
Chapter 2

Fourier analysis for periodic
functions: Fourier series

In Chapter 1 we identified audio signals with functions and discussed infor-
mally the idea of decomposing a sound into basis sounds to make its frequency
content available. In this chapter we will make this kind of decomposition pre-
cise by discussing how a given function can be expressed in terms of the basic
trigonometric functions. This is similar to Taylor series where functions are ap-
proximated by combinations of polynomials. But it is also different from Taylor
series because polynomials are different from polynomials, and the approxima-
tions are computed in a very different way. The theory of approximation of
functions with trigonometric functions is generally referred to as Fourier anal-
ysis. This is a central tool in practical fields like image and signal processing,
but it also an important field of research within pure mathematics. We will
only discuss Fourier analysis for functions defined on a finite interval and for
finite sequences (vectors), but Fourier analysis may also be applied to functions
defined on the whole real line and to infinite sequences.

Perhaps a bit surprising, linear algebra is a very useful tool in Fourier analy-
sis. This is because the sets of functions involved are vector spaces, both of finite
and infinite dimension. Therefore many of the tools from your linear algebra
course will be useful, in a situation that at first may seem far from matrices and
vectors.

2.1 Basic concepts

The basic idea of Fourier series is to approximate a given function by a combi-
nation of simple cos and sin functions. This means that we have to address at
least three questions:

1. How general do we allow the given function to be?
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2. What exactly are the combinations of cos and sin that we use for the
approximations?

3. How do we determine the approximation?

Each of these questions will be answered in this section.
We have already indicated that the functions we consider are defined on an

interval, and without much loss of generality we assume this interval to be [0, T ],
where T is some positive number. Note that any function f defined on [0, T ]
gives rise to a related function defined on the whole real line, by simply gluing
together copies of f . The result is a periodic function with period T that agrees
with f on [0, T ].

We have to make some more restrictions. Mostly we will assume that f
is continuous, but the theory can also be extended to functions which are only
Riemann-integrable, more precisely, that the square of the function is integrable.

Definition 2.1 (Continuous and square-integrable functions). The set of con-
tinuous, real functions defined on an interval [0, T ] is denoted C[0, T ].

A real function f defined on [0, T ] is said to be square integrable if f2 is
Riemann-integrable, i.e., if the Riemann integral of f2 on [0, T ] exists,

�
T

0
f(t)2 dt < ∞.

The set of all square integrable functions on [0, T ] is denoted L2[0, T ].

The sets of continuous and square-integrable functions can be equippped
with an inner-product, a generalisation of the so-called dot-product for vectors.

Theorem 2.2. Both L2[0, T ] and C[0, T ] are vector spaces. Moreover, if the
two functions f and g lie in L2[0, T ] (or in C[0, T ]), then the product fg is also
in L2[0, T ] (or in C[0, T ]). Moreover, both spaces are inner product spaces1,
with inner product2 defined by

�f, g� = 1

T

�
T

0
f(t)g(t) dt, (2.1)

and associated norm

�f� =

�
1

T

�
T

0
f(t)2dt. (2.2)

The mysterious factor 1/T is included so that the constant function f(t) = 1
has norm 1, i.e., its role is as a normalizing factor.

Definition 2.1 and Theorem 2.2 answer the first question above, namely how
general do we allow our functions to be. Theorem 2.2 also gives an indication
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of how we are going to determine approximations—we are going to use inner
products. We recall from linear algebra that the projection of a function f onto
a subspace W with respect to an inner product �·, ·� is the function g ∈ W which
minimizes �f−g�, which we recognise as the error3. This projection is therefore
also called a best approximation of f from W and is characterised by the fact
that the error should be orthogonal to the subspace W , i.e., we should have

�f, g� = 0, for all g ∈ W .

More precisely, if φ = {φi}mi=1 is an orthogonal basis for W , then the best
approximation g is given by

g =
m�

i=1

�f,φi�
�φi,φi�

φi. (2.3)

The error �f − g� in the approximation is often referred to as the least square
error.

We have now answered the second of our primary questions. What is left
is a description of the subspace W of trigonometric functions. This space is
spanned by the pure tones we discussed in Chapter 1.

Definition 2.3 (Fourier series). Let VN,T be the subspace of C[0, T ] spanned
by the set of functions given by

DN,T = {1, cos(2πt/T ), cos(2π2t/T ), · · · , cos(2πNt/T ),

sin(2πt/T ), sin(2π2t/T ), · · · , sin(2πNt/T )}. (2.4)

The space VN,T is called the N ’th order Fourier space. The Nth-order Fourier
series approximation of f , denoted fN , is defined as the best approximation
of f from VN,T with respect to the inner product defined by (2.1).

The space VN,T can be thought of as the space spanned by the pure tones
of frequencies 1/T , 2/T , . . . , N/T , and the Fourier series can be thought of as
linear combination of all these pure tones. From our discussion in Chapter 1,
we see that if N is sufficiently large, we get a space which can be used to
approximate most sounds in real life. The approximation fN of a sound f from
a space VN,T can also serve as a compressed version if many of the coefficients
can be set to 0 without the error becomingg too big.

Note that all the functions in the set DN,T are periodic with period T , but
most have an even shorter period. More precisely, cos(2πnt/T ) has period T/n,
and frequency n/T . In general, the term fundamental frequency is used to denote
the lowest frequency of a given periodic function.

Definition 2.3 characterises the Fourier series. The next lemma gives precise
expressions for the coefficients.

3See Section 6.3 in [7] for a review of projections and least squares approximations.
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Theorem 2.4. The set DN,T is an orthogonal basis for VN,T . In particular,
the dimension of VN,T is 2N + 1, and if f is a function in L2[0, T ], we denote
by a0, . . . , aN and b1, . . . , bN the coordinates of fN in the basis DN,T , i.e.

fN (t) = a0 +
N�

n=1

(an cos(2πnt/T ) + bn sin(2πnt/T )) . (2.5)

The a0, . . . , aN and b1, . . . , bN are called the (real) Fourier coefficients of f ,
and they are given by

a0 = �f, 1� = 1

T

�
T

0
f(t) dt, (2.6)

an = 2
�
f, cos(2πnt/T )

�
=

2

T

�
T

0
f(t) cos(2πnt/T ) dt for n ≥ 1, (2.7)

bn = 2�f, sin(2πnt/T )� = 2

T

�
T

0
f(t) sin(2πnt/T ) dt for n ≥ 1. (2.8)

Proof. To prove orthogonality, assume first that m �= n. We compute the inner
product

�cos(2πmt/T ), cos(2πnt/T )�

=
1

T

�
T

0
cos(2πmt/T ) cos(2πnt/T )dt

=
1

2T

�
T

0
(cos(2πmt/T + 2πnt/T ) + cos(2πmt/T − 2πnt/T ))

=
1

2T

�
T

2π(m+ n)
sin(2π(m+ n)t/T ) +

T

2π(m− n)
sin(2π(m− n)t/T )

�T

0

= 0.

Here we have added the two identities cos(x ± y) = cosx cos y ∓ sinx sin y
together to obtain an expression for cos(2πmt/T ) cos(2πnt/T )dt in terms of
cos(2πmt/T +2πnt/T ) and cos(2πmt/T −2πnt/T ). By testing all other combi-
nations of sin and cos also, we obtain the orthogonality of all functions in DN,T

in the same way.
We find the expressions for the Fourier coefficients from the general for-

mula (2.3). We first need to compute the following inner products of the basis
functions,

�cos(2πmt/T ), cos(2πmt/T )� = 1

2

�sin(2πmt/T ), sin(2πmt/T )� = 1

2
�1, 1� = 1,
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which are easily derived in the same way as above. The orthogonal decomposi-
tion theorem (2.3) now gives

fN (t) =
�f, 1�
�1, 1�1 + +

N�

n=1

�f, cos(2πnt/T )�
�cos(2πnt/T ), cos(2πnt/T )� cos(2πnt/T )

+
N�

n=1

�f, sin(2πnt/T )�
�sin(2πnt/T ), sin(2πnt/T )� sin(2πnt/T )

=
1
T

�
T

0 f(t)dt

1
+

N�

n=1

1
T

�
T

0 f(t) cos(2πnt/T )dt
1
2

cos(2πnt/T )

+
N�

n=1

1
T

�
T

0 f(t) sin(2πnt/T )dt
1
2

sin(2πnt/T )

=
1

T

�
T

0
f(t)dt+

N�

n=1

�
2

T

�
T

0
f(t) cos(2πnt/T )dt

�
cos(2πnt/T )

+
N�

n=1

�
2

T

�
T

0
f(t) sin(2πnt/T )dt

�
sin(2πnt/T ).

The relations (2.6)- (2.8) now follow by comparison with (2.5).

Since f is a function in time, and the an, bn represent contributions from
different frequencies, the Fourier series can be thought of as a change of coordi-
nates, from what we vaguely can call the time domain, to what we can call the
frequency domain (or Fourier domain). We will call the basis DN,T the N ’th
order Fourier basis for VN,T . We note that DN,T is not an orthonormal basis;
it is only orthogonal.

In the signal processing literature, Equation (2.5) is known as the synthesis
equation, since the original function f is synthesized as a sum of trigonometric
functions. Similarly, equations (2.6)- (2.8) are called analysis equations.

A major topic in harmonic analysis is to state conditions on f which guaran-
tees the convergence of its Fourier series. We will not discuss this in detail here,
since it turns out that, by choosing N large enough, any reasonable periodic
function can be approximated arbitrarily well by its Nth-order Fourier series
approximation. More precisely, we have the following result for the convergence
of the Fourier series, stated without proof.

Theorem 2.5 (Convergence of Fourier series). Suppose that f is periodic
with period T , and that

1. f has a finite set of discontinuities in each period.

2. f contains a finite set of maxima and minima in each period.

3.
�
T

0 |f(t)|dt < ∞.
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Figure 2.1: The cubic polynomial f(x) = − 1
3x

3 + 1
2x

2 − 3
16x+1 on the interval

[0, 1], together with its Fourier series approximation from V9,1.

Then we have that limN→∞ fN (t) = f(t) for all t, except at those points t
where f is not continuous.

The conditions in Theorem 2.5 are called the Dirichlet conditions for the
convergence of the Fourier series. They are just one example of conditions that
ensure the convergence of the Fourier series. There also exist much more gen-
eral conditions that secure convergence — these can require deep mathematical
theory, depending on the generality.

An illustration of Theorem 2.5 is shown in Figure 2.1 where the cubic poly-
nomial f(x) = − 1

3x
3 + 1

2x
2 − 3

16x + 1 is approximated by a 9th order Fourier
series. The trigonometric approximation is periodic with period 1 so the approx-
imation becomes poor at the ends of the interval since the cubic polynomial is
not periodic. The approximation is plotted on a larger interval in Figure 2.1(b),
where its periodicity is clearly visible.

Example 2.6. Let us compute the Fourier coefficients of the square wave, as
defined by (1.1) in Example 1.11. If we first use (2.6) we obtain

a0 =
1

T

�
T

0
f(t)dt =

1

T

�
T/2

0
dt− 1

T

�
T

T/2
dt = 0.
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Using (2.7) we get

an =
2

T

�
T

0
f(t) cos(2πnt/T )dt

=
2

T

�
T/2

0
cos(2πnt/T )dt− 2

T

�
T

T/2
cos(2πnt/T )dt

=
2

T

�
T

2πn
sin(2πnt/T )

�T/2

0

− 2

T

�
T

2πn
sin(2πnt/T )

�T

T/2

=
2

T

T

2πn
((sin(nπ)− sin 0)− (sin(2nπ)− sin(nπ)) = 0.

Finally, using (2.8) we obtain

bn =
2

T

�
T

0
f(t) sin(2πnt/T )dt

=
2

T

�
T/2

0
sin(2πnt/T )dt− 2

T

�
T

T/2
sin(2πnt/T )dt

=
2

T

�
− T

2πn
cos(2πnt/T )

�T/2

0

+
2

T

�
T

2πn
cos(2πnt/T )

�T

T/2

=
2

T

T

2πn
((− cos(nπ) + cos 0) + (cos(2nπ)− cos(nπ)))

=
2(1− cos(nπ)

nπ

=

�
0, if n is even;
4/(nπ), if n is odd.

In other words, only the bn-coefficients with n odd in the Fourier series are
nonzero. From this it is clear that the Fourier series is

4

π
sin(2πt/T ) +

4

3π
sin(2π3t/T ) +

4

5π
sin(2π5t/T ) +

4

7π
sin(2π7t/T ) + · · · .

With N = 20, there are 10 trigonometric terms in this sum. The corresponding
Fourier series can be plotted on the same interval with the following code.

t=0:(1/fs):3;

y=zeros(1,length(t));

for n=1:2:19

y = y + (4/(n*pi))*sin(2*pi*n*t/T);

end

plot(t,y)

In Figure 2.2(a) we have plotted the Fourier series of the square wave when
T = 1/440, and when N = 20. In Figure 2.2(b) we have also plotted the values
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Figure 2.2: The Fourier series of the square wave of Example 2.6

of the first 100 Fourier coefficients bn, to see that they actually converge to zero.
This is clearly necessary in order for the Fourier series to converge.

Even though f oscillates regularly between −1 and 1 with period T , the
discontinuities mean that it is far from the simple sin(2πt/T ) which corresponds
to a pure tone of frequency 1/T . From Figure 2.2(b) we see that the dominant
coefficient in the Fourier series is b1, which tells us how much there is of the pure
tone sin(2πt/T ) in the square wave. This is not surprising since the square wave
oscillates T times every second as well, but the additional nonzero coefficients
pollute the pure sound. As we include more and more of these coefficients, we
gradually approach the square wave, as shown for N = 20.

There is a connection between how fast the Fourier coefficients go to zero, and
how we percieve the sound. A pure sine sound has only one nonzero coefficient,
while the square wave Fourier coefficents decrease as 1/n, making the sound
less pleasant. This explains what we heard when we listened to the sound in
Example 1.11. Also, it explains why we heard the same pitch as the pure tone,
since the first frequency in the Fourier series has the same frequency as the pure
tone we listened to, and since this had the highest value.

The Fourier series approximations of the square wave can be played with the
play function, just as the square wave itself. For N = 1 and with T = 1/440
as above, it sounds like this. This sounds exactly like the pure sound with
frequency 440Hz, as noted above. For N = 5 the Fourier series approximation
sounds like this, and for N = 9 it sounds like this. Indeed these sounds are more
like the square wave itself, and as we increase N we can hear how introduction
of more frequencies gradually pollutes the sound more and more. In Exercise 7
you will be asked to write a program which verifies this.

Example 2.7. Let us also compute the Fourier coefficients of the triangle wave,
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as defined by (1.2) in Example 1.12. We now have

a0 =
1

T

�
T/2

0

4

T

�
t− T

4

�
dt+

1

T

�
T

T/2

4

T

�
3T

4
− t

�
dt.

Instead of computing this directly, it is quicker to see geometrically that the
graph of f has as much area above as below the x-axis, so that this integral
must be zero. Similarly, since f is symmetric about the midpoint T/2, and
sin(2πnt/T ) is antisymmetric about T/2, we have that f(t) sin(2πnt/T ) also is
antisymmetric about T/2, so that

�
T/2

0
f(t) sin(2πnt/T )dt = −

�
T

T/2
f(t) sin(2πnt/T )dt.

This means that, for n ≥ 1,

bn =
2

T

�
T/2

0
f(t) sin(2πnt/T )dt+

2

T

�
T

T/2
f(t) sin(2πnt/T )dt = 0.

For the final coefficients, since both f and cos(2πnt/T ) are symmetric about
T/2, we get for n ≥ 1,

an =
2

T

�
T/2

0
f(t) cos(2πnt/T )dt+

2

T

�
T

T/2
f(t) cos(2πnt/T )dt

=
4

T

�
T/2

0
f(t) cos(2πnt/T )dt =

4

T

�
T/2

0

4

T

�
t− T

4

�
cos(2πnt/T )dt

=
16

T 2

�
T/2

0
t cos(2πnt/T )dt− 4

T

�
T/2

0
cos(2πnt/T )dt

=
4

n2π2
(cos(nπ)− 1)

=

�
0, if n is even;
−8/(n2π2), if n is odd.

where we have dropped the final tedious calculations (use integration by parts).
From this it is clear that the Fourier series of the triangle wave is

− 8

π2
cos(2πt/T )− 8

32π2
cos(2π3t/T )− 8

52π2
cos(2π5t/T )− 8

72π2
cos(2π7t/T )+· · · .

In Figure 2.3 we have repeated the plots used for the square wave, for the
triangle wave. As before, we have used T = 1/440. The figure clearly shows
that the Fourier series coefficients decay much faster.

We can play different Fourier series approximations of the triangle wave, just
as those for the square wave. For N = 1 and with T = 1/440 as above, it sounds
like this. Again, this sounds exactly like the pure sound with frequency 440Hz.
For N = 5 the Fourier series approximation sounds like this, and for N = 9 it
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Figure 2.3: The Fourier series of the triangle wave of Example 2.7

sounds like this. Again these sounds are more like the triangle wave itself, and
as we increase N we can hear that introduction of more frequencies pollutes the
sound. However, since the triangle wave Fourier coefficients decrease as 1/n2

instead of 1/n as for the square wave, the sound is, although unpleasant due to
pollution by many frequencies, not as unpleasant as the square wave. Also, it
converges faster to the triangle wave itself, as also can be heard. In Exercise 7
you will be asked to write a program which verifies this.

From the previous examples we understand how we can use the Fourier
coefficients to analyse or improve the sound: Noise in a sound often corresponds
to the presence of some high frequencies with large coefficients, and by removing
these, we remove the noise. For example, we could set all the coefficients except
the first one to zero. This would change the unpleasant square wave to the pure
tone sin 2π440t, which we started our experiments with.

2.1.1 Fourier series for symmetric and antisymmetric func-

tions

In Example 2.6 we saw that the Fourier coefficients bn vanished, resulting in
a sine-series for the Fourier series. Similarly, in Example 2.7 we saw that an
vanished, resulting in a cosine-series. This is not a coincident, and is captured
by the following result, since the square wave was defined so that it was an-
tisymmetric about 0, and the triangle wave so that it was symmetric about
0.

Theorem 2.8 (Symmetry and antisymmetry). If f is antisymmetric about 0
(that is, if f(−t) = −f(t) for all t), then an = 0, so the Fourier series is actually
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a sine-series. If f is symmetric about 0 (which means that f(−t) = f(t) for
all t), then bn = 0, so the Fourier series is actually a cosine-series.

Proof. Note first that we can write

an =
2

T

�
T/2

−T/2
f(t) cos(2πnt/T )dt bn =

2

T

�
T/2

−T/2
f(t) sin(2πnt/T )dt,

i.e. we can change the integration bounds from [0, T ] to [−T/2, T/2]. This
follows from the fact that all f(t), cos(2πnt/T ) and sin(2πnt/T ) are periodic
with period T .

Suppose first that f is symmetric. We obtain

bn =
2

T

�
T/2

−T/2
f(t) sin(2πnt/T )dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T )dt+

2

T

�
T/2

0
f(t) sin(2πnt/T )dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T )dt− 2

T

� −T/2

0
f(−t) sin(−2πnt/T )dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T )dt− 2

T

� 0

−T/2
f(t) sin(2πnt/T )dt = 0.

where we have made the substitution u = −t, and used that sin is antisymmetric.
The case when f is antisymmetric can be proved in the same way, and is left as
an exercise.

In fact, the connection between symmetric and antisymmetric functions, and
sine- and cosine series can be made even stronger by observing the following:

1. Any cosine series a0 +
�

N

n=1 an cos(2πnt/T ) is a symmetric function.

2. Any sine series
�

N

n=1 bn sin(2πnt/T ) is an antisymmetric function.

3. Any periodic function can be written as a sum of a symmetric and anti-
symmetric function by writing

f(t) =
f(t) + f(−t)

2
+

f(t)− f(−t)

2
. (2.9)

4. If fN (t) = a0 +
�

N

n=1(an cos(2πnt/T ) + bn sin(2πnt/T )), then

fN (t) + fN (−t)

2
= a0 +

N�

n=1

an cos(2πnt/T )

fN (t)− fN (−t)

2
=

N�

n=1

bn sin(2πnt/T ).
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Exercises for Section 2.1

Ex. 1 — Find a function f which is Riemann-integrable on [0, T ], and so that�
T

0 f(t)2dt is infinite.

Ex. 2 — Given the two Fourier spaces VN1,T1 , VN2,T2 . Find necessary and
sufficient conditions in order for VN1,T1 ⊂ VN2,T2 .

Ex. 3 — Prove the second part of Theorem 2.8, i.e. show that if f is anti-
symmetric about 0 (i.e. f(−t) = −f(t) for all t), then an = 0, i.e. the Fourier
series is actually a sine-series.

Ex. 4 — Find the Fourier series coefficients of the periodic functions with
period T defined by being f(t) = t, f(t) = t2, and f(t) = t3, on [0, T ].

Ex. 5 — Write down difference equations for finding the Fourier coefficients
of f(t) = tk+1 from those of f(t) = tk, and write a program which uses this
recursion. Use the program to verify what you computed in Exercise 4.

Ex. 6 — Use the previous exercise to find the Fourier series for f(x) = − 1
3x

3+
1
2x

2 − 3
16x + 1 on the interval [0, 1]. Plot the 9th order Fourier series for this

function. You should obtain the plots from Figure 2.1.

Ex. 7 — Let us write programs so that we can listen to the Fourier approxi-
mations of the square wave and the triangle wave.

a. Write functions

function playsquaretrunk(T,N)

function playtriangletrunk(T,N)

which plays the order N Fourier approximation of the square wave and
the triangle wave, respectively, for three seconds. Verify that you can
generate the sounds you played in examples 2.6 and 2.7.

b. For these Fourier approximations, how high must you choose N for them
to be indistuingishable from the square/triangle waves themselves? Also
describe how the characteristics of the sound changes when n increases.
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2.2 Complex Fourier series

In Section 2.1 we saw how a function can be expanded in a series of sines and
cosines. These functions are related to the complex exponential function via
Eulers formula

eix = cosx+ i sinx

where i is the imaginary unit with the property that i2 = −1. Because the
algebraic properties of the exponential function are much simpler than those of
the cos and sin, it is often an advantage to work with complex numbers, even
though the given setting is real numbers. This is definitely the case in Fourier
analysis. More precisely, we would like to make the substitutions

cos(2πnt/T ) =
1

2

�
e2πint/T + e−2πint/T

�
(2.10)

sin(2πnt/T ) =
1

2i

�
e2πint/T − e−2πint/T

�
(2.11)

in Definition 2.3. From these identities it is clear that the set of complex ex-
ponential functions e2πint/T also is a basis of periodic functions (with the same
period) for VN,T . We may therefore reformulate Definition 2.3 as follows:

Definition 2.9 (Complex Fourier basis). We define the set of functions

FN,T = {e−2πint/T , e−2πi(n−1)t/T , · · · , e−2πit/T , (2.12)

1, e2πit/T , · · · , e2πi(n−1)t/T , e2πint/T }, (2.13)

and call this the order N complex Fourier basis for VN,T .

The function e2πint/T is also called a pure tone with frequency n/T , just
as for sines and cosines. We would like to show that these functions also are
orthogonal. To show this, we need to say more on the inner product we have
defined by (2.1). A weakness with this definition is that we have assumed real
functions f and g, so that this can not be used for the complex exponential
functions e2πint/T . For general complex functions we will extend the definition
of the inner product as follows:

�f, g� = 1

T

�
T

0
fḡ dt. (2.14)

The associated norm now becomes

�f� =

�
1

T

�
T

0
|f(t)|2dt. (2.15)

The motivation behind Equation 2.14, where we have conjugated the second
function, lies in the definition of an inner product for vector spaces over complex
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numbers. From before we are used to vector spaces over real numbers, but vector
spaces over complex numbers are defined through the same set of axioms as for
real vector spaces, only replacing real numbers with complex numbers. For
complex vector spaces, the axioms defining an inner product are the same as
for real vector spaces, except for that the axiom

�f, g� = �g, f� (2.16)

is replaced with the axiom
�f, g� = �g, f�, (2.17)

i.e. a conjugation occurs when we switch the order of the functions. This
new axiom can be used to prove the property �f, cg� = c̄�f, g�, which is a
somewhat different property from what we know for real inner product spaces.
This property follows by writing

�f, cg� = �cg, f� = c�g, f� = c̄�g, f� = c̄�f, g�.

Clearly the inner product 2.14 satisfies Axiom 2.17. With this definition it
is quite easy to see that the functions e2πint/T are orthonormal. Using the
orthogonal decomposition theorem we can therefore write

fN (t) =
N�

n=−N

�f, e2πint/T �
�e2πint/T , e2πint/T �

e2πint/T =
N�

n=−N

�f, e2πint/T �e2πint/T

=
N�

n=−N

�
1

T

�
T

0
f(t)e−2πint/T dt

�
e2πint/T .

We summarize this in the following theorem, which is a version of Theorem 2.4
which uses the complex Fourier basis:

Theorem 2.10. We denote by y−N , . . . , y0, . . . , yN the coordinates of fN in
the basis FN,T , i.e.

fN (t) =
N�

n=−N

yne
2πint/T . (2.18)

The yn are called the complex Fourier coefficients of f , and they are given by.

yn = �f, e2πint/T � = 1

T

�
T

0
f(t)e−2πint/T dt. (2.19)

If we reorder the real and complex Fourier bases so that the two functions
{cos(2πnt/T ), sin(2πnt/T )} and {e2πint/T , e−2πint/T } have the same index in
the bases, equations (2.10)-(2.11) give us that the change of basis matrix4 from

4See Section 4.7 in [7], to review the mathematics behind change of basis.
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DN,T to FN,T , denoted PFN,T←DN,T , is represented by repeating the matrix

1

2

�
1 1/i

1 −1/i

�

along the diagonal (with an additional 1 for the constant function 1). In other
words, since an, bn are coefficients relative to the real basis and yn, y−n the
corresponding coefficients relative to the complex basis, we have for n > 0,

�
yn
y−n

�
=

1

2

�
1 1/i

1 −1/i

��
an
bn

�
.

This can be summarized by the following theorem:

Theorem 2.11 (Change of coefficients between real and complex Fourier
bases). The complex Fourier coefficients yn and the real Fourier coefficients
an, bn of a function f are related by

y0 = a0,

yn =
1

2
(an − ibn),

y−n =
1

2
(an + ibn),

for n = 1, . . . , N .

Combining with Theorem 2.8, Theorem 2.11 can help us state properties of
complex Fourier coefficients for symmetric- and antisymmetric functions. We
look into this in Exercise 8.

Due to the somewhat nicer formulas for the complex Fourier coefficients
when compraed to the real Fourier coefficients, we will write most Fourier series
in complex form in the following.

Exercises for Section 2.2

Ex. 1 — Show that the complex functions e2πint/T are orthonormal.

Ex. 2 — Repeat Exercise 2.1.4, computing the complex Fourier series instead
of the real Fourier series.

Ex. 3 — Show that both cosn t and sinn t are in VN,T , and find an expression
for their complex Fourier coefficients.
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Ex. 4 — Consider a sum of two complex exponentials. When is their sum
also periodic? What is the fundamental period of the sum if the sum also is
periodic?

Ex. 5 — Compute the complex Fourier coefficients of the square wave using
Equation 2.19, i.e. repeat the calculations from Example 2.6 for the complex
case. Use Theorem 2.11 to verify your result.

Ex. 6 — Repeat Exercise 5 for the triangle wave.

Ex. 7 — Use Equation 2.19 to compute the complex Fourier coefficients of the
periodic functions with period T defined by, respectively, f(t) = t, f(t) = t2,
and f(t) = t3, on [0, T ]. Use Theorem 2.11 to verify you calculations from
Exercise 4.

Ex. 8 — In this exercise we will prove a version of Theorem 2.8 for complex
Fourier coefficients.

a. If f is symmetric about 0, show that yn is real, and that y−n = yn.
b. If f is antisymmetric about 0, show that the yn are purely imaginary,

y0 = 0, and that y−n = −yn.
c. Show that

�
N

n=−N
yne2πint/T is symmetric when y−n = yn for all n, and

rewrite it as a cosine-series.
d. Show that

�
N

n=−N
yne2πint/T is antisymmetric when y0 = 0 and y−n =

−yn for all n, and rewrite it as a sine-series.

2.3 Rate of convergence for Fourier series

We have earlier mentioned criteria which guarantee that the Fourier series con-
verges. Another important topic is the rate of convergence of the Fourier series,
given that it converges. If the series converges quickly, we may only need a
few terms in the Fourier series to obtain a reasonable approximation, meaning
that good Fourier series approximations can be computed quickly. We have
already seen examples which illustrate convergence rates that appear to be dif-
ferent: The square wave seemed to have very slow convergence rate near the
discontinuities, while the triangle wave did not seem to have the same problem.

Before discussing results concerning convergence rates we consider a simple
lemma which will turn out to be useful.

Lemma 2.12. If the complex Fourier coefficients of f are yn and f is differ-
entiable, then the Fourier coefficients of f �(t) are 2πin

T
yn.
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Proof. The Fourier coefficients of f �(t) are

1

T

�
T

0
f �(t)e−2πint/T dt =

1

T

��
f(t)e−2πint/T

�T
0
+

2πin

T

�
T

0
f(t)e−2πint/T dt

�

=
2πin

T
yn.

where the second equation was obtained from integration by parts.

If we turn this around, we note that the Fourier coefficients of f(t) are
T/(2πin) times those of f �(t). If f is s times differentiable, we can repeat this
argument to show that the Fourier coefficients of f(t) are

�
T/(2πin)

�s times
those of f (s)(t). In other words, the Fourier coefficients of a function which is
many times differentiable decay to zero very fast.

Observation 2.13. The Fourier series converges quickly when the function
is many times differentiable.

An illustration is found in examples 2.6 and 2.7, where we saw that the
Fourier series coefficients for the triangle wave converged more quickly to zero
than those of the square wave. This is explained by the fact that the square
wave is discontinuous, while triangle wave is continuous with a discontinuous
first derivative.

Very often, the slow convergence of a Fourier series is due to some disconti-
nuity of (a derivative of) the function at a given point. In this case a strategy to
speed up the convergence of the Fourier series could be to create an extension
of the function which is continuous, if possible, and use the Fourier series of this
new function instead. With the help of the following definition, we will show
that this strategy works, at least in cases where there is only one single point
of discontinuity (for simplicity we have assumed that the discontinuity is at 0).

Definition 2.14 (Symmetric extension of a function). Let f be a function
defined on [0, T ]. The symmetric extension of f denotes the function f̆ defined
on [0, 2T ] by

f̆(t) =

�
f(t), if 0 ≤ t ≤ T ;

f(2T − t), if T < t ≤ 2T .

Clearly f̆(0) = f̆(2T ), so when f is continuous, it can be periodically ex-
tended to a continuous function with period 2T , contrary to the function f we
started with. Also, f̆ keeps the characteristics of f , since they are equal on
[0, T ]. Also, f̆ is clearly a symmetric function, so that it can be expressed as a
cosine-series. The Fourier coefficients of the two functions are related.
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Theorem 2.15. The complex Fourier coefficients yn of f , and the cosine-
coefficients an of f̆ are related by a2n = yn + y−n.

Proof. The 2nth complex Fourier coefficient of f̆ is

1

2T

� 2T

0
f̆(t)e−2πi2nt/(2T )dt

=
1

2T

�
T

0
f(t)e−2πint/T dt+

1

2T

� 2T

T

f(2T − t)e−2πint/T dt.

Substituting u = 2T − t in the second integral we see that this is

=
1

2T

�
T

0
f(t)e−2πint/T dt− 1

2T

� 0

T

f(u)e2πinu/T du

=
1

2T

�
T

0
f(t)e−2πint/T dt+

1

2T

�
T

0
f(t)e2πint/T dt

=
1

2
yn +

1

2
y−n.

Therefore we have a2n = yn − y−n.

This result is not enough to obtain the entire Fourier series of f̆ , but at least
it gives us half of it.

Example 2.16. Let f be the function with period T defined by f(t) = 2t/T −1
for 0 ≤ t < T . In each period the function increases linearly from 0 to 1. Because
f is discontinuous at the boundaries between the periods, we would except
the Fourier series to converge slowly. Since the function is antisymmetric, the
coefficients an are zero, and we compute bn as

bn =
2

T

�
T

0

2

T

�
t− T

2

�
sin(2πnt/T )dt =

4

T 2

�
T

0

�
t− T

2

�
sin(2πnt/T )dt

=
4

T 2

�
T

0
t sin(2πnt/T )dt− 2

T

�
T

0
sin(2πnt/T )dt

= − 2

πn
,

so that the Fourier series is

− 2

π
sin(2πt/T )− 2

2π
sin(2π2t/T )− 2

3π
sin(2π3t/T )− 2

4π
sin(2π4t/T )− · · · ,

which indeed converges slowly to 0. Let us now instead consider the symmetriza-
tion of f . Clearly this is the triangle wave with period 2T , and the Fourier series
of this is

− 8

π2
cos(2πt/(2T ))− 8

32π2
cos(2π3t/(2T ))− 8

52π2
cos(2π5t/(2T ))

− 8

72π2
cos(2π7t/(2T )) + · · · .
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Figure 2.4: The Fourier series for N = 10 for the function in Example 2.16

Comparing the two series, we see that the coefficient at frequency n/T in the
first series has value −2(nπ), while in the second series it has value

− 8

(2n)2π2
= − 2

n2π2
.

The second series clearly converges faster than the first. Also, we could have
obtained half of the second set of coefficients from the first, by using Theo-
rem 2.15.

If we use T = 1/880, the symmetrization will be the square wave of Exam-
ple 2.7. Its Fourier series for N = 10 is shown in Figure 2.3(b) and the Fourier
series for for f N = 20 is shown in Figure 2.4. The value N = 10 is used since
this corresponds to the same frequencies as the previous figure for N = 20. It
is clear from the plot that the Fourier series of f is not a very good approx-
imation. However, we cannot differentiate between the Fourier series and the
function itself for the triangle wave.

2.4 Some properties of Fourier series

We will end this section by establishing some important properties of the Fourier
series, in particular the Fourier coefficients for some important functions. In
these lists, we will use the notation f → yn to indicate that yn is the n’th
Fourier coefficient of f(t).

Theorem 2.17 (Fourier series pairs). The functions 1, e2πint/T , and χ−a,a
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have the Fourier coefficients

1 → e0 = (1, 0, 0, 0 . . . , )

e2πint/T → ek = (0, 0, . . . , 1, 0, 0, . . .)

χ−a,a → sin(2πna/T )

πn
.

The 1 in ek is at position n and the function χ−a,a is the characteristic function
of the interval [−a, a], defined by

χ−a,a(t) =

�
1, if t ∈ [−a, a];

0, otherwise.

The first two pairs are easily verified, so the proofs are omitted. The case
for χ−a,a is very similar to the square wave, but easier to prove, and therefore
also omitted.

Theorem 2.18 (Fourier series properties). The mapping f → yn is linear: if
f → xn, g → yn, then

af + bg → axn + byn

For all n. Moreover, if f is real and periodic with period T , the following
properties hold:

1. yn = y−n for all n.

2. If g(t) = f(−t) and f → yn, then g → yn. In particular,

(a) if f(t) = f(−t) (i.e. f is symmetric), then all yn are real, so that
bn are zero and the Fourier series is a cosine series.

(b) if f(t) = −f(−t) (i.e. f is antisymmetric), then all yn are purely
imaginary, so that the an are zero and the Fourier series is a sine
series.

3. If g(t) = f(t − d) (i.e. g is the function f delayed by d) and f → yn,
then g → e−2πind/T yn.

4. If g(t) = e2πidt/T f(t) with d an integer, and f → yn, then g → yn−d.

5. Let d be a number. If f → yn, then f(d + t) = f(d − t) for all t if and
only if the argument of yn is −2πnd/T for all n.

The last property looks a bit mysterious. We will not have use for this
property before the next chapter.
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Proof. The proof of linearity is left to the reader. Property 1 follows immediately
by writing

yn =
1

T

�
T

0
f(t)e−2πint/T dt =

1

T

�
T

0
f(t)e2πint/T dt

=
1

T

�
T

0
f(t)e−2πi(−n)t/T dt = y−n.

Also, if g(t) = f(−t), we have that

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
f(−t)e−2πint/T dt = − 1

T

� −T

0
f(t)e2πint/T dt

=
1

T

�
T

0
f(t)e2πint/T dt = yn.

Property 2 follows from this, since the remaining statements here were estab-
lished in Theorems 2.8, 2.11, and Exercise 2.2.8. To prove property 3, we observe
that the Fourier coefficients of g(t) = f(t− d) are

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
f(t− d)e−2πint/T dt

=
1

T

�
T

0
f(t)e−2πin(t+d)/T dt

= e−2πind/T 1

T

�
T

0
f(t)e−2πint/T dt = e−2πind/T yn.

For property 4 we observe that the Fourier coefficients of g(t) = e2πidt/T f(t) are

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
e2πidt/T f(t)e−2πint/T dt

=
1

T

�
T

0
f(t)e−2πi(n−d)t/T dt = yn−d.

If f(d + t) = f(d − t) for all t, we define the function g(t) = f(t + d) which is
symmetric about 0, so that it has real Fourier coefficients. But then the Fourier
coefficients of f(t) = g(t− d) are e−2πind/T times the (real) Fourier coefficients
of g by property 3. It follows that yn, the Fourier coefficients of f , has argument
−2πnd/T . The proof in the other direction follows by noting that any function
where the Fourier coefficients are real must be symmetric about 0, once the
Fourier series is known to converge. This proves property 5.

From this theorem we see that there exist several cases of duality between
Fourier coefficients, and the function itself:

1. Delaying a function corresponds to multiplying the Fourier coefficients
with a complex exponential. Vice versa, multiplying a function with a
complex exponential corresponds to delaying the Fourier coefficients.
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2. Symmetry/antisymmetry for a function corresponds to the Fourier coef-
ficients being real/purely imaginary. Vice versa, a function which is real
has Fourier coefficients which are conjugate symmetric.

Note that these dualities become even more explicit if we consider Fourier series
of complex functions, and not just real functions.

Exercises for Section 2.4

Ex. 1 — Define the function f with period T on [−T/2, T/2] by

f(t) =

�
1, if −T/4 ≤ t < T/4;

−1, if |T/4| ≤ t < |T/2|.

f is just the square wave, shifted with T/4. Compute the Fourier coefficients of
f directly, and use 3. in Theorem 2.18 to verify your result.

Ex. 2 — Find a function f which has the complex Fourier series

�

n odd

4

π(n+ 4)
e2πint/T .

Hint: Attempt to use one of the properties in Theorem 2.18 on the Fourier series
of the square wave.

2.5 Summary

In this chapter we have defined and studied Fourier series, which is an approx-
imation scheme forperiodic functions using trigonometric functions. We have
established the basic properties of Fourier series, and some duality relationships
between the function and its Fourier series. We have also computed the Fourier
series of the square wave and the triangle wave, and investigated a technique
for speeding up the convergence of the Fourier series.
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