 01
00 --- 10
01 -~ 00
10 -~ 00

This is not a circulant Toeplitz matrix, since all diagonals assume the values 0
and 1, so that they are not constant on each diagonal. Time reversal is thus not
a digital filter.

Let S denote time reversal. Clearly Se; = eny_o. If S was time-invariant we
would have that Sey = exn_3, where we have delayed the input and output.
But this clearly is not the case, since by definition Seq = en_1.

Answer Ex. 3.3. 5: The matrix for the operation which keeps every second
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component is

00 -~ 00
01 0 0
o0 --- 00
o0 --- 01

where 0 and 1 are repeated in alternating order along the main diagonal. Since
the matrix is not constant on the main diagonal, it is not a circulant Toeplitz
matrix, and hence not a filter.

Answer Ex. 3.3. 13: . The eigenvalues of S are 1,5,9, and are found by
computing a DFT of the first column (and multiplying by VN = 2). The
eigenvectors are the Fourier basis vectors. 1 has multiplicity 2. Matlab uses
some numeric algorithm to find the eigenvectors. However, eigenvectors may
not be unique, so you have no control on which eigenvectors Matlab actually
selects. In particular, here the eigenspace for A = 1 has dimension 2, so that
any linear combination of the two eigenvectors from this eigenspace also is an
eigenvector. Here it seems that Matlab has chosen a linear combination which
is different from a Fourier basis vector.

Answer Ex. 3.3. 14: Her we have that s =ty =3, sy =t; =4, s5 = t5 = 5,
and s3 = t3 = 6 (first formula), and sy_2 =t_o =1, sy_1 = t_1 = 2 (second
formula). This means that the matrix of S is

321006 5 4
4 321 00 6 5
54 3 2 10 0 6
5_165432100
410 6 5 4 3 2 1 0
006 5 43 21
100 6 5 4 3 2
21 006 5 4 3

The frequency response is

)\S(w):621',0.;+287‘,w+3+467iw+5672iw+6673iw.

Answer Ex. 3.3. 15: Here we have that t_y = 1/4, to = 1/4, t; = 1/4, and
tos = 1/4. We now get that sg = to = 1/4, s;1 = t1 = 1/4, and so = ¢t = 1/4
(first formula), and sy_; = sy =t_; = 1/4 (second formula). This means that
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the matrix of S is

OO == OO
O R RFEFEOOO
e i s B e B s B e}
[l o e i o R an B an R
= =0 0O OO~

OO OO - ==
O OO MFHERFEO

| =
= O OO O ==

The frequency response is

1. . o e (1 — e~ 4w) iy SIN(2w)
A _ T (ptw 1 iw 2iwy _ i _ iw/2
s(w) =7+ 1+ 4em) A1—e) °  sin(w/2)

Answer Ex. 3.3. 16: The filter coefficients are tg = sp = 1, t1 = s1 = 1 (first
formula), and t_1 = sy_1 = 1, t_9 = sy_o = 1, t_3 = sy_3 = 1 (second
formula). All other t; are zero. This means that the filter can be written as
{1,1,1, 1,1}, using our compact notation.

Answer Ex. 3.3. 17: The frequency response is

k 1 — cktlp—i(k+1)w

E Csefzsw - =
1—ce~w

s=0

It is straightforward to compute the limit as w — 0 as ¢*(k + 1). This means
that as we increase k or ¢, this limit also increases. The value of k also dictates
oscillations in the frequency response, since the numerator oscillates fastest.
When ¢ = 1, k dictates how often the frequency response hits 0.

Answer Ex. 3.3. 18: If we write S; = F]I\}IDlFN and Sy = F]I\}1D2FN we get
S1+ 8y = FH(Dy + Do)Fy 818, = FED\FNFHEDyFy = FED Dy Fy

This means that the eigenvalues of S; + S; are the sum of the eigenvalues of
S1 and Ss, and the eigenvalues of S7.55 are the product of the eigenvalues of Sy
and S. The actual eigenvalues which are added and multiplied are dictated by
the index of the frequency response, i.e. Ag, s, n = As, nAsy.n, a0d Ag 45, n =
Asy.n+ As,,n. In general there is no reason to believe that there is a formula for
the eigenvalues for the sum or product of two matrices, based on eigenvalues of
the individual matrices. However, when the same argument as for filters holds
in all cases where the eigenvectors are equal.
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Answer Ex. 3.4. 2: We first see that dy 3 = \/g and di 3 = \/g for k =1,2.
We also have that

ooy () o (3 (2

so that the DCT matrix can be written as

3 3 3
Dy = jeos(53) 3cos (53) \/gcos (22)
Zeos (L) f2eos(Z9) \[2eos(2D)

Answer Ex. 3.4. 4: The code can look like this:

function y=filterT(t,x)
N=length(x) ;
y=zeros (length(x),1) ;
E=length(t)-1;

n=0;
while n<E
y@+1)= t(D*x(n+1);
for k=1:n
y@tl) = y@t+l) + t+1)*(x@ntk+1) +x(n-k+1));
end

for k=(n+1) :E
y@t+l) = y@nt+l) + tk+1)*(x(ntk+1) +x(n-k+N+1)) ;
end
n=n+1;
end
while n<(N-E)
y(@m+1)= t(1)*x(n+1);
for k=1:E
y(@+1) = yo+1)+ t(k+1)*x(n+k+1) +x(n-k+1)) ;
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end
n=n+1;
end
while n<N
y@mt+l) = t(1)*x(n+l);
for k=1: (N-1-n)
y@+l) = y@+1) + t (1) *(x(n+k+1) +x(n-k+1)) ;
end
for k=(N-1-n+1) :E
y@+l) = y(@+l) + t(k+1)*(x(n+k-N+1)+x(n-k+1));
end
n=nt+1;
end

Answer Ex. 4.1. 1: By inserting N = 2" and z, = M? in My = 2My/,+2N
we get first , = 2x,_1+2-2". Inserting r+1 for r we get x, 1 —2x, = 4-2". The
homogeneous equation z,4; — 2z, = 0 has the general solution (z,), = C2".
For a particular solution to the equation z,; — 2z, = 4 - 2", we should try
(xp)r = Ar2" (since 2 is a root in the homogeneous equation), and we get that
A =2, so that (x,), = 2r2", and the general solution to the difference equation
is @, = 2r2" + C'2". This means that

My = Myr =2r2" + C2" = 2N logy N + CN = O(2N logy N),

since the first terms dominates in this expression, in particular, it does not
matter what C is (although we can find C from g = 0, since a DFT for N =1
requires no multiplications).

Answer Ex. 4.1. 2: When we compute e~ 2™"/N we do some multiplications

in the exponent. These are not counted because the multilication do not depend
on x, and may therefore be precomputed. We also have a multiplication with
%‘ These are typically not counted because one often defines a DFT so that
this multiplication is absorbed in the definition.

Answer Ex. 4.1. 4: From the formula we see that the first third of the Fourier
cofficients can be written

1
Yn = Wi (FN/3w1 + DnysFnyzxz + D12V/3FN/3w3) .

where D3 is defined in the same way as Do, but as a (N/3) x (N/3)-matrix,
and where 1, €2, 3 denotes the splitting of « into vectors for the corresponding
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indices. The second third of the Fourier cofficients can be written

N-1
1 —2mi(N/3+n)k/N
YN/3+n = = Z Tre
N k=0
| N , N
_ 2771(N/3+n)3k/N —27i(N/3+n)(3k+1)/N
= L3ke L3k+1€
NS S
;N
+ x3k+2e—27‘ri(N/3+n)(3k+2)/N
VgD
N/3-1 1 N/3—1
Z Tage 27Tzn3k:/N —2772(N/3+n)/N Z (Egk+16_27”n3k/N

VN TUNe =
) N/3-1
+ e*Zﬂi(N/SwLn)Z/N Z $3k+2€727'rin3k/N
\/ﬁ k=0

271'12/3D2

Fxys@i + e 2™/3 Dy s Fyjsas + e /3FN/3«’03)

1
:%(

The third part of the Fourier coefficients can be written

N-1
1 —27mi(2N/3+n)k/N
YaN/34n = = Z Tre
NS
1 N/3—1 1 N/3—1
_ —2mi(2N/34+n)3k/N —27i(2N/3+n)(3k+1)/N
= Z T3ie + — Z T3k+1€
\/N k=0 k=0
1 N/3—1
+ x3k+26727ri(2N/3+n)(3k+2)/N
&
N/3—1 1 N/3—1
—2min3k/N —27mi(2N/34+n)/N —2min3k/N
—_— Tr3ie + ——e T3k41€
> % 2
1 N/3-1
+ 6727Ti(2N/3+n)2/N x3k+2672m’n3k/N
W 2
1

7 (FN/3$1 + 6727”2/3DN/3FN/3$2 + 6727”4/3D12V/3FN/3$3)
1
-
We get a similar factorization as in Theorem 4.4, but with the block matrix
replaced by

Fnysxy + e 223Dy s Fyy s + D]2v/3FN/3m3>

Fnys | DnyaFnys D3 3F N3
FN/S 6—271'1 3DN/3FN/3 e—27r22 3D12V 3FN/3
Fnys | € 2™ DnysFys | DY jsFnys

Sl
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We see that My = 3My/3+2N when we count complex multiplications, so that
My = 3Myy3 + 8N when we count real multiplications. We get a difference
equation of the form z,.,; = 3z, + 24 - 3". A particular solution to this is
(xp)r = 8r3". Solving as above we get My = O(8Nlogy N). logs N can be
written on the form clog, N for a constant ¢, this is on the form O(clog, N) for
some c.

It is clear that this procedure can be developed also for numbers divisible by 5,
7, and so on (the number of blocks in the block matrix increase, though). In
particular, we can develop a procedure for any factorization into prime numbers.

Answer Ex. 5.2. 1: We have that f(t) = Zf:];()l cnon, Where ¢, are the co-

ordinates of f in the basis {¢0,0,$0,1,--.,¢0,n—1}. We now get that

N-1

Fk) =" cndon(k) = ck,

n=0

since ¢o (k) = 0 when n # k. This shows that (f(0), f(1),....f(N — 1)) are
the coordinates of f.

Answer Ex. 5.2. 2: We have that

proiy, (f) = N§=j ( / : f(t)%,n(t)dt) dom = Ngzj ( / " f(t)dt) Bom,

where we have used the orthogonal decomposition formula. Note also that, if
f(t) € Vi, and fp1 is the value f attains on [n,n + 1/2), and f, o is the value
f attains on [n + 1/2,n + 1), we have that

N-1 n+1
projy, (f) = > ( / f(t)dt) bo.n(t)
n=0 n
5 (1 1 o+ fo,
= r;o <§fn,1 + ifn,Z) Pon(t) = n;o %%ﬂ(t},

which is the function which is (fy,1 + fn,2)/2 on [n,n+ 1). This proves the first
part of Proposition 5.13.

Answer Ex. 5.2. 3: We have that

1f = projy, (II* = (f — proju, (), f — projy, ()
= (f, ) = 2(f, projy, (f)) + (projy, (f), projy, (f))
Now, note that

N-1 2

(o (v (1) = 3 ([ " sioa)

n=0



from what we just showed in Exercise 2 (use that the ¢¢,, are orthonormal).
This means that the above can be written

=(f,f)— 2]:Z_S/ON (/:H f(s)ds> Bon () f()dt + 1:2_01 (/ﬂ
— (55 - 2]:2: / " ( / " f(s)ds> byt + Ng: ( / " f(t)dt>

n+1 2

f(t)dt)

2

g 2N201 ( /""“ f(t)dt>2 N NZ: (f " f(t)dt>2

-0n-% (/ " f(t)dt)2~

Answer Ex. 5.2. 4: Since ¢ € Vj we must have that T'(¢) = ¢. Since 1) is
in the orthogonal complement of V; in Vi we must have that T'(¢)) = 0. The
columns in the matrix of T" are [T(QbO,O)]C” [T('[Z]0,0)]Cly [T((ZSOJ)]C], [T('l/)(),l)]C”
and so on, which is [¢o,0]c, , [0]c,, [¢0.1]c,, [0]c,, and so on, which is eg, 0, ez, 0,
and so on. It follows that the matrix of T" relative to C; is given by the diagonal
matrix where 1 and 0 are repeated alternatingly on the diagonal, N times (i.e.
1 at the even indices, 0 at the odd indices). (c) follows in the same way.

Answer Ex. 5.2. 5: From lemma 5.9 it follows that
prOjVU (¢1,2n) = ¢0,n/\/§
projy, (é1,2n41) = do,n/V?2
This means that
[Projvo(¢1,2n)]¢0 = ‘3n/\/é
[Projy, (61,2n41)] g, = €n/V2.

These are the columns in the matrix for projy, relative to the bases ¢; and ¢,.
This matrix is thus

1100 0 000
p oo 110 000
%...::::::

00000 - 011

Similarly, from lemma 5.12 it follows that

projW@ (¢1,2n) = 1/)O,n/\/§
projyy, (é1.2n+1) = —Yo,n/V2
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This means that
[PYOJWO(¢1 2n) ), = en/\f
[Projw, (#1.2n+1)]yp, = *en/\f

These are the columns in the matrix for projyy, relative to the bases ¢; and .
This matrix is thus

1 -1 0 0 O 0 0 O

1 0 0 1 -1 0 0 0 O
V2 ' :

0O 0 O 0 O 0 1 -1

Answer Ex. 5.2. 6: The orthogonal decomposition theorem gives that

N-1 N-1 N
pI‘OjWU Z f 1/"0 n 1/"0 n = Z (/0 f(t)wo,n(t)dt> 1/)0,7L(t)
n=0

}S_Ol -
-¥ (/ f(two,n(t)dt) Yon(t)
) 1::—01 </7;n+1/2 Fit— /7::2 f(t)dt) Yo,n(t),

where we used that g, is nonzero only on [n,n + 1), and is 1 on [n,n + 1/2),
and —1 on [n +1/2,n + 1). Note also that, if f(¢) € V4, and f,, 1 is the value
f attains on [n,n +1/2), and f, 2 is the value f attains on [n+1/2,n+ 1), we

have that
n+1/2 n+1
(/ f(t)dt —/ f(t)dt) )0,n (£)
n+1/2

( fnl >¢0n anl anwOn()

proj W0 =

MHOMZ

which is the function which is (fy,,1 — fn,2)/2 on [n,n+1/2), and —(fn1— fn,2)/2
on [n+ 1/2,n+ 1). This proves the second part of Proposition 5.13.

Answer Ex. 5.3. 1: Since ¢, ,, € V,,, we must have that T(dmn) = Pm,n-
Since ¢, is in the orthogonal complement of V,,, in V,, 41 we must have that
T (m,n) = 0. The columns in the matrix of T are [T(¢m,0)lc,n 15 [T (¥m,0)lCm 15

|:T(¢7n71)}cm+l ) [T(wm,l)]cmﬂa and so on, which is [¢7’L¢U]Cm+] ) [O]Cm,+1 ) [¢m,1]Cm+1v
[0, and so on, which is eq, 0, e2, 0, and so on. It follows that the matrix of
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T relative to Cp,+1 is given by the diagonal matrix where 1 and 0 are repeated
alternatingly on the diagonal, 2N times (i.e. 1 at the even indices, 0 at the
odd indices). (c) follows in the same way.

Answer Ex. 5.3. 2: If f € V},, we can write f(t) = Ziiévfl CmnPm,n(t). We
now get

2mN—1 2mN—1
gt) =f2t) = D cmnbmna(2t) Z Cmm2™2p(27M2t — n)
n=0
2mN—1 2mN -1
Z Cm’n271/22(m+1)/2¢(2m+1t — n) = Z Cm,n271/2¢m+1,n(t)-
— n=0
This shows that g € V;;,+1. To prove the other way, assume that g(t) = f(2¢t) €
m+41
Vin+1. This means that we can write g(t) = Zi:g N-1 Cmt+1,0Pm+1.n(t). We
now have
2mtiN_1 2mtiN_1
ft)=g(t/2) = Z Cm+1,nPm+1,n(t/2) = Z 1,02 2H(2m — n)
n=0 n=0
2M N -1 om+1ar_q
= > emprn2m2002m —n)+ Y 122027 — n)
n=0 n=2mN
2mN-1 2™ N—1
= Z CnL+1,n2(m+1)/2¢(2mt - ’I"L) + Z C'm+1,n+2mN2(m+l)/2¢(2mt -—n-—- ZmN)
n=0 n=0
2mN -1 2mN—1
= Z C7n+1,n2(m+1)/2¢(2mt - TL) + Z Cnl+1’n+2m]v2(m+1)/2¢(2mt - 'I’L)
n=0 n=0
2mMN-—1
= Z (Cm+1,n + Cm+1,n+2mN)21/227”/2¢(2mt - TL)
n=0
2mN -1
= Z (cnl+1,n + Cm+1,n+2mN)21/2¢m,n(t) S Vm
n=0

The thing which made this a bit difficult was that the range of the n-indices
here was outside [0,2™ N — 1] (which describe the legal indices in the basis V,,,),
so that we had to use the periodicty of ¢.

Answer Ex. 5.3. 3: By definition, [T]g, @ [T2], ® -+ & [In]s, is a block
matrix where the blocks on the diagonal are the matrices [T1]5,, [T2]s,, and so
on. If b; are the basis vectors in B;, the columns in [T;]p, are [T'(b;)],. This

means that [T1]p, ® [T2]g, ® - -- ® [Tn]g, has [T(b;)]p, in the j’th blockz, and 0
elsewhere. This means that we can write it as

0&---06&[T(b))]s, ©0---0.
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On the other hand, [Ty ®To @ ... D Ty]5,¢8.0...08, is a matrix of the same size,
and the corresponding column to that of the above is

[(Tl EBT2 D... @Tn)(o@ 00 b] @©0-- 'O)]B1®Bz@.4.®5n
=08---08T(b;) 0---0]3,68,0..08,
=0®---0® [T(b;)]s, ®0---0.

Here b; occurs as the i’'th summand. This is clearly the same as what we
computed for the right hand side above.

Answer Ex. 5.3. 4: Assume that A is an eigenvalue common to both 77 and
T5. Then there exists a vector v so that Tiv; = A\vq, and a vector v, so that
T5v9 = Avy. We now have that

(Th & To)(v1 & v2) = ({)1 792) <:;)
= (1) = (o)
- (Z;) = Mv1 © v2).

This shows that A is an eigenvalue for \ also, and that v, ®ws is a corresponding
eigenvector.

Answer Ex. 5.3. 5: We have that
A 0\ /A7t 0
-1 —1y _
(A B)(A™ @B )—<0 B)( 0 B*1>

_(AATT 0 N\ _ (T 0y _,
“\Lo BBt T\0 1)~

where we have multiplied as block matrices. This proves that A® B is invertible,
and states what the inverse is.

Answer Ex. 5.3. 6: We have that
A 0 C 0 AC 0
(A@B)(C@D)z(o B) (O D>:(0 BD)=(AC)@(BD)

where we again have multiplied as block matrices.

Answer Ex. 5.3. 8: The following code achieves this:

[S,fs]=wavread(’castanets.wav’) ;
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newx=DWTHaarImpl(S(1:2°17,1),2);
plot(0: (2717-1) ,newx(1:2°17,1))
axis([0 217 -1 11);

The values from Vj corresponds to the first 1/4 values in the plot, the values
from Wy corresponds to the next 1/4 values in the plot, while the values from

Wi correspond to the last 1/2 of the values in the plot.

Answer Ex. 5.3. 9: The following code achieves the task

function playDWTlower (m)
[S fs]=wavread(’../castanets’);
newx=DWTHaarImpl (S(1:2°17,1) ,m) ;
len=length(newx) ;
newx((len/2"m+1) :1ength(newx) )=zeros(length(newx)-len/2°m,1) ;
newx=IDWTHaarImpl (newx,m) ;
playerobj=audioplayer (newx,fs) ;
playblocking(playerobj) ;

For m = 2 we clearly hear a degradation in the sound. For m = 4 and above
most of the sound is unrecognizable. There is no reason to believe that sound
samples returned by the function lie in [—1,1]. you can check this by printing

the maximum value in the returned array on screen inside this method.

Answer Ex. 5.3. 11: The following code can be used

function playDWIlowerdifference(m)
[S fs]l=wavread(’../castanets’);
newx=DWTHaarImpl(S(1:2°17,1) ,m);
len=length(newx) ;
newx(1: (len/2°m) )=zeros(len/2°m,1) ;
newx=IDWTHaarImpl (newx,m) ;
playerobj=audioplayer (newx,fs) ;
playblocking(playerobj) ;

Answer Ex. 5.3. 12: Note first that, similarly to the computation in Exer-

cise 5.2.6, we have that

N (nt+1/2)2=™ (nt1)2—™
_ o9m/2 _
/0 (o ()t = 2 < / f(t)dt /( f(t)dt>-

2—m n+1/2)2—m

With f(t) = 1 —2|1/2 — t/N| we have two possibilities: when n < N2™~! we
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have that [n27™, (n + 1)27™) C [0, N/2], so that f(t) = 2¢/N, and we get

(n+1/2)27™ (n+1)2—™
W = 27/ / 2t /Ndt — / 2t /Ndt
n (

9—m n+1/2)2-m
_ 21,2 (n+1/2)2™™ 21,2 (n+1)27™
=222 N5 = 2" NNy
273m/2 273m/271

=% (2(n+1/2)*> —n® — (n+1)%) = I

Whenn 2 27 we hiave that f(t) =2—2t/N, and using that foN Ymn(t)dt =
0 we must get that wy, , = *

For f(t) = 1/2 + cos(2wt/N)/2, note first that this has the same coefficients as
cos(2nt/N)/2, since fON Ym.n(t)dt = 0. We now get

(n+1/2)27™ (n+1)27™
Wy = 2™/2 (/ cos(2mt/N)/2dt — / cos(27rt/N)/2dt)

2-m (n+1/2)2-m
= 2"/2[N sin(2rt/N)/(4m)| 50/ P* " — 2m2[N sin(2nt/N) /(4m)] et 0
2m/272N

= (2sin(27(n +1/2)27™/N) — sin(2rn2~" /N) — sin(27(n + 1)27"/N)) .

There seems to be no more possibilities for simplification here.

Answer Ex. 5.3. 13: We get

(n+1/2)2=™ (n+1)2=™
Wy = 2™/? / (t/N)’“dtf/ (t/N)*dt

2-m (n+1/2)2—m
m n+4+1/2)2—™ m n+1)2=™
= 2L /(4 D)NF)EET —am 2k (e 1) NE) DS
27m(k+1/2)

= T DNF (2(n+ 1/2)k+ —pktl _(n 4 1)k+1) )

The leading term n**! will here cancel, but the others will not, so there is no
room for further simplification here.

Answer Ex. 5.4. 1: Let us write f(t) = Ziv;ol cnPo,n(t). If k is an integer we

have that

N-1 N-1
f(k) = Z Cn¢0,n(k) = Z Cn¢(k — n)
n=0 n=0

Clearly the only integer for which ¢(s) # 0 is s = 0 (since ¢(0) = 1), so that
the only n which contributes in the sum is n = k. This means that f(k) = cg,

so that [f]d>o = (f(O),f(1)7 . 7f(N - 1))
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Answer Ex. 5.4. 2: We have that

n+1

(P0,ns Po.n) = / (1 — |t —n|)?dt

n—1

n+1
:/ (1—2lt—n|+(t—n)?)dt
n—1
1 7T 2
=22+ |-(t—n) ==,
+ 3 “)Ll :
We also have

n+1

<¢o,n,¢o,n+1:/ (1—(t—n))(1+(t—n—1))dt:/0 (1—u)(1+u—1)du

n

—/Ol(t—tZ)dt—

Finally, the supports of ¢g, and ¢q n+x are disjoint for k > 1, so that we must
have (¢0.n, $o.ntr) = 0 in that case.

N
SV
(=}

Answer Ex. 5.4. 3: We have that

X[-1/2,1/2) * X[—1/2,1/2)($) = / X[—1/2,1/2)(t)X[—1/2,1/2)(1’ — t)dt.
The integrand here is 1 when —1/2 < ¢t < 1/2 and —1/2 < z —¢ < 1/2, or
in other words when max(—1/2,—-1/2 + x) < t < min(1/2,1/2 + x) (else it is
0). When z > 0 this happens when —1/2 + z < ¢ < 1/2, and when z < 0 this
happens when —1/2 < t < 1/2 4 2. This means that

/2
_[jl/mdt:l—x 2> 0
_ * _ xr) = o
Xm1/21/2) % Xi=1/21/2 () {f_lﬁ;‘dtzlm Lz <0.

But this is by definition ¢.

Answer Ex. 5.5. 1: a. The function 1/; is a sum of the functions ¥ = ¢1,1, ¢,
and ¢o,1 (i.e. we have set n = 0 in Equation (5.54)). All these are continuous
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and piecewise linear, and we can write

2 0<t<1/2
prat)=¢2-2t 1/2<t<1
0 elsewhere

14+t -1<t<0
o)) =<1-t 0<t<1

0 elsewhere

t 0<t<1
(,250‘1(13): 2—t 1<t<2.

0 elsewhere

It follows that ¢ (t) = ¢1.1(t) — ap(t) — B¢1.1 is piecewise linear, and linear on
the segments [—1,0], [0,1/2], [1/2,1], [1,2].

On the segment [—1,0] only the function ¢ is seen to be nonzero, and since
¢(t) = 14t here, we have that {)(t) = —a(1 +t) = —a — at here.

On the segment [0,1/2] all three functions are nonzero, and

¢1,1(t) =2t
o) (t) =1—1t
do(t) =1t

on this interval. This means that ¢(t) = 2t —a(1 —t) — ft = 2+ — B)t — a
on [0,1/2].
On the segment [0,1/2] all three functions are nonzero, and

$11(t) =22t
p)(t) =1—t
Po1(t) =t

on this interval. This means that ¢)(t) = 2—2t—a(1—t)—ft = (a—S—2)t—a+2
on [1/2,1].

On the segment [1,2] only the function ¢g; is seen to be nonzero, and since
¢0,1(t) = 2—1t here, we have that )(t) = —B(2—1t) = Bt — 28 here. For all other
values of ¢, zﬁ is zero. This proves the formulas for 1/} on the different intervals.
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b. We can write
N 2 0 1/2 1 2
/0 w(t)dt:[1¢(t)dt:[1w(t)dt+ [ dwar+ 1/21,D(t)dt+/1 D(t)dt
0 1/2
:/ (—a—at)dt+/ 24+a—p)t—a)dt
-1 0
1 2
+/1/2((a—6—2)t—a+2)dt+/1 (Bt —2p)dt

1,1 1 ) 1/2

= {fatfiat]_l+{§(2+afﬁ)t fat]o
1 1 2

+ [f(a—ﬂ—Q)tz—l—(Q—a)t}
2 1

1

+ [lﬁtQ - QBt]
2 L2

:_a+1a+7(2+a—6)—%a+g(a—ﬁ—2)+%(2—a)+gﬂ_25

fON t@(t)dt is computed similarly, so that we in the end arrive at % - B.
c. The equation system

1
I _a—-8=0
g h
1
Z_B8=0
1P
has the unique solution a = g = i, which we already have found.
Answer Ex. 5.5. 2: a. In order for ¢ to have vanishing moments we must

have that [4(t)dt = [tib(t)dt = 0 Substituting ) = ¢ — adoo — B we see
that, for £k =0, 1,

/tk (ago,0 + Beo,1) dt = /tkw(t)dt.
The left hand side can here be written

/tk (o0 + Beo1) dt = a/tk¢o,0dt+5/tk¢o,1(t)dt

1 2
a/ tk(lf\t|)dt+ﬁ/ th(1 — |t — 1])dt = aay, + Sby.
0

—1

The right hand side is
1
/t%(t)dt _ /tkqsl,l(t)dt _ / (1= 20t — 1/2))dt = ex.
0
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The following program sets up the corresponding equation systems, and solves
it by finding «, 5.

A=zeros(2) ;
b=zeros(2,1);
for k=0:1
A(k+1,:) = [quad(@(t)t. k.*(1l-abs(t)),-1,1)...
quad(@(t)t. k.*(1-abs(t-1)),0,2)];
b(k+1)=quad(@(t)t. k.*(1-2*abs(t-1/2)),0,1);
end
A\b

b. Similarly to a., Equation (5.60) gives that

/tk (ado,0 + Bedo,1 + YPo,—1 + d¢o,2) dt = /tkﬂ)(t)dt-

The correspodning equation system is deduced exactly as in a. The following
program sets up the corresponding equation systems, and solves it by finding

a7577a5-

A=zeros(4);
b=zeros(4,1);
for k=0:3
A(k+1,:) = [quad(@(t)t. k.*(1-abs(t)),-1,1)...
quad(@(t)t. k.*(1-abs(t-1)),0,2) ...
quad(@(t)t. k.*(1-abs(t+1)),-2,0)...
quad(@(t)t. k.*(1-abs(t-2)),1,3)];
b(k+1)=quad(@(t)t. k.*(1-2*abs(t-1/2)),0,1);
end
A\b

c. The function 1[} now is supported on [—2, 3], and can be plottes as follows:

t=linspace(-2,3,100) ;

plot(t, (t>=0).*(t<=1).*(1-2*abs(t-0.5)) ...
-coeffs(1)*(t>=-1) .*x(t<=1) .*(1-abs(t)) ...
—coeffs(2)*(t>=0) . *(t<=2) .*(1-abs(t-1)) ...
-coeffs(3)*(t>=-2) .x(t<=0) .*(1-abs(t+1)) ...
—coeffs(4)*(t>=1) .*(t<=3) .*(1-abs(t-2)))

e. If we define

K
& =100~ Y (ko —k — Brokt1)
k=0

we have 2k unknowns. These can be determined if we require 2k vanishing
moments.

345



Answer Ex. 5.6. 1: You can set for instance Ho = {1/4,1/2,1/4}, and H; =
{1} (when you write down the corresponding matrix you will see that Ag = 1/2,

Aq,0 =0, so that the matrix is not symmetric)

Answer Ex. 5.6. 2: It turns out that this is wrong. In fact, the Haar wavelet

is a counterexample!

Answer Ex. 5.6. 4: The following code can be used:

function xnew=DWTImpl(hO,h1,x,m)
for mres=1:m
len=length(x) /2~ (mres-1) ;
x(1:1len)=rowsymmmratrans(hO,h1,x(1:1en));

% Reorganize the coefficients
1=x(1:2: (1en-1));

h=x(2:2:1en);
x(1:1len)=[1 h];
end
Xnew=x;

Answer Ex. 5.6. 5: The following code can be used:

function x=IDWTImpl(g0,gl,xnew,m)
[a0,a1]=changecolumnrows(g0,gl) ;
for mres=m: (-1):1
len=length(xnew) /2~ (mres-1) ;

% Reorganize the coefficients first
1=xnew(1: (1en/2));

h=xnew((len/2+1) :1len) ;

xnew(1:2: (len-1))=1;
xnew(2:2:1en)=h;

xnew(1:1len)=rowsymmratrans(a0,al,xnew(l:1len)) ;
end

X=XNew;

Answer Ex. 5.6. 6: a. We have that Hy = %{1, 1,1,1,1}, and Hy
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The frequency responses are

1o 1.0 1 1 .1
/\Ho(w) _ 762%) Lo Z o 7671w3672tw

5 5 5 5
2 2 1
=z cos(2w) + 7 COSW + £
1, 1 1 _; 2 1
A, (w) = —ge“" + 3 ge_“" = —gcosw + 3

Both filters are symmetric, and we have that h0=(1/5,1/5,1/5), and h1=(1/3, —1/3).
b. We have that Go = {1/4,1/2,1/4}, and G; = {1/16,—1/4,3/8,-1/4,1/16}.
The frequency responses are

1. 1 1 _.
)\Go(w):fe“"—i—f—i—fe_“"

4 2 4
1 1
=3 cos(w) + 3
1 iw 1 iw 3 1 —iw —2iw
)\G1 (OJ) = E€2 — ZE + g Ze Tﬁ 2
1 1 3
=3 cos(2w) — 5 cosw + 3

Both filters are symmetric, and we have that g0=(1/2,1/4), and g1=(3/8, —1/4,1/16).

Answer Ex. 5.6. 7: a. We have that Hy = {1/16, 1/4,%7 1/4,1/16}, and
Hy ={-1/4,1/2,—1/4}. The frequency responses are

L o 1, 3 1 .1 ,
At (W) = ﬁemw + 16“" +o+ Zeﬂwﬁefzw
= . (2 )+ ! +§
= g cos(2w) + 5 cosw + 2
1., 1 1
/\Hl(w) :—161 +§_Ze B
1 1
= —gcos(w) + 5.

The two first rows in Pe, . ¢, are
3/8 1/4 1/16 0 --- 1/16 1/4
~1/4 1/2 -1/4 0 -~ 0 0

The remaining rows are obtained by translating these in alternating order.
b. We have that Gy = %{LL 1}, and G = %{1, —1,1,-1,1}. The frequency
responses are

1, 1 1 _,, 2 1
)\Gu(w):§e +§+§e :§COSW+§
15, 1. 1 1 .1 :
/\Gl(w) — g€2uu o gezw+g _ gefzwg —2iw
2 (2) 2 L1
— — COS(4Ww) — — COSw -
5 5 5
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The two first columns in Py . ¢, are

1/3 —1/5
1/3 1/5
0 -1/5
0 1/5
0 0
0 0
1/3 1/5

The remaining columns are obtained by translating these in alternating order.

Answer Ex. 5.6. 8: The following code can be used:

function playDWIfilterslower(m,hO,h1,g0,g1)
[S fs]=wavread(’../castanets’);
newx=DWTImpl (h0,h1,S(1:2°17,1) ,m);
len=length(newx) ;
newx((len/2"m+1) :length(newx) ) =zeros(length(newx)-len/2°m,1) ;
newx=IDWTImpl(g0,gl,newx,m) ;
playerobj=audioplayer(newx,fs) ;
playblocking(playerobj) ;

Answer Ex. 5.6. 9: The following code can be used:

function playDWTfilterslowerdifference(m,h0,h1,g0,g1)
[S fs]=wavread(’../castanets’);
newx=DWTImpl (h0,h1,S(1:2°17,1) ,m);
len=length(newx) ;
newx(1: (len/2°m) )=zeros(len/2°m,1) ;
newx=IDWTImpl(g0,gl,newx,m) ;
playerobj=audioplayer(newx,fs) ;
playblocking(playerobj) ;

After the replacements in the function playDWTall, we get code which looks
like this

function playDWTalldifference(m)
disp(’Haar wavelet’);
playDWTlowerdifference(m) ;
disp(’Wavelet for piecewise linear functions’);
playDwWTfilterslowerdifference(m, [sqrt(2)],...
[sqrt(2) -1/sqrt(2)],...
[1/sqrt(2) 1/(2*%sqrt(2))1,...
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[1/sqrt(2)1);
disp(’Wavelet for piecewise linear functions, alternative version’);
playDwWTfilterslowerdifference(m, [3/(2*sqrt(2)) 1/(2%sqrt(2)) -1/(4*sqrt(2))],...
[sqrt(2) -1/sqrt(2)1,...
[1/sqrt(2) 1/(2*sqrt(2))],...
[3/(4*sqrt(2)) -1/(4*sqrt(2)) -1/(8*sqrt(2))1);

Answer Ex. 5.6. 10: The code which can be used looks like this a.

newx=IDWTImpl([1/sqrt(2) 1/(2*sqrt(2))], [1/sqrt(2)],...
[-coeffs(1); -coeffs(2); -coeffs(4); 0; 0; 0; 0; ...
-coeffs(3); 1; 0; 0; 0; 0; 0; 0; 01,1);

gl=newx(2:6)’;

[g1(5:(-1):3) g1(2:5)] % compact filter notation

g0=[1/sqrt(2) 1/(2*sqrt(2))];

omega=linspace (0, 2*pi, 100) ;

plot (omega,gl (1) +gl1(2) *2*cos (omega) +g1(3) *2*cos (2*omega) . . .
+g1(4) *2*cos (3*omega) +g1 (5) *2*cos (4*omega) )

alpha=1/(g0(1) *g1(1)+2*g0(2) *g1(2)) ;
hO=alpha*(-1) .~ (0: (length(g1)-1)) . *gl;
hi=alpha*(-1).~(0: (length(g0)-1)) .*g0;

for m=1:4
m
playDWTfilterslower(m,h0,h1,g0,g1);
playDwTfilterslowerdifference(m,h0,h1,g0,g1) ;
end

Answer Ex. 7.1. 1: We have that

(ITeT)(z®y));=2(T(y));
1 1

1 1 1
= xia(ijrl —yj—1) = ST+ — G TiYi-1 = 5(55 ®Y)ij+1 — 5(56 ®Y)ij—1-

The same type of equation holds if we replace  ® y with any matrix X, and
we see that this corresponds to placing the computational molecule

0 0 0
- -1 0 1
0 0 0
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over the image samples, which is seen to coincide with the molecule from Equa-
tion 6.6 in Example 6.18.

Answer Ex. 7.1. 2: In Example 7.9 we showed that (T®1)X); ; = (Xit1,—

%Xi—u- Using the previous exercise we get that

(TeT)X)i; =(TeDH((IT)X)),
= ST — ST D)X
1/1 1 1/1 1
=3 <§X1’+1,j+1 - §Xi+1,j71) -3 <§Xi71,j+1 - 5X1'71,j71>
1

1 1 1
= ZXi+1,j+l - ZXH—I,]'—I - ZXz'—LjH + ZXi—Lj—l-

This is the same as placing the computational molecule

1 0 -1
0 0 0
-1 0 1

over the image samples, which is seen to coincide with the molecule from Equa-
tion 6.9 in Example 6.18

Answer Ex. 7.1. 5: We have that

Flamy + B2, y) = (@1 + fx2) @ y = (axy + Ba)y”

= a1y’ + Bryy’ = a(z1Ry) + Bz DY)
= aF(‘Tlay) + 5F(.’B1,’y)

The second statement follows similarly.

Answer Ex. 7.1. 6: Multiplicaton with the matrix

000 -+ 001
000 -+ 010
T=|:o 0 00
010 - 000
100 -+ 000

reverses the elements in a vector. This means that

(TehEoy))i,; = (Tz)@y)i; = (Te)iy; = tru-1-iY; = (T D Y)M-1-i;-

This means that also ((T'® 1) X); ; = Xar—1—s,; for all X, so that T'® I reverses
rows, and thus is a solution to a.. Similarly one shows that I ® T" reverses
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columns, and is thus a solution to b.. It turns out that it is impossible to find
S and T so that transposing a matrix X corresponds to computing (S ® T)X.
To see why, S and T would need to fulfill

(SET)(e;®e)) = (Sei) ® (Te;) = ¢; D e,

since e; ® e; is the transpose of e; ® e;. This would require that Se; = e; for
all 7, j, which is impossible.

Answer Ex. 7.2. 1: The following code can be used:

function newX=FFT2Impl (X)

for k=1:2

for s=1:size(X,2)
X(:,s)=FFTImpl(X(:,s));

end
X=X’;

end

newX=X;

function newX=IFFT2Impl (X)

for k=1:2

for s=1:size(X,2)
X(:,s)=IFFTImpl(X(:,s));

end
X=X,

end

newX=X;

function newX=DCT2Impl (X)

for k=1:2

for s=1:size(X,2)
X(:,s)=DCTImpl(X(:,s));

end
X=X’ ;

end

newX=X;

function newX=IDCT2Impl (X)

for k=1:2

for s=1:size(X,2)
X(:,s)=IDCTImpl(X(:,s));

end
X=X’;

end

newX=X;
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Answer Ex. 7.2. 2: The following code can be used:

function newX=transform2jpeg(X)
numblocksx=size(X,1)/8;
numblocksy=size(X,2)/8;
for bx=0: (numblocksx-1)
for by=0: (numblocksy-1)
X((1+8%bx) : 8% (bx+1) , (1+8%by) : 8% (by+1))=. ..
DCT2Impl (X((1+8+bx) : 8+ (bx+1) , (1+8+by) : 8+ (by+1))) ;
end
end
newX=X;

function X=transform2invjpeg(newX)
numblocksx=size(newX,1)/8;
numblocksy=size(newX,2)/8;
for bx=0: (numblocksx-1)
for by=0: (numblocksy-1)
newX((1+8+bx) : 8% (bx+1) , (1+8*by) :8x (by+1))=. ..
IDCT2Impl (newX((1+8%bx) : 8% (bx+1) , (1+8%by) :8x (by+1))) ;
end
end
X=newX;

Answer Ex. 8.1. 1: The following code can be used:

function Xnew=DWT2HaarImpl (X,m)

for mres=1:m
1l1=size(X,1) /2" (mres-1);
12=size(X,2) /2" (mres-1);
for s=1:12

X(1:11,s)=DWTHaarImpl(X(1:11,s),1);

end
X=X’

for s=1:11
X(1:12,s)=DWTHaarImpl(X(1:12,s),1);
end
X=X’;
end
Xnew=X;

function X=IDWT2HaarImpl (Xnew,m)
for mres=m: (-1):1
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li=size(Xnew,1) /2" (mres-1);
12=size(Xnew,2) /2" (mres-1) ;
for s=1:12
Xnew(1:11,s)=IDWTHaarImpl (Xnew(1:11,s),1);
end
Xnew=Xnew’ ;

for s=1:11
Xnew(1:12,s)=IDWTHaarImpl (Xnew(1:12,s),1) ;
end
Xnew=Xnew’ ;
end
X=Xnew;

Answer Ex. 8.1. 2: The following code achieves the task

function showDWTlower (m)
img=double(imread (’mm.gif’,’gif’));
newimg=DWT2HaarImpl (img,m) ;
[11,12]=size(img);
tokeep=newimg(1: (11/(2°m)),1: A2/(2'm)));
newimg=zeros(size(newing)) ;
newimg(1: (11/(2°m)),1: (12/(2°m)))=tokeep;
newimg=IDWT2HaarImpl (newimg,m) ;
imageview(abs(newimg)) ;

There is no reason to believe that image samples returned by the function lie
in [0,255]. You can check this by printing the maximum value in the returned
array on screen inside this method.

Answer Ex. 8.1. 3: The following code can be used

function showDWIlowerdifference(m)
img=double(imread (’mm.gif’,’gif’));
newimg=DWT2HaarImpl (img,m) ;
[11,12]=size(img) ;
newimg(1: (11/2"m),1: (12/2"m) )=zeros(11/2"m,11/2°m) ;
newimg=IDWT2HaarImpl (newimg,m) ;
imageview(abs(newimg)) ;

Answer Ex. 8.1. 4: The following code can be used:

function Xnew=DWT2Impl(hO,h1,X,m)

353



for mres=1:m
li=size(X,1) /2" (mres-1);
12=size(X,2) /2" (mres-1) ;
for s=1:12
X(1:11,s)=DWTImpl (h0,h1,X(1:11,8),1);
end
X=X’;

for s=1:11
X(1:12,s)=DWTImpl (hO,h1,X(1:12,s),1);
end
X=X’;
end
Xnew=X;

function X=IDWI2Impl(gO0,gl,Xnew,m)
for mres=m:(-1):1
li=size(Xnew,1) /2" (mres-1);
12=size (Xnew,2) /2" (mres-1) ;
for s=1:12
Xnew(1:11,s)=IDWTImpl(g0,gl,Xnew(1:11,s),1);
end
Xnew=Xnew’ ;

for s=1:11
Xnew(1:12,s)=IDWTImpl(g0,gl,Xnew(1:12,s),1);
end
Xnew=Xnew’ ;
end
X=Xnew;

Answer Ex. 8.1. 5: The following code can be used:

function showDWIfilterslower(m,hO,h1,g0,g1)
img=double(imread (’mm.gif’,’gif’));
newimg=DWT2Impl (hO,h1,img,m) ;
[11,12]=size(img) ;
tokeep=newimg(1: (11/(2™m)),1: (12/(2™m)));
newimg=zeros(size(newing)) ;
newimg(1: (11/(2°m)),1: (12/(2"m)))=tokeep;
newimg=IDWT2Impl(g0,gl,newimg,m) ;
imageview(abs (newimg)) ;
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Answer Ex. 8.1. 6: The following code can be used:

function showDWTIfilterslowerdifference(m,hO,h1,g0,g1)
img=double(imread (’mm.gif’,’gif’));
newimg=DWT2Impl (hO,h1,img,m) ;
[11,12]=size(img) ;
newimg(1: (11/2"m),1: (12/2"m) )=zeros(11/2"m,11/2"m) ;
newimg=IDWT2Impl(g0,gl,newimg,m) ;
imageview(abs (newimg)) ;

After the replacements in the function showDWTall, we get code which looks
like this

function showDWTalldifference(m)
disp(’Haar wavelet’);
showDWT1lowerdifference(m) ;
disp(’Wavelet for piecewise linear functions’);
showDWIfilterslowerdifference(m, [sqrt(2)],...
[sqrt(2) -1/sqrt(2)1,...
[1/sqrt(2) 1/(2*sqrt(2))1,...
[1/sqrt(D1);
disp(’Wavelet for piecewise linear functions, alternative version’);

[sqrt(2) -1/sqrt(2)1],...
[1/sqrt(2) 1/(2*sqrt(2))],...
[3/(4xsqrt(2)) -1/(4*xsqrt(2)) -1/(8*sqrt(2))1);

Answer Ex. 9.3. 3: You can argue in many ways here: For instance the deriva-
tive of f2(x) is 2f(z) f'(x), so that extremal points of f are also extremal points

of f2.

Answer Ex. 9.3. 7: a. If ¢; ; = 0 the function to be minimized is
n
« Z c“rf — Z HiTj.
i<n Jj=1

The gradient of this function is 2aCx — p, where p is the vector with p in all
entries. Lagrange multipliers thus gives that 2aCx — p = A, where X is the

vector with A in all entries. This gives that x; = /2‘;;)\ If Sa; = 1 we must
have that % > c% =1,s0that \= —p + 2210;@'

b. When n = 2, we have that x5 =1 — x1, so that
f(x1,20) = aci12? + acyprs + alcia + co1)T120 — py — ps
= ac 2 + acyp(l — 21)? + alcig + co1)x1 (1 — 21) — pay — p(1 — x1)

= a(cn + C20 — C12 — (221)27% + 0(72622 + c12 + 621)1’1 +acag — 1
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The derivative of this is 2a(c11 4 c22 — c12 — ¢21) @1 + @(—2¢22 + €12 + €21 ), which

: __ _ _ —2coatciotcean S
is 0 when z; = TR —— This is not dependent on .

Answer Ex. 9.3. 8: a. We have that f(x) = ), ¢;z;, so that E%: = ¢;, SO
that Vf(x) = q. Clearly % =0, so that V2f(z) = 0.

b. Note that, in the text of the exercise, we should also have assumed that A is
symmetric. We have that

,j i

1,5,i#]
so that

of 1 |
9a;, ~ AuTit g Z,xj(Aij +45) =5 Z%(Aij + 4ji)
JJ#i J
1 1
=3 D Ay + (AT)ij)x; = (G(A+ AT)z);

J

This gives Vf = %(A + AT)z. In particular, when A is symmetric, this gives
Vf = Az. Finally we get

of o ,1 7 1 T
= —\= Al A ii)Ti) = = Az A ii)s
0,01, axj(2 Ej (Aij + (A7)ij)z5) 2 Ej (Aij + (A7)ij)
so that V2f = %(AJrAT). In particular, when A is symmetric we get V2f = A.

Answer Ex. 9.3. 9: First note that f(0,0) = 3, and that f(2,1) = 8 We have
that Vf = (2x1 4+ 3x2,3x1 — 1022), and that V£(0,0) = (0,0), and Vf(2,1) =
(7,—4). The first order Taylor approximation at (0,0) is thus

£(0,0) + V£(0,0)" (x — (0,0)) = 3.
The first order Taylor approximation at (2,1) is

F2)+ VD (@ —(2,1) =8+ (7,—4) (21 — 2,22 — 1)
:84’7(.’31*2)74(5[}271) :7.1'1 *4%2*2.

Answer Ex. 9.3. 11: If A is positive definite then its eigenvalues \; are posi-
tive. The eigenvalues of A~! are 1/);, which also are positive, so that A~1 also
is positive definite.
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Answer Ex. 10.3. 1: The function f(z,y,2) = 22 + 3% — 2 is convex (the
Hessian is positive semidefinite). The set in question can be written as the
points where f(z,y,z) <0, which is a sublevel set, and therefore convex.

Answer Ex. 10.3. 5: Write B in row echelon form, to see which are pivot
variables. Express these variables in terms of the free variables, and replace the
pivot variables in all the equations. Az > b then takes the form Cx > b (where
x now is a shorter vector), and this can be written as —Cx < —b, which is
on the new form with H = —C, h = —b. Note that this strategy rewrites the
vector ¢ to a shorter vector.

Answer Ex. 10.3. 6: Let y = Z;:V\ng‘ and z = Z;:l pjx;, where all
Aj,pt; > 0, and Z;zl)\j =1, Z;zl p;j = 1. For any 0 < XA < 1 we have
that

t t t
A=Ny+Az=1=N)D Nz + XY gz = (1= N+ \gj)w;.
=1 i=1

=1

The sum of the coefficients here is

t t t
(=N + M) =T =XND N +AD> p=1-A+A=1,
j=1 j=1 j=1

so that C is a convex set.

Answer Ex. 10.3. 7: Follows from Proposition 10.3, since f(z) = e® is con-
vex, and H(z) = > 7, x; is affine.

Answer Ex. 10.3. 9: a. \f is convex if A > 0, concave if A < 0.

b. min{f, g} may be neither convex or concave, consider the functions f(z) =
a?, g(z) = (x - 1)%

c. |f| may be neither convex or concave, consider the function f(z) = 22 — 1.

Answer Ex. 11.2. 1: F(z) = 0 is equivalent to ||[F(z)|?> = Y, Fi(z) = 0,
where F; are the component functions of F'. Solving F'(x) = 0 thus is equivalent
to showing that 0 is the minimum value of )", F;(x).

Answer Ex. 11.2. 2: Here we construct the function f(z) =T(z)—z = z/2—
32%/2, which has derivative f/(x) = 1/2 — 922/2. We can then run Newton’s
method as follows:

newtonmult (sqrt(5/3),0(x) (0.5%x-1.5%x"3) ,0(x) (0.5-4.5%x"2))
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This converges to the zero we are looking for, which we easily compute as
x =/1/3.

Answer Ex. 11.2. 4: a. The function z — ||Az|| is continuous, and any con-
tinuous function achieves a supremum in a closed set (here ||z| = 1).

b. For n = 2, it is clear that the sublevel set is the square with corners (1,0),
(—1,0), (0,1), (0,—1). The function f(x) = ||Az| is the composition of a con-
vex function and an affine function, so that it must be convex. If & € R™ and
|z]1 = 1, we can write * = Y . \iv;, where 0 < \; <1, 3" | A, = 1, and
v; = *e; (i.e. it absorbs the sign of the ith component). If w is the vector
among {+e;}; so that f(+e;) < f(w) for all j and all signs, Jensen’s inequality
(Theorem 10.4) gives

f(x) =f (Z /\i’vi) <D Af(@) <D Nif(w) = f(w),
i=1 =1 =1

so that f assumes its maximum in w. For this particular f, if w = +ey, the
maximum is

n n
| Awly = || + coleAl = 3 [+ au] = 3 Jaul-
=1

i=1

It is now clear that ||A| = supy, iy @ik

Answer Ex. 11.2. 5: We are asked to find for which A we have that ||Az|1 <
lz||1 for any x. From the previous exercise we know that this happens if and
only if [|A|| < 1, i.e. when Y i |a;| < 1 for all k.

Answer Ex. 11.2. 6: You can write

newtonmult (xO0,. ..
Ox) ([x(1)~2-x(1) /x(2)~3+cos(x(1))-1; 5*x(1)~4+2*xx(1)~3-tan(x(1)*x(2)1
Q(x) ([2*%x(1)-1/x(2)~3-sin(x(1)) 3*x (1) /x(2)1
20%x (1) ~3+6%x (1) ~2-x(2) "8/ (cos (x (1) *x(2)~8) ) ~2 -8%x (1) *x(2
)

Answer Ex. 12.2. 4: The gradient of f is Vf = (4 + 2x1,6 + 4x2), and the

Hessian matrix is V2 f = <(2) 2) , which is positive definite. The only stationary
point is (=2, —3/2), which is a minimum.
The gradient of g is Vg = (4 + 2x1,6 — 4x3), and the Hessian matrix is V2g =
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2 0
0 —4)
must be a saddle point.

which is indefinite. The only stationary point is (—2,3/2), which

Answer Ex. 12.2. 5: The gradient is Vf = (40021 (v2—2%)—2(1—21), 200(x2—
23)). The Hessian matrix is

vif = 120023 — 40022 +2  —40021
—4002 200

Clearly the only stationary point is = (1,1), and we get that

) (802 —400
Vf(l’l)*(fzmo 200)'

It is straightforward to check that this matrix is positive definite, so that (1,1)
is a local minimum.

Answer Ex. 12.2. 6: The steepest descent method takes the form
Tp1 = Tk — oV f(xp),
where V f(x1) = Az, —b. We have that
f@rs1) = (1/2)2 Agir — b @ppa

_ 1

2
1

+ §ngwk — b (x), — . V f(z))

L (T AT ) of

+ <bTVf(wk) - % (h AV f (1) + Vf(wk)TAka)) a

1
+ imfAmk — bz,

Now, since we claim that V f(xy) is an eigenvector, and that A is symmetric,
we get that AV f(zy) = AV f(zx) and Vf(zr)TA = AV f(xi)T, where X is the
corresponding eigenvalue. This means that the above can be written

1 1
flxpy1) = ix\HVf(mk)HQa%Jr (bTVf(ack) — ngVf(xk)) ozk-Jrg:cfA:ckbemk
If we take the derivative of this w.r.t. a; and set this to 0 we get

bV () — w[ AV f () (wa - bT) V()

o NIV (@) 2 T V@)l
_ Az~ )" V(@) _ V(@) V@) 1
MV f (i) 2 NICHIEEEY
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This means that ay = % is the step size we should use when we perform exact

line search. We now compute that

Vf(wk,+1) = A(I:;H,l — b =A (J:k — %Vf(:c@) — b

=V f(zr) - Vf(zk) =0,

which shows that the minimum is reached in one step.

Answer Ex. 12.2. 7: a. This is simply Exercise 9.3.8.

b. If V2f(x) is positive definite, its eigenvalues are positive, so that the deter-
minant is positive, and that the matrix is invertible. h = —V2f(z;) "1V f(z)
follows after multiplying with the inverse.

Answer Ex. 12.2. 8: Here we have said nothing about the step length, but
we can implement this as in the function newtonbacktrack as follows:

function [xopt,numit]=steepestdescent(f,df,x0)
epsilon=10~(-3);
xopt=x0;
maxit=100;
for numit=1:maxit
d=-df (xopt) ;
eta=-df (xopt) >*d;
if eta/2<epsilon
break;
end
alpha=armijorule(f,df,xopt,d) ;
xopt=xopt+alphax*d;
end

The algorithm can be tested on the first function from Exercise 4 as follows:

£=0(x) (4xx(1)+6%x(2)+x(1) ~2+2*x(2)~2) ;
df=0(x) ([4+2%x(1) ;6+4%x(2)])
steepestdescent (f,df, [-1;-1])

Answer Ex. 12.2. 9: The function can be implemented as follows:

function alpha=armijorule(f,df,x,d)
beta=0.2; s=0.5; sigma=10"(-3);
m=0;
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while (f(x)-f(x+betam*s*d) < -sigma *beta~mks *(df (x))’>*d)
m=m+1;

end

alpha = beta"m*s;

Answer Ex. 12.2. 10: The function can be implemented as follows:

function [xopt,numit]=newtonbacktrack(f,df,d2f,x0)
epsilon=10~(-3);
xopt=x0;
maxit=100;
for numit=1:maxit
=-d2f (xopt) \df (xopt) ;
eta=-df (xopt) >*d;
if eta/2<epsilon
break;
end
alpha=armijorule(f,df,xopt,d) ;
xopt=xopt+alphax*d;
end

Answer Ex. 13.3. 3: This is the same as finding the minimum of f(z1,...,z,) =
—Z1%2 - Tn. This boils down to the equations — H#j x; = 1, since clearly the
minimum is not attained when there are any active constraints. This implies
that 1 = ... = x,, so that all x; = 1/n. It is better to give a direct argument
here that this must be a minimum, than to attempt to analyse the second order
conditions for a minimum.

Answer Ex. 13.3. 4: We can formulate the problem as finding the minimum
of f(z1,22) = (v1 — a1)? + (w2 — az)? subject to the constraint hy(xq,z2) =
22 4+ 22 = 1. The minimum can be found geometrically by drawing a line which
passes through a and the origin, and reading the intersection with the unit
circle. This follows also from that V f is parallel to @ — a, Vh; is parallel to «,
and from that the KKT-conditions say that these should be parallel.

Answer Ex. 13.3. 6: We rewrite the constraint as g; (z1, x2) = 224+23—1 = 0,
and get that Vgi(z1,x2) = (221,222). Clearly all points are regular, since
Vgi1(z1,22) # 0 whenever g;(z1,22) = 0. Since Vf = (1,1) we get that the
gradient of the Lagrangian is

1 21}1 o
(1) () =o
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which gives that x; = x5. This gives us the two possible feasible points
(1/v/2,1/v/2) and (—1/v/2,—1/v/2). For the first we see that A\ = —1/v/2,
for the second we see that A = 1/v/2. The Hessian of the Lagrangian is

A <§ g) For the point (1/v/2,1/+/2) this is negative definite since \ is nega-

tive, for the point (—1/v/2, —1/+/2) this is positive definite since \ is positive.
From the second order conditions it follows that the minimum is attained in
(71/\/57 71/\/5)'

If we instead eliminated x9 we must write z9 = —/1 — x% (since the positive
square root gives a bigger value for f), so that we must minimize f(z) = = —
V1 — x2 subject to the constraint —1 < z < 1. The derivative of this is 1 +
\/%7, which is zero when z = f’ which we found above. We also could
have found this by considering the two inequality constraints —x — 1 < 0 and
r—1<0.

If the first one of these is active (i.e. = —1), the KKT conditions say that
f'(=1) > 0. However, this is not the case since f'(xr) - —oco when  — —1,.
If the second constraint is active (i.e. z = 1), the KKT conditions say that
f'(1) < 0. This is not the case since f’(x) — oo when & — 1—. When we have
no active constraint, the problem boils down to setting the derivative to zero,
in which case we get the solution we already have found.

Answer Ex. 13.3. 9: We define h1(x1,...,2,) = 21 + ... + o, — 1, and find
that Vh; = (1,1,...,1). The stationary points are charactemzed by Vf +

AT(1,1,...,1) = 0, which has a solution exactly when aanl = ggf; L= dz
Answer Ex. 13.3. 10: We substitute z,, = 1—x1—...—z,_1 in the expression

for f, to turn the problem into one of minimizing a function in n — 1 variables.

Answer Ex. 13.3. 11: The problem can be rewritten to the following mini-
mation problem:

min{—zT Az : g;(z) = ||z|| - 1 = 0}.

We have that Vf(z) = —Az, and Vgi(x) = Qﬁ:” = ”2—” Clearly all points are
regular, and we get that

Vf+>\Vg1:an:+Aﬁ:0.

Since we require that ||| = 1 we get that Az = Az. In other words, the optimal
point @ is an eigenvector of A, and the Lagrange multiplier is the corresponding
eigenvalue.

362



Answer Ex. 13.3. 12: Define f(z1, 72, 23) = (1/2)(224+23+23%) and g1 (z1, 22, 73) =
21+ @2 + 3. We have that Vf = (21, 22, 23), Vg1 = (1,1,1). Clearly all points

are regular points. If there are no active constraints, we must have that Vf = 0,

so that 1 = xo = x3 = 0, which does not fulfill the constraint. If teh constraint

is active we must have that (z1, z9, x3) + u(1,1,1) = 0 for some p < 0, which is
satisfied when x1 = o = 3 < 0. Clearly we must have that 1 = x5 = x3 = —2.

The Hessian of L(x, A, p) is easily computed to be positive definite, so that we

have found a minimum.

Answer Ex. 13.3. 13: We need to minimze f(z1,22) = (21 —3)%4 (20 —5)2+
x1T2 subject to the constraints

g1(w1,22) = —21 <0
g2(1,22) = =22 <0
g3(z1,22) =21 —1<0
ga(x1,22) =29 — 1 <0.

We have that Vf = (2(z1 — 3) + x2,2(z2 — 5) + x1), and Vg1 = (—1,0),
Vg2 = (0,-1), Vgz = (1,0), Vgq = (0,1). If there are no active constraints the
KKT conditions say that Vf = 0, so that

2x1 + 19 = 611 + 229 =10

which gives that ;7 = 2/3 and x5 = 14/3. This point does not satisfy the
constraints, however.

Assume now that we have one active constraint. We have four possibilities in
this case (and any solution will be regular). If the first constraint is active the
KKT conditions say that

201 + 19 — 6 -1

<x1+2x2710> +“(0) =0
Setting 1 = 0 we get that o — 6 = p and 225 — 10 = 0, so that x5 = 5, which
does not satisfy the constraints.
If the second constraint is active we get similarly that 2z; — 6 = 0, which also
does not satisfy the constraints.
If the third constraint is active we get 2zo — 9 = 0, which does not satisfy the
constraints.
If the fourth constraint is active we get 21 — 5 = 0, which does not satisfy the
constraint.
Assume that we have two active constraints. Also here there are four possibilities
(and any solution will be regular):
21 = 29 = 0: The KKT consitions say that (—6,—10) + (—u1, —u2) = 0, which
is impossible since p1, o are positive.
21 = 0,29 = 1: The KKT conditions say that (=5, —8) + (—p1, pa) = 0, which
also is impossible

363



x1 = 1,29 = 0: The KKT conditions say that (—4, —9) + (3, —p2) = 0, which
also is impossible

z1 = 29 = 1: The KKT conditions say that (—3,—7) + (us3, 4), which has a
solution.

Clearly it is not possible to have more than two active constraints. The minimum
point is therefore (1,1).

Answer Ex. 13.3. 14: We can define g; (21, 22) = 22 + 23 — 2, so that the only
constraint is g1 (z1,22) < 0. We have that Vg; = (221, 223), and this can be
zero if and only if 21 = z = 0. However ¢;(0,0) = —2 < 0, so that the equality
is not active. This means that all points are regular for this problem.

We compute that Vf = (1,1). If g1 is not an active inequality, the KKT
conditions say that V f = 0, which is impossible. If g; is active, we get that

Vf(z1,22) + pVgi (1, 22) = G) +u @2) = (8) ;

so that 1 = —2ux; and 1 = —2uxy for some p > 0. This is satisfied if 1 = xo
is negative. For g; to be active we must have that z? 4+ 23 = 2, which implies
that 1 = zo = —1. We have that f(—1,—1) = —2.

Answer Ex. 13.3. 15: Wedefine g;(x) = —z; forj =1,...,n, and gny1(x) =
Z?:l xj—1. We have that Vg; = —e; for 1 < j <mn, and Vg, = (1,1,...,1).
If there are no active inequalities, we must have that V f(x) = 0. If the last
constraint is not active we have that

Vf= Z Hi€s,

JEA(x),j<n

i.e. Vf points into the cone spanned by e;, j € A(z). If the last constraint is
active also , we see that

Vf= Z —ln+1€; Z (5 = pint1)€;-

J¢A(x),j<n JEA(z),j<n

Vf is on this form whenever components outside the active set are equal and
<0, and all are components are greater than or equal to this.

Answer Ex. 14.2. 1: The constraint Ax = b actually yields one constraint
per row in A, and the gradient of the i’th constraint is the ¢’th row in A. This
gives the following sum in the KKT conditions:

m m m

=1

i=1 =1
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The gradient of f(xx) + Vf(zr)Th + %hTVZf(:ck)h is Vf(zx) + V2f(zi)h.
The KKT conditions are thus V f(zx) + V2 f(zx)h + ATXA = 0 and Ah = 0.
This can be written as the set of equations

V2 f(xp)h + ATXN = -V f(x)
Ah +0X =0,

from which the stated equation system follows.

Answer Ex. 14.2. 2: a. We can set ¢1(z,y) = —z, g2(z,y) = —y, A =
(-1 1),and b= (1).

c. The barrier problem here is to minimize x +y — plnx — plny subject to the
constraint y —x = 1. The gradient of the Lagrangian is (1—pu/z,1—pu/y)+ AT\
If this is 0 we must have that 1 — p/x = p/y — 1, so that 22y = u(z + y) The
constraint gives that y = x + 1, so that 2z(z + 1) = p(2z + 1). This can be
written as 222 + (2 — u)z — u = 0, which has the solution

oo QoW EVE-p? s —2-p) £ 244
1 1 :

which gives the two solutions (z,y) = (u/2,1/2+1) and (x,y) = (—1,0). Only
the first solution here is within the domain of definition for f, so the barrier
method obtains this minimum.

d. By inserting y = x + 1 for the constraint we see that we need to minimize
g(x) = 2z + 1 subject to z > 0, which clearly has a minimum for z = 0, and
then y = 1. This gives the same minimum as in c.

e. The KKT conditions takes one of the following forms:

oIf there are no active inequalities:
Vf+ATXN=(1,1) + \(—=1,1) = 0,

which has no solutions.

oThe first inequality is active (i.e. z =0):
Vi+AT A+ Vg = (1,1)+A(=1,1) +p1(=1,0) = (1= A=, 14+X) = 0,
which gives that A = —1 and p; = pu1 = 2. When =z = 0 the equaility
constraint gives that y = 1, so that (0, 1) satisfies the KKT conditions.

eThe second inequality is active (i.e y = 0): The first constraint then gives
that x = —1, which does not give a feasible point.

In conclusion, (0,1) is the only point which satisfies the KKT conditions. If
we attempt the second order test, we will see that it is inconclusive, since the
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Hessian of the Lagrangian is zero. To prove that (1,0) must be a minimum,
you can argue that f is very large outside any rectangle, so that it must have a
minimum on this rectangle (the rectangle is a closed and bounded set).

f. With the barrier method we obtained the solution &(x) = (1/2, u/2+1). Since
this converges to (0,1) as u — 0, the central path converges to the solution we
have found.

Answer Ex. 14.2. 3: You can use the following code:

IPBopt (@(x) (x(1)+x(2)),0(x) (-x(1)),0(x) (-x(2)), . ..
Q(x) ([1;11),0(x) ([-1;0]),0(x) ([0;-11), ...
@(x) (zeros(2)),0(x) (zeros(2)),0(x) (zeros(2)), ...
[-1 11,1,[4;5])

Answer Ex. 14.2. 4: Here we have that Vf = 2z, Vg; = —1, Vgy = 1. If
there are no active constraints the KKT conditions say that 2z = 0, so that
x = 0, which is outside the domain of definition for f.

If the first constraint is active we get that 2o — pu; =4 — p; = 0, so that p; = 4.
This is a candidate for the minimum (clearly the second order conditions for a
minimum is fulfilled here as well, since the Hessian of the Lagrangian is 2).

If the second constraint is active we get that 2x + g = 4 + pus = 0, so that
e = —4, so that this gives no candidate for a solution.

It is impossible for both constraints to be active at the same time, so x = 2 is
the unique minimum.

Answer Ex. 14.2. 6: You can use the following code:

IPBopt2(@(x) ((x-3) .~2),0(x) (2-x) ,0(x) (x-4), . ..
Q(x) (2%(x-3)),0(x) (-1) ,0(x) (1), ...
e(x) (2),0(x) (0),0(x) (0),3.5)
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