
Chapter 3

Fourier analysis for vectors

In Chapter 2 we saw how a function defined on an interval can be decomposed
into a linear combination of sines and cosines, or equivalently, a linear combi-
nation of complex exponential functions. However, this kind of decomposition
is not very convenient from a computational point of view. The coefficients are
given by integrals that in most cases cannot be evaluated exactly, so some kind
of numerical integration technique would have to be applied.

In this chapter our starting point is simply a vector of finite dimension.
Our aim is then to decompose this vector in terms of linear combinations of
vectors built from complex exponentials. This simply amounts to multiplying
the original vector by a matrix, and there are efficient algorithms for doing
this. It turns out that these algorithms can also be used for computing good
approximations to the continuous Fourier series in Chapter 2.

Recall from Chapter 1 that a digital sound is simply a sequence of num-
bers, in other words, a vector. An algorithm for decomposing a vector into
combinations of complex exponentials therefore corresponds to an algorithm for
decomposing a digital sound into a combination of pure tones.

3.1 Basic ideas

We start by recalling what a digital sound is and by establishing some notation
and terminology.

Fact 3.1. A digital sound is a finite sequence (or equivalently a vector) x

of numbers, together with a number (usually an integer) fs, the sample rate,
which denotes the number of measurements of the sound per second. The
length of the vector is usually assumed to be N , and it is indexed from 0 to
N − 1. Sample k is denoted by xk, i.e.,

x = (xk)
N−1
k=0 .

55

Note that this indexing convention for vectors is not standard in mathe-
matics and is different from what we have used before. Note in particular that
MATLAB indexes vectors from 1, so algorithms given here must be adjusted
appropriately.

We also need the standard inner product and norm for complex vectors. At
the outset our vectors will have real components, but we are going to perform
Fourier analysis with complex exponentials which will often result in complex
vectors.

Definition 3.2. For complex vectors of length N the Euclidean inner product
is given by

�x,y� =
N−1�

k=0

xkyk. (3.1)

The associated norm is

�x� =

����
N−1�

k=0

|xk|2. (3.2)

In the previous chapter we saw that, using a Fourier series, a function with
period T could be approximated by linear combinations of the functions (the
pure tones) {e2πint/T }N

n=0. This can be generalised to vectors (digital sounds),
but then the pure tones must of course also be vectors.

Definition 3.3 (Fourier analysis for vectors). In Fourier analysis of vectors,
a vector x = (x0, . . . , xN−1) is represented as a linear combination of the N
vectors

φ
n
=

1√
N

�
1, e2πin/N , e2πi2n/N , . . . , e2πikn/N , . . . , e2πin(N−1)/N

�
.

These vectors are called the normalised complex exponentials or the pure digi-
tal tones of order N . The whole collection FN = {φ

n
}N
n=0 is called the N -point

Fourier basis.

The following lemma shows that the vectors in the Fourier basis are orthog-
onal, so they do indeed form a basis.

Lemma 3.4. The normalised complex exponentials {φn}N−1
n=0 of order N form

an orthonormal basis in RN .

Proof. Let n1 and n2 be two distinct integers in the range [0, N − 1]. The inner

56

product of φ
n1

and φ
n2

is then given by

N�φ
n1
,φ

n2
� = �e2πin1k/N , e2πin2k/N �

=
N−1�

k=0

e2πin1k/Ne−2πin2k/N

=
N−1�

k=0

e2πi(n1−n2)k/N

=
1− e2πi(n1−n2)

1− e2πi(n1−n2)/N

= 0.

In particular, this orthogonality means that the the complex exponentials form
a basis. And since we also have �φ

n
,φ

n
� = 1 it is in fact an orthonormal

basis.

Note that the normalising factor 1√
N

was not present for pure tones in the
previous chapter. Also, the normalising factor 1

T
from the last chapter is not

part of the definition of the inner product in this chapter. These are small
differences which have to do with slightly different notation for functions and
vectors, and which will not cause confusion in what follows.

3.2 The Discrete Fourier Transform

Fourier analysis for finite vectors is focused around mapping a given vector
from the standard basis to the Fourier basis, performing some operations on the
Fourier representation, and then changing the result back to the standard basis.
The Fourier matrix, which represents this change of basis, is therefore of crucial
importance, and in this section we study some of its basic properties. We start
by defining the Fourier matrix.

Definition 3.5 (Discrete Fourier Transform). The change of coordinates from
the standard basis of RN to the Fourier basis FN is called the discrete Fourier
transform (or DFT). The N×N matrix FN that represents this change of basis
is called the (N -point) Fourier matrix. If x is a vector in RN , its coordinates
y = (y0, y1, . . . , yN−1) relative to the Fourier basis are called the Fourier coef-
ficients of x, in other words y = FNx). The DFT of x is sometimes denoted
by x̂.

We will normally write x for the given vector in RN , and y for the DFT of
this vector. In applied fields, the Fourier basis vectors are also called synthesis
vectors, since they can be used used to “synthesize” the vector x, with weights
provided by the DFT coefficients y = (yn)

N−1
n=0 . To be more precise, we have

57

that the change of coordinates performed by the DFT can be written as

x = y0φ0 + y1φ1 + · · ·+ yN−1φN−1 =
�
φ0 φ1 · · · φ

N−1

�
y = F−1

N
y, (3.3)

where we have used the inverse of the defining relation y = FNx, and that the
φ

n
are the columns in F−1

N
(this follows from the fact that F−1

N
is the change

of coordinates matrix from the Fourier basis to the standard basis, and the
Fourier basis vectors are clearly the columns in this matrix). Equation (3.3) is
also called the synthesis equation.

Let us also find the matrix FN itself. From Lemma 3.4 we know that the
columns of F−1

N
are orthonormal. If the matrix was real, it would have been

called orthogonal, and the inverse matrix could be obtained by transposing. F−1
N

is complex however, and it is easy to see that the conjugation present in the
definition of the inner product (3.1) translates into that the inverse of a complex
matrix with orthonormal columns is given by the matrix where the entries are
both transposed and conjugated. Let us denote the conjugated transpose of T
by TH , and say that a complex matrix is unitary when T−1 = TH . From our
discussion it is clear that F−1

N
is a unitary matrix, i.e. its inverse, FN , is its

conjugate transpose. Moreover since F−1
N

is symmetric, its inverse is in fact just
its conjugate,

FN = F−1
N

.

Theorem 3.6. The Fourier matrix FN is the unitary N × N -matrix with
entries given by

(FN)nk =
1√
N

e−2πink/N ,

for 0 ≤ n, k ≤ N − 1.

Note that in the signal processing literature, it is not common to include
the normalizing factor 1/

√
N in the definition of the DFT. From our more

mathematical point of view this is useful since it makes the Fourier matrix
unitary.

In practical applications of Fourier analysis one typically applies the DFT,
performs some operations on the coefficients, and then maps the result back
using the inverse Fourier matrix. This inverse transformation is so common
that it deserves a name of its own.

Definition 3.7 (IDFT). If y ∈ RN the vector x = (FN)Hy is referred to as
the inverse discrete Fourier transform or (IDFT) of y.

That y is the DFT of x and x is the IDFT of y can also be expressed in

58

component form

xk =
1√
N

N−1�

n=0

yne
2πink/N , (3.4)

yn =
1√
N

N−1�

k=0

xke
−2πink/N . (3.5)

In applied fields such as signal processing, it is more common to state the
DFT and IDFT in these component forms, rather than in the matrix forms
x = (FN)Hy and y = FNy.

Let us use now see how these formulas work out in practice by considering
some examples.

Example 3.8 (DFT on a square wave). Let us attempt to apply the DFT to
a signal x which is 1 on indices close to 0, and 0 elsewhere. Assume that

x−L = . . . = x−1 = x0 = x1 = . . . = xL = 1,

while all other values are 0. This is similar to a square wave, with some mod-
ifications: First of all we assume symmetry around 0, while the square wave
of Example 1.11 assumes antisymmetry around 0. Secondly the values of the
square wave are now 0 and 1, contrary to −1 and 1 before. Finally, we have a
different proportion of where the two values are assumed. Nevertheless, we will
also refer to the current digital sound as a square wave.

Since indices with the DFT are between 0 an N−1, and since x is assumed to
have period N , the indices [−L,L] where our signal is 1 translates to the indices
[0, L] and [N − L,N − 1] (i.e., it is 1 on the first and last parts of the vector).
Elsewhere our signal is zero. Since

�
N−1
k=N−L

e−2πink/N =
�−1

k=−L
e−2πink/N

(since e−2πink/N is periodic with period N), the DFT of x is

yn =
1√
N

L�

k=0

e−2πink/N +
1√
N

N−1�

k=N−L

e−2πink/N

=
1√
N

L�

k=0

e−2πink/N +
1√
N

−1�

k=−L

e−2πink/N

=
1√
N

L�

k=−L

e−2πink/N

=
1√
N

e2πinL/N
1− e−2πin(2L+1)/N

1− e−2πin/N

=
1√
N

e2πinL/Ne−πin(2L+1)/Neπin/N
eπin(2L+1)/N − e−πin(2L+1)/N

eπin/N − e−πin/N

=
1√
N

sin(πn(2L+ 1)/N)

sin(πn/N)
.

59

This computation does in fact also give us the IDFT of the same vector, since
the IDFT just requires a change of sign in all the exponents. From this example
we see that, in order to represent x in terms of frequency components, all
components are actually needed. The situation would have been easier if only
a few frequencies were needed.

Example 3.9. In most cases it is difficult to compute a DFT by hand, due to
the entries e−2πink/N in the matrices, which typically can not be represented
exactly. The DFT is therefore usually calculated on a computer only. However,
in the case N = 4 the calculations are quite simple. In this case the Fourier
matrix takes the form

F4 =
1

2

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

We now can compute the DFT of a vector like (1, 2, 3, 4)T simply as

F4

1
2
3
4

 =
1

2

1 + 2 + 3 + 4
1− 2i− 3 + 4i
1− 2 + 3− 4
1 + 2i− 3− 4i

 =

5
−1 + i
−1

−1− i

 .

Example 3.10 (Direct implementation of the DFT). MATLAB supports com-
plex arithmetic, so the DFT can be implemented very simply and directly by
the code

function y=DFTImpl(x)

N=length(x);

FN=zeros(N);

for n=1:N

FN(n,:)=exp(-2*pi*1i*(n-1)*(0:(N-1))/N)/sqrt(N);

end

y=FN*x;

Note that n has been replaced by n − 1 in this code since n runs from 1 to N
(array indices must start at 1 in MATLAB).

A direct implementation of the IDFT, which we could call IDFTImpl can be
done similarly. Multiplying a full N × N matrix by a vector requires roughly
N2 arithmetic operations. The DFT algorithm above will therefore take a long
time when N becomes moderately large, particularly in MATLAB. It turns out
that if N is a power of 2, there is a much more efficient algorithm for computing
the DFT which we will study in a later chapter. MATLAB also has a built-in
implementation of the DFT which uses such an efficient algorithm.

The DFT has properties which are very similar to those of Fourier series, as
they were listed in Theorem 2.18. The following theorem sums this up:

60

Theorem 3.11 (DFT properties). Let x be a real vector of length N . The
DFT has the following properties:

1. (�x)
N−n

= (�x)
n

for 0 ≤ n ≤ N − 1.

2. If z is the vector with the components of x reversed so that zk = xN−k

for 0 ≤ k ≤ N − 1, then �z = �x. In particular,

(a) if xk = xN−k for all n (so x is symmetric), then �x is a real vector.
(b) if xk = −xN−k for all k (so x is antisymmetric), then �x is a purely

imaginary vector.

3. If d is an integer and z is the vector with components zk = xk−d (the
vector x with its elements delayed by d), then (�z)

n
= e−2πidn/N (�x)

n
.

4. If d is an integer and z is the vector with components zk = e2πidk/Nxk,
then (�z)

n
= (�x)

n−d
.

5. Let d be a multiple of 1/2. Then the following are equivalent:

(a) xd+k = xd−k for all k so that d+ k and d− k are integers (in other
words x is symmetric about d).

(b) The argument of (�x)
n

is −2πdn/N for all n.

Proof. The methods used in the proof are very similar to those used in the proof
of Theorem 2.18. From the definition of the DFT we have

(�x)
N−n

=
1√
N

N−1�

k=0

e−2πik(N−n)/Nxk =
1√
N

N−1�

k=0

e2πikn/Nxk

=
1√
N

N−1�

k=0

e−2πikn/Nxk = (�x)
n

which proves property 1. To prove property 2, we write

(�z)
n
=

1√
N

N−1�

k=0

zke
−2πikn/N =

1√
N

N−1�

k=0

xN−ke
−2πikn/N

=
1√
N

N�

u=1

xue
−2πi(N−u)n/N =

1√
N

N−1�

u=0

xue
2πiun/N

=
1√
N

N−1�

u=0

xue−2πiun/N = (�x)
n
.

If x is symmetric it follows that z = x, so that (�x)
n
= (�x)

n
. Therefore x must

be real. The case of antisymmetry follows similarly.

61

To prove property 3 we observe that

(�z)
n
=

1√
N

N−1�

k=0

xk−de
−2πikn/N =

1√
N

N−1�

k=0

xke
−2πi(k+d)n/N

= e−2πidn/N 1√
N

N−1�

k=0

xke
−2πikn/N = e−2πidn/N (�x)

n
.

For the proof of property 4 we note that the DFT of z is

(�z)
n
=

1√
N

N−1�

k=0

e2πidk/Nxne
−2πikn/N =

1√
N

N−1�

k=0

xne
−2πi(n−d)k/N = (�x)

n−d
.

Finally, to prove property 5, we note that if d is an integer, the vector z

where x is delayed by −d samples satisfies the relation (�z)
n
= e2πidn/N (�x)

n

because of property 3. Since z satisfies zn = zN−n, we have by property 2
that (�z)

n
is real, and it follows that the argument of (�x)

n
is −2πdn/N . It is

straightforward to convince oneself that property 5 also holds when d is not an
integer also (i.e., a multiple of 1/2).

For real sequences, Property 1 says that we need to store only about one half
of the DFT coefficients, since the remaining coefficients can be obtained by con-
jugation. In particular, when N is even, we only need to store y0, y1, . . . , yN/2,
since the other coefficients can be obtained by conjugating these.

3.2.1 Connection between the DFT and Fourier series

So far we have focused on the DFT as a tool to rewrite a vector in terms of
digital, pure tones. In practice, the given vector x will often be sampled from
some real data given by a function f(t). We may then talk about the frequency
content of the vector x and the frequency content of f and ask ourselves how
these are related. More precisely, what is the relationship between the Fourier
coefficients of f and the DFT of x?

In order to study this, assume for simplicity that f is a sum of finitely many
frequencies. This means that there exists an M so that f is equal to its Fourier
approximation fM ,

f(t) = fM (t) =
M�

n=−M

zne
2πint/T , (3.6)

where zn is given by

zn =
1

T

�
T

0
f(t)e−2πint/T dt.

We recall that in order to represent the frequency n/T fully, we need the cor-
responding exponentials with both positive and negative arguments, i.e., both
e2πint/T and e−2πint/T .

62

Fact 3.12. Suppose f is given by its Fourier series (3.6). Then the total
frequency content for the frequency n/T is given by the two coefficients zn
and z−n.

Suppose that the vector x contains values sampled uniformly from f at N
points,

xk = f(kT/N), for k = 0, 1, . . . , N − 1. (3.7)

The vector x can be expressed in terms of its DFT y as

xk =
1√
N

N−1�

n=0

yne
2πink/N . (3.8)

If we evaluate f at the sample points we have

f(kT/N) =
M�

n=−M

zne
2πink/N , (3.9)

and a comparison now gives

M�

n=−M

zne
2πink/N =

1√
N

N−1�

n=0

yne
2πink/N for k = 0, 1, . . . , N − 1.

Exploiting the fact that both y and the complex exponentials are periodic with
period N , and assuming that we take N samples with N odd, we can rewrite
this as

M�

n=−M

zne
2πink/N =

1√
N

(N−1)/2�

n=−(N−1)/2

yne
2πink/N .

This is a matrix relation on the form Gz = Hy/
√
N , where

1. G is the N × (2M + 1)-matrix with entries 1√
N
e2πink/N ,

2. H is the N ×N -matrix with entries 1√
N
e2πink/N .

In Exercise 6 you will be asked to show that GHG = I2M+1, and that GHH =�
I 0

�
, when N ≥ 2M + 1. Thus, if we choose the number of sample points

N so that N ≥ 2M + 1, multiplying with GH on both sides in Gz = Hy/
√
N

gives us that

z =
�
I 0

�� 1√
N

y

�
,

i.e. z consists of the first 2M + 1 elements in y/
√
N . Setting N = 2M + 1 we

can summarize this.

63

Proposition 3.13 (Relation between Fourier coefficients and DFT coeffi-
cients). Let f be a Fourier series

f(t) =
M�

n=−M

zne
2πint/T ,

on the interval [0, T] and let N = 2M + 1 be an odd integer. Suppose that x

is sampled from f by

xk = f(kT/N), for k = 0, 1, . . . , N − 1.

and let y be the DFT of x. Then z = y/
√
N , and the total contribution to f

from frequency n/T , where n is an integer in the range 0 ≤ n ≤ M , is given
by yn and yN−n.

We also need a remark on what we should interpret as high and low frequency
contributions, when we have applied a DFT. The low “frequency contribution”
in f is the contribution from

e−2πiLt/T , . . . , e−2πit/T , 1, e2πit/T , . . . , e2πiLt/T

in f , i.e.
�

L

n=−L
zne2πint/T . This means that low frequencies correspond to

indices n so that −L ≤ n ≤ L. However, since DFT coefficients have indices
between 0 and N − 1, low frequencies correspond to indices n in [0, L] ∪ [N −
L,N − 1]. If we make the same argument for high frequencies, we see that they
correspond to DFT indices near N/2:

Observation 3.14 (DFT indices for high and low frequencies). When y is
the DFT of x, the low frequencies in x correspond to the indices in y near 0
and N . The high frequencies in x correspond to the indices in y near N/2.

We will use this observation in the following example, when we use the DFT
to distinguish between high and low frequencies in a sound.

Example 3.15 (Using the DFT to adjust frequencies in sound). Since the DFT
coefficients represent the contribution in a sound at given frequencies, we can
listen to the different frequencies of a sound by adjusting the DFT coefficients.
Let us first see how we can listen to the lower frequencies only. As explained,
these correspond to DFT-indices n in [0, L]∪ [N −L,N −1]. In MATLAB these
have indices from 1 to L+1, and from N−L+1 to N . The remaining frequencies,
i.e. the higher frequencies which we want to eliminate, thus have MATLAB-
indices between L + 2 and N − L. We can now perform a DFT, eliminate
high frequencies by setting the corresponding frequencies to zero, and perform
an inverse DFT to recover the sound signal with these frequencies eliminated.
With the help of the DFT implementation from Example 3.10, all this can be
achieved with the following code:

64

y=DFTImpl(x);

y((L+2):(N-L))=zeros(N-(2*L+1),1);

newx=IDFTImpl(y);

To test this in practice, we also need to obtain the actual sound samples. If
we use our sample file castanets.wav, you will see that the code runs very
slowly. In fact it seems to never complete. The reason is that DFTImpl attempts
to construct a matrix FN with as many rows and columns as there are sound
samples in the file, and there are just too many samples, so that FN grows
too big, and matrix multiplication with it gets too time-consuming. We will
shortly see much better strategies for applying the DFT to a sound file, but for
now we will simply attempt instead to split the sound file into smaller blocks,
each of size N = 32, and perform the code above on each block. It turns out
that this is less time-consuming, since big matrices are avoided. You will be
spared the details for actually splitting the sound file into blocks: you can find
the function playDFTlower(L) which performs this splitting, sets the relevant
frequency components to 0, and plays the resulting sound samples. If you try
this for L = 7 (i.e. we keep only 15 of the DFT coefficients) the result sounds
like this. You can hear the disturbance in the sound, but we have not lost that
much even if more than half the DFT coefficients are dropped. If we instead try
L = 3 the result will sound like this. The quality is much poorer now. However
we can still recognize the song, and this suggests that most of the frequency
information is contained in the lower frequencies.

Similarly we can listen to high frequencies by including only DFT coefficients
with index close to N

2 . The function playDFThigher(L) sets all DFT coefficients
to zero, except for those with indices N

2 − L, . . . , N

2 , . . . ,
N

2 + L. Let us verify
that there is less information in the higher frequencies by trying the same values
for L as above for this function. For L = 7 (i.e. we keep only the middle 15
DFT coefficients) the result sounds like this, for L = 3 the result sounds like
this. Both sounds are quite unrecognizable, confirming that most information
is contained in the lower frequencies.

Note that there may be a problem in the previous example: for each block
we compute the frequency representation of the values in that block. But the
frequency representation may be different when we take all the samples into
consideration. In other words, when we split into blocks, we can’t expect that
we exactly eliminate all the frequencies in question. This is a common problem
in signal processing theory, that one in practice needs to restrict to smaller
segments of samples, but that this restriction may have undesired effects in
terms of the frequencies in the output.

3.2.2 Interpolation with the DFT

There are two other interesting facets to Theorem 3.13, besides connecting the
DFT and the Fourier series: The first has to do with interpolation: The theo-
rem enables us to find (unique) trigonometric functions which interpolate (pass

65

through) a set of data points. We have in elementary calculus courses seen how
to determine a polynomial of degree N − 1 that interpolates a set of N data
points — such polynomials are called interpolating polynomials. The following
result tells how we can find an interpolating trigonometric function using the
DFT.

Corollary 3.16 (Interpolation with the Fourier basis). Let f be a function
defined on the interval [0, T], and let x be the sampled sequence given by

xk = f(kT/N) for k = 0, 1, . . . , N − 1.

There is exactly one linear combination g(t) on the form

g(t) =
1√
N

N−1�

n=0

yne
2πint/T

which satisfies the conditions

g(kT/N) = f(kT/N), k = 0, 1, . . . , N − 1

and its coefficients are determined by the DFT y = x̂ of x.

The proof for this follows by inserting t = 0, t = T/N , t = 2T/N , . . . ,
t = (N − 1)T/N in the equation f(t) = 1√

N

�
N−1
n=0 yne2πint/T to arrive at the

equations

f(kT/N) =
1√
N

N−1�

n=0

yne
2πink/N 0 ≤ k ≤ N − 1.

This gives us an equation system for finding the yn with the invertible Fourier
matrix as coefficient matrix, and the result follows.

3.2.3 Sampling and reconstruction with the DFT

The second interesting facet to Theorem 3.13 has to do with when reconstruction
of a function from its sample values is possible. An example of sampling a
function is illustrated in Figure 3.1. From Figure 3.1(b) it is clear that some
information is lost when we discard everything but the sample values. There
may however be an exception to this, if we assume that the function satisfies
some property. Assume that f is equal to a finite Fourier series. This means
that f can be written on the form (3.6), so that the highest frequency in the
signal is bounded by M/T . Such functions also have their own name:

Definition 3.17 (Band-limited functions). A function f is said to be band-
limited if there exists a number ν so that f does not contain frequencies higher
than ν.

66

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(b)

Figure 3.1: An example of sampling. Figure (a) shows how the samples are
picked from underlying continuous time function. Figure (b) shows what the
samples look like on their own.

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(b)

Figure 3.2: Sampling the function sin 2πt with two points, and the function
sin 2π4t with eight points.

Our analysis prior to Theorem 3.13 states that all periodic, band-limited
functions can be reconstructed exactly from their samples, using the DFT, as
long as the number of samples is N ≥ 2M + 1, taken uniformly over a period.
Moreover, the DFT is central in the reconstruction formula. We say that we
reconstruct f from its samples. Dividing by T we get N

T
≥ 2M+1

T
, which states

that the sampling frequency (fs = N/T is the number of samples per second)
should be bigger than two times the highest frequency (M/T). In Figure 3.2 we
try to get some intuition on this by considering some pure tones. In Figure (a)
we consider one period of sin 2πt, and see that we need at least two sample points
in [0, 1], since one point would clearly be too little. This translates directly into
having at least eight sample points in Figure (b) where the function is sin 2π4t,
which has four periods in the interval [0, 1].

Let us restate the reconstruction of f without the DFT. The reconstruction

67

formula was

f(t) =
1√
N

M�

n=−M

yne
2πint/T .

If we here substitute y = FNx we get that this equals

1

N

M�

n=−M

N−1�

k=0

xke
−2πink/Ne2πint/T

=
N−1�

k=0

1

N

�
M�

n=−M

xke
2πin(t/T−k/N)

�

=
N−1�

k=0

1

N
e−2πiM(t/T−k/N) 1− e2πi(2M+1)(t/T−k/N)

1− e2πi(t/T−k/N)
xk

=
N−1�

k=0

1

N

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/T)
f(kTs),

where we have substituted N = T/Ts (deduced from T = NTs with Ts being
the sampling period). Let us summarize our findings as follows:

Theorem 3.18 (Sampling theorem and the ideal interpolation formula for
periodic functions). Let f be a periodic function with period T , and assume
that f has no frequencies higher than νHz. Then f can be reconstructed
exactly from its samples f(0), . . . , f((N − 1)Ts) (where Ts is the sampling
period and N = T

Ts
is the number of samples per period) when the sampling

rate Fs =
1
Ts

is bigger than 2ν. Moreover, the reconstruction can be performed
through the formula

f(t) =
N−1�

k=0

f(kTs)
1

N

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/T)
. (3.10)

Formula (3.10) is also called the ideal interpolation formula for periodic
functions. Such formulas, where one reconstructs a function based on a weighted
sum of the sample values, are more generally called interpolation formulas. We
will return to other interpolation formulas later, which have different properties.

Note that f itself may not be equal to a finite Fourier series, and reconstruc-
tion is in general not possible then. Interpolation as performed in Section 3.2.2
is still possible, however, but the g(t) we obtain from Corollary 3.16 may be
different from f(t).

Exercises for Section 3.2

Ex. 1 — Compute the 4 point DFT of the vector (2, 3, 4, 5)T .

68

Ex. 2 — As in Example 3.9, state the exact cartesian form of the Fourier
matrix for the cases N = 6, N = 8, and N = 12.

Ex. 3 — Let x be the vector with entries xk = ck. Show that the DFT of x
is given by the vector with components

yn =
1√
N

1− cN

1− ce−2πin/N

for n = 0, . . . , N − 1.

Ex. 4 — If x is complex, Write the DFT in terms of the DFT on real se-
quences. Hint: Split into real and imaginary parts, and use linearity of the
DFT.

Ex. 5 — As in Example 3.10, write a function

function x=IDFTImpl(y)

which computes the IDFT.

Ex. 6 — Let G be the N × (2M + 1)-matrix with entries 1√
N
e2πink/N , and

H the N ×N -matrix with entries 1√
N
e2πink/N . Show that GHG = I2M+1 and

that GHH =
�
I 0

�
when N ≥ 2M + 1. Write also down an expression for

GHG when N < 2M +1, to show that it is in general different from the identity
matrix.

3.3 Operations on vectors: filters

In Chapter 1 we defined some operations on digital sounds, which we loosely
referred to as filters. One example was the averaging filter

zn =
1

4
(xn−1 + 2xn + xn+1), for n = 0, 1, . . . , N − 1 (3.11)

of Example 1.25 where x denotes the input vector and z the output vector.
Before we state the formal definition of filters, let us consider Equation (3.11)
in some more detail to get more intuition about filters.

As before we assume that the input vector is periodic with period N , so that
xn+N = xn. Our first observation is that the output vector z is also periodic
with period N since

zn+N =
1

4
(xn+N−1 + 2xn+N + xn+N+1) =

1

4
(xn−1 + 2xn + xn+1) = zn.

69

The filter is also clearly a linear transformation and may therefore be represented
by an N × N matrix S that maps the vector x = (x0, x1, . . . , xN−1) to the
vector z = (z0, z1, . . . , zN−1), i.e., we have z = Sx. To find S we note that for
1 ≤ n ≤ N − 2 it is clear from Equation (3.11) that row n has the value 1/4 in
column n − 1, the value 1/2 in column n, and the value 1/4 in column n + 1.
For row 0 we must be a bit more careful, since the index −1 is outside the legal
range of the indices. This is where the periodicity helps us out so that

z0 =
1

4
(x−1 + 2x0 + x1) =

1

4
(xN−1 + 2x0 + x1) =

1

4
(2x0 + x1 + xN−1).

From this we see that row 0 has the value 1/4 in columns 1 and N − 1, and the
value 1/2 in column 0. In exactly the same way we can show that row N − 1
has the entry 1/4 in columns 0 and N − 2, and the entry 1/2 in column N − 1.
In summary, the matrix of the averaging filter is given by

S =
1

4

2 1 0 0 · · · 0 0 0 1
1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1 2 1
1 0 0 0 · · · 0 0 1 2

. (3.12)

A matrix on this form is called a Toeplitz matrix. Such matrices are very
popular in the literature and have many applications. The general definition
may seem complicated, but is in fact quite straightforward:

Definition 3.19 (Toeplitz matrices). An N ×N -matrix S is called a Toeplitz
matrix if its elements are constant along each diagonal. More formally, Sk,l =
Sk+s,l+s for all nonnegative integers k, l, and s such that both k+ s and l+ s
lie in the interval [0, N − 1]. A Toeplitz matrix is said to be circulant if in
addition

S(k+s) mod N,(l+s) mod N = Sk,l

for all integers k, l in the interval [0, N − 1], and all s (Here mod denotes the
remainder modulo N).

As the definition says, a Toeplitz matrix is constant along each diagonal,
while the additional property of being circulant means that each row and column
of the matrix ’wraps over’ at the edges. It is quite easy to check that the matrix
S given by Equation (3.12) satisfies Definition 3.19 and is a circulant Toeplitz
matrix. A Toeplitz matrix is uniquely identified by the values on its nonzero
diagonals, and a circulant Toeplitz matrix is uniquely identified by the N/2
diagonals above or on the main diagonal, and the N/2 diagonals below the
main diagonal. We will encounter Toeplitz matrices also in other contexts in
these notes.

70

In Chapter 1, the operations we loosely referred to as filters, such as for-
mula (3.11), could all be written on the form

zn =
�

k

tkxn−k. (3.13)

Many other operations are also defined in this way. The values tk will be called
filter coefficients. The range of k is not specified, but is typically an interval
around 0, since zn usually is calculated by combining xks with indices close
to n. Both positive and negative indices are allowed. As an example, for for-
mula (3.11) k ranges over −1, 0, and 1, and we have that t−1 = t1 = 1/4, and
t0 = 1/2. By following the same argument as above, the following is clear:

Proposition 3.20. Any operation defined by Equation (3.13) is a linear trans-
formation which transforms a vector of period N to another of period N . It
may therefore be represented by an N × N matrix S that maps the vector
x = (x0, x1, . . . , xN−1) to the vector z = (z0, z1, . . . , zN−1), i.e., we have
z = Sx. Moreover, the matrix S is a circulant Toeplitz matrix, and the first
column s of this matrix is given by

sk =

�
tk, if 0 ≤ k < N/2;

tk−N if N/2 ≤ k ≤ N − 1.
(3.14)

In other words, the first column of S can be obtained by placing the coefficients
in (3.13) with positive indices at the beginning of s, and the coefficients with
negative indices at the end of s.

This proposition will be useful for us, since it explains how to pass from the
form (3.13), which is most common in practice, to the matrix form S.

Example 3.21. Let us apply Proposition 3.20 on the operation defined by
formula (3.11):

1. for k = 0 Equation 3.14 gives s0 = t0 = 1/2.

2. For k = 1 Equation 3.14 gives s1 = t1 = 1/4.

3. For k = N − 1 Equation 3.14 gives sN−1 = t−1 = 1/4.

For all k different from 0, 1, and N − 1, we have that sk = 0. Clearly this gives
the matrix in Equation (3.12).

Proposition 3.20 is also useful when we have a circulant Toeplitz matrix S,
and we want to find filter coefficients tk so that z = Sx can be written as in
Equation (3.13):

71

Example 3.22. Consider the matrix

S =

2 1 0 3
3 2 1 0
0 3 2 1
1 0 3 2

 .

This is a circulant Toeplitz matrix with N = 4, and we see that s0 = 2, s1 = 3,
s2 = 0, and s3 = 1. The first equation in (3.14) gives that t0 = s0 = 2, and
t1 = s1 == 3. The second equation in (3.14) gives that t−2 = s2 = 0, and
t−1 = s3 = 1. By including only the tk which are nonzero, the operation can be
written as

zn = t−1xn−(−1) + t0xn + t1xn−1 + t2xn−2 = xn+1 + 2x0 + 3xn−1.

3.3.1 Formal definition of filters and frequency response

Let us now define filters formally, and establish their relationship to Toeplitz
matrices. We have seen that a sound can be decomposed into different frequency
components, and we would like to define filters as operations which adjust these
frequency components in a predictable way. One such example is provided in
Example 3.15, where we simply set some of the frequency components to 0. The
natural starting point is to require for a filter that the output of a pure tone is
a pure tone with the same frequency.

Definition 3.23 (Digital filters and frequency response). A linear transfor-
mation S : RN �→ RN is a said to be a digital filter, or simply a filter, if it
maps any Fourier vector in RN to a multiple of itself. In other words, for any
integer n in the range 0 ≤ n ≤ N − 1 there exists a value λS,n so that

S (φn) = λS,nφn, (3.15)

i.e., the N Fourier vectors are the eigenvectors of S. The vector of (eigen)values
λS = (λS,n)

N−1
n=0 is often referred to as the frequency response of S.

We will identify the linear transformation S with its matrix relative to the
standard basis. Since the Fourier basis vectors are orthogonal vectors, S is
clearly orthogonally diagonalizable. Since also the Fourier basis vectors are the
columns in (FN)H , we have that

S = FH

N
DFN (3.16)

whenever S is a digital filter, where D has the frequency response (i.e. the
eigenvalues) on the diagonal1. In particular, if S1 and S2 are digital filters, we

1Recall that the orthogonal diagonalization of S takes the form S = PDPT , where P
contains as columns an orthonormal set of eigenvectors, and D is diagonal with the eigenvectors
listed on the diagonal (see Section 7.1 in [7]).

72

can write S1 = FH

N
D1FN and S2 = FH

N
D2FN , so that

S1S2 = FH

N
D1FNFH

N
D2FN = FH

N
D1D2FN .

Since D1D2 = D2D1 for any diagonal matrices, we get the following corollary:

Corollary 3.24. All digital filters commute, i.e. if S1 and S2 are digital
filters, S1S2 = S2S1.

There are several equivalent characterizations of a digital filter. The first one
was stated above in terms of the definition through eigenvectors and eigenvalues.
The next characterization helps us prove that the operations from Chapter 1
actually are filters.

Theorem 3.25. A linear transformation S is a digital filter if and only if it
is a circulant Toeplitz matrix.

Proof. That S is a filter is equivalent to the fact that S = (FN)HDFN for some
diagonal matrix D. We observe that the entry at position (k, l) in S is given by

Sk,l =
1

N

N−1�

n=0

e2πikn/NλS,ne
−2πinl/N =

1

N

N−1�

n=0

e2π(k−l)n/NλS,n.

Another entry on the same diagonal (shifted s rows and s columns) is

S(k+s) mod N,(l+s) mod N =
1

N

N−1�

n=0

e2πi((k+s) mod N−(l+s) mod N)n/NλS,n

=
1

N

N−1�

n=0

e2πi(k−l)n/NλS,n = Sk,l,

which proves that S is a circulant Toeplitz matrix.

In particular, operations defined by (3.13) are digital filters, when restricted
to vectors with period N . The following results enables us to compute the
eigenvalues/frequency response easily, so that we do not need to form the char-
acteristic polynomial and find its roots:

Theorem 3.26. Any digital filter is uniquely characterized by the values in
the first column of its matrix. Moreover, if s is the first column in S, the
frequency response of S is given by

λS =
√
NFNs. (3.17)

Conversely, if we know the frequency response λS , the first column s of S is
given by

s =
1√
N

(FN)HλS . (3.18)

73

Proof. If we replace S by (FN)HDFN we find that

FNs = FNS

1
0
...
0

= FNFH

N
DFN

1
0
...
0

= DFN

1
0
...
0

=

1√
N

D

1
...
1

 ,

where we have used the fact that the first column in FN has all entries equal
to 1/

√
N . But the the diagonal matrix D has all the eigenvalues of S on its

diagonal, and hence the last expression is the vector of eigenvalues λS , which
proves (3.17). Equation (3.18) follows directly by applying the inverse DFT to
(3.17).

Since the first column s characterizes the filter S uniquely, one often refers
to S by the vector s. The first column s is also called the impulse response.
This name stems from the fact that we can write s = Se0, i.e., the vector s is
the output (often called response) to the vector e0 (often called an impulse).

Example 3.27. The identity matrix is a digital filter since I = (FN)HIFN .
Since e0 = Se0, it has impulse response s = e0. Its frequency response has 1 in
all components and therefore preserves all frequencies, as expected.

Equations (3.16), (3.17), and (3.18) are important relations between the
matrix- and frequency representations of a filter. We see that the DFT is a
crucial ingredient in these relations. A consequence is that, once you recognize
a matrix as circulant Toeplitz, you do not need to make the tedious calculation
of eigenvectors and eigenvalues which you are used to. Let us illustrate this
with an example.

Example 3.28. Let us compute the eigenvalues and eigenvectors of the simple
matrix

S =

�
4 1
1 4

�
.

It is straightforward to compute the eigenvalues and eigenvectors of this matrix
the way you learnt in your first course in linear algebra. However, this matrix
is also a circulant Toeplitz matrix, so that we can also use the results in this
section to compute the eigenvalues and eigenvectors. Since here N = 2, we have
that e2πink/N = eπink = (−1)nk. This means that the Fourier basis vectors are
(1, 1)/

√
2 and (1,−1)/

√
2, which also are the eigenvectors of S. The eigenvalues

are the frequency response of S, which can be obtained as

√
NFNs =

√
2

1√
2

�
1 1
1 −1

��
4
1

�
=

�
5
3

�

The eigenvalues are thus 3 and 5. You could have obtained the same result
with Matlab. Note that Matlab may not return the eigenvectors exactly as the
Fourier basis vectors, since the eigenvectors are not unique (the multiple of an

74

eigenvector is still an eigenvector). In this case Matlab may for instance switch
the signs of the eigenvectors. We have no control over what Matlab actually
chooses to do, since it uses some underlying numerical algorithm for computing
eigenvectors which we can’t influence.

In signal processing, the frequency content of a vector (i.e., its DFT) is
also referred to as its spectrum. This may be somewhat confusing from a linear
algebra perspective, because in this context the term spectrum is used to denote
the eigenvalues of a matrix. But because of Theorem 3.26 this is not so confusing
after all if we interpret the spectrum of a vector (in signal processing terms) as
the spectrum of the corresponding digital filter (in linear algebra terms).

3.3.2 Some properties of the frequency response

Equation (3.17) states that the frequency response can be written as

λS,n =
N−1�

k=0

ske
−2πink/N , for n = 0, 1, . . . , N − 1, (3.19)

where sk are the components of the impulse response s.

Example 3.29. When only few of the coefficients sk are nonzero, it is possible
to obtain nice expressions for the frequency response. To see this, let us compute
the frequency response of the filter defined from formula (3.11). We saw that
the first column of the corresponding Toeplitz matrix satisfied s0 = 1/2, and
sN−1 = s1 = 1/4. The frequency response is thus

λS,n =
1

2
e0 +

1

4
e−2πin/N +

1

4
e−2πin(N−1)/N

=
1

2
e0 +

1

4
e−2πin/N +

1

4
e2πin/N =

1

2
+

1

2
cos(2πn/N).

If we make the substitution ω = 2πn/N in the formula for λS,n, we may in-
terpret the frequency response as the values on a continuous function on [0, 2π).

Theorem 3.30. The function λS(ω) defined on [0, 2π) by

λS(ω) =
�

k

tke
−ikω, (3.20)

where tk are the filter coefficients of S, satisfies

λS,n = λS(2πn/N) for n = 0, 1, . . . , N − 1

for any N . In other words, regardless of N , the frequency reponse lies on the
curve λS .

75

Proof. For any N we have that

λS,n =
N−1�

k=0

ske
−2πink/N =

�

0≤k<N/2

ske
−2πink/N +

�

N/2≤k≤N−1

ske
−2πink/N

=
�

0≤k<N/2

tke
−2πink/N +

�

N/2≤k≤N−1

tk−Ne−2πink/N

=
�

0≤k<N/2

tke
−2πink/N +

�

−N/2≤k≤−1

tke
−2πin(k+N)/N

=
�

0≤k<N/2

tke
−2πink/N +

�

−N/2≤k≤−1

tke
−2πink/N

=
�

−N/2≤k<N/2

tke
−2πink/N = λS(ω).

where we have used Equation (3.14).

Both λS(ω) and λS,n will be referred to as frequency responses in the fol-
lowing. When there is a need to distinguish the two we will call λS,n the vector
frequency response, and λS(ω)) the continuous frequency response. ω is also
called angular frequency.

The difference in the definition of the continuous- and the vector frequency
response lies in that one uses the filter coefficients tk, while the other uses the
impulse response sk. While these contain the same values, they are stored dif-
ferently. Had we used the impulse response to define the continuous frequency
response, we would have needed to compute

�
N−1
k=0 ske−πiω, which does not con-

verge when N → ∞ (although it gives the right values at all points ω = 2πn/N
for all N)! The filter coefficcients avoid this convergence problem, however,
since we assume that only tk with |k| small are nonzero. In other words, filter
coefficients are used in the definition of the continuous frequency response so
that we can find a continuous curve where we can find the vector frequency
response values for all N .

The frequency response contains the important characteristics of a filter,
since it says how it behaves for the different frequencies. When analyzing a
filter, we therefore often plot the frequency response. Often we plot only the
absolute value (or the magnitude) of the frequency response, since this is what
explains how each frequency is amplified or attenuated. Since λS is clearly
periodic with period 2π, we may restrict angular frequency to the interval [0, 2π).
The conclusion in Observation 3.14 was that the low frequencies in a vector
correspond to DFT indices close to 0 and N−1, and high frequencies correspond
to DFT indices close to N/2. This observation is easily translated to a statement
about angular frequencies:

Observation 3.31. When plotting the frequency response on [0, 2π), angular
frequencies near 0 and 2π correspond to low frequencies, angular frequencies
near π correspond to high frequencies

76

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

(a)

�3 �2 �1 1 2 3

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3.3: The (absolute value of the) frequency response of the smoothing
filter in Example 1.25 which we discussed at the beginning of this section.

λS may also be viewed as a function defined on the interval [−π,π). Plotting
on [−π,π] is often done in practice, since it makes clearer what corresponds to
lower frequencies, and what corresponds to higher frequencies:

Observation 3.32. When plotting the frequency response on [−π,π), angular
frequencies near 0 correspond to low frequencies, angular frequencies near ±π
correspond to high frequencies.

Example 3.33. In Example 3.29 we computed the vector frequency response
of the filter defined in formula (3.11). The filter coefficients are here t−1 = 1/4,
t0 = 1/2, and t1 = 1/4. The continuous frequency response is thus

λS(ω) =
1

4
eiω +

1

2
+

1

4
e−iω =

1

2
+

1

2
cosω.

Clearly this matches the computation from Example 3.29. Figure 3.3 shows
plots of this frequency response, plotted on the intervals [0, 2π) and [−π,π).
Both the continuous frequency response and the vector frequency response for
N = 51 are shown. Figure (b) shows clearly how the high frequencies are
softened by the filter.

Since the frequency response is essentially a DFT, it inherits several prop-
erties from Theorem 3.11.

Theorem 3.34. The frequency response has the properties:

1. The continuous frequency response satisfies λS(−ω) = λS(ω).

2. If S is a digital filter, ST is also a digital filter. Morever, if the frequency
response of S is λS(ω), then the frequency response of ST is λS(ω).

77

3. If S is symmetric, λS is real. Also, if S is antisymmetric (the element on
the opposite side of the diagonal is the same, but with opposite sign),
λS is purely imaginary.

4. If S1 and S2 are digital filters, then S1S2 also is a digital filter, and
λS1S2(ω) = λS1(ω)λS2(ω).

Proof. Property 1. and 3. follow directly from Theorem 3.11. Transposing a
matrix corresponds to reversing the first colum of the matrix and thus also the
filter coefficients. Due to this Property 2. also follows from Theorem 3.11. The
last property follows in the same was as we showed that filters commute:

S1S2 = (FN)HD1FN (FN)HD2FN = (FN)HD1D2FN .

The frequency response of S1S2 is thus obtained by multiplying the frequency
responses of S1 and S2.

In particular the frequency response may not be real, although this was
the case in the first example of this section. Theorem 3.34 applies both for
the vector- and continuous frequency response. Also, clearly S1 + S2 is a filter
when S1 and S2 are. The set of all filters is thus a vector space, which also is
closed under multiplication. Such a space is called an algebra. Since all filters
commute, this algebra is also called a commutative algebra.

Example 3.35. Assume that the filters S1 and S2 have the frequency responses
λS1(ω) = cos(2ω), λS2(ω) = 1+3 cosω. Let us see how we can use Theorem 3.34
to compute the filter coefficients and the matrix of the filter S = S1S2. We first
notice that, since both frequency responses are real, all S1, S2, and S = S1S2

are symmetric. We rewrite the frequency responses as

λS1(ω) =
1

2
(e2iω + e−2iω) =

1

2
e2iω +

1

2
e−2iω

λS2(ω) = 1 +
3

2
(eiω + e−iω) =

3

2
eiω + 1 +

3

2
e−iω.

We now get that

λS1S2(ω) = λS1(ω)λS2(ω) =

�
1

2
e2iω +

1

2
e−2iω

��
3

2
eiω + 1 +

3

2
e−iω

�

=
3

4
e3iω +

1

2
e2iω +

3

4
eiω +

3

4
e−iω +

1

2
e−2iω +

3

4
e−3iω

From this expression we see that the filter coefficients of S are t±1 = 3/4,
t±2 = 1/2, t±3 = 3/4. All other filter coefficients are 0. Using Theorem 3.20,
we get that s1 = 3/4, s2 = 1/2, and s3 = 3/4, while sN−1 = 3/4, sN−2 = 1/2,
and sN−3 = 3/4 (all other sk are 0). This gives us the matrix representation of
S.

78

3.3.3 Assembling the filter matrix and compact notation

Let us return to how we first defined a filter in Equation (3.13):

zn =
�

k

tkxn−k.

As mentioned, the range of k may not be specified. In some applications in
signal processing there may in fact be infinitely many nonzero tk. However,
when x is assumed to have period N , we may as well assume that the k’s range
over an interval of length N (else many of the tk’s can be added together to
simplify the formula). Also, any such interval can be chosen. It is common to
choose the interval so that it is centered around 0 as much as possible. For this,
we can choose for instance [�N/2� − N + 1, �N/2�]. With this choice we can
write Equation (3.13) as

zn =

�N/2��

k=�N/2�−N+1

tkxn−k. (3.21)

The index range in this sum is typically even smaller, since often much less than
N of the tk are nonzero (For Equation (3.11), there were only three nonzero tk).
In such cases one often uses a more compact notation for the filter:

Definition 3.36 (Compact notation for filters). Let kmin ≤ 0, kmax ≥ 0 be
the smallest and biggest index of a filter coefficient in Equation (3.21) so that
tk �= 0 (if no such values exist, let kmin = 0, or kmax = 0), i.e.

zn =
kmax�

k=kmin

tkxn−k. (3.22)

We will use the following compact notation for S:

S = {tkmin , . . . , t−1, t0, t1, . . . , tkmax}.

In other words, the entry with index 0 has been underlined, and only the
nonzero tk’s are listed. By the length of S, denoted l(S), we mean the number
kmax − kmin.

One seldom writes out the matrix of a filter, but rather uses this compact
notation. Note that the length of S can also be written as the number of nonzero
filter coefficients minus 1. l(S) thus follows the same convention as the degree
of a polynomial: It is 0 if the polynomial is constant (i.e. one nonzero filter
coefficient).

Example 3.37. Using the compact notation for a filter, we would write S =
{1/4, 1/2, 1/4} for the filter given by formula (3.11)). For the filter

zn = xn+1 + 2x0 + 3xn−1

79

from Example 3.22, we would write S = {1, 2, 3}.

Equation (3.13) is also called the convolution of the two vectors t and x.
Convolution is usually defined without the assumption that the vectors are pe-
riodic, and without any assumption on their lengths (i.e. they may be sequences
of inifinite length):

Definition 3.38 (Convolution of vectors). By the convolution of two vectors
x and y we mean the vector x ∗ y defined by

(x ∗ y)n =
�

k

xkyn−k. (3.23)

In other words, applying a filter S corresponds to convolving the filter co-
efficients of S with the input. If both x and y have infinitely many nonzero
entries, the sum is an infinite one, which may diverge. For the filters we look
at, we always have a finite number of nonzero entries tk, so we never have this
convergence problem since the sum is a finite one. MATLAB has the built-in
function conv for convolving two vectors of finite length. This function does not
indicate which indices the elements of the returned vector belongs to, however.
Exercise 11 explains how one may keep track of these indices.

Since the number of nonzero filter coefficients is typically much less than N
(the period of the input vector), the matrix S have many entries which are zero.
Multiplication with such matrices requires less additions and multiplications
than for other matrices: If S has k nonzero filter coefficients, S has Nk nonzero
entries, so that kN multiplications and (k−1)N additions are needed to compute
Sx. This is much less than the N2 multiplications and (N − 1)N additions
needed in the general case. Perhaps more important is that we need not form
the entire matrix, we can perform the matrix multiplication directly in a loop.
Exercise 10 investigates this further. For large N we risk running into out of
memory situations if we had to form the entire matrix.

3.3.4 Some examples of filters

We have now established the basic theory of filters, so it is time to study some
specific examples. Many of the filters below were introduced in Section 1.4.

Example 3.39 (Time delay filters). The simplest possible type of Toeplitz
matrix is one where there is only one nonzero diagonal. Let us define the Toeplitz
matrix Ed as the one which has first column equal to ed. In the notation above,
and when d > 0, this filter can also be written as S = {0, . . . , 1} where the 1
occurs at position d. We observe that

(Edx)n =
N−1�

k=0

(Ed)n,k xk =
N−1�

k=0

(Ed)(n−k) mod N,0 xk = x(n−d) mod N ,

80

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Figure 3.4: The frequency response of a filter which adds an echo with damping
factor c = 0.1 and delay d = 10.

since only when (n − k) mod N = d do we have a contribution in the sum.
It is thus clear that multiplication with Ed delays a vector by d samples, in a
circular way. For this reason Ed is also called a time delay filter. The frequency
response of the time delay filter is clearly the function λS(ω) = e−idω, which
has magnitude 1. This filter therefore does not change the magnitude of the
different frequencies.

Example 3.40 (Adding echo). In Example 1.23 we encountered a filter which
could be used for adding echo to sound. Using our compact filter notation this
can be written as

S = {1, 0, . . . , 0, c},

where the damping factor c appears after the delay d. The frequency response
of this is λS(ω) = 1+ ce−idω. This frequency response is not real, which means
that the filter is not symmetric. In Figure 3.4 we have plotted the magnitude
of this frequency response with c = 0.1 and d = 10. We see that the response
varies between 0.9 and 1.1, so that adding exho changes frequencies according
to the damping factor c. The deviation from 1 is controlled by the damping
factor c. Also, we see that the oscillation in the frequency response, as visible
in the plot, is controlled by the delay d.

Previously we have claimed that some operations, such as averaging the sam-
ples, can be used for adjusting the bass and the treble of a sound. Theorem 3.25
supports this, since the averaging operations we have defined correspond to cir-
culant Toeplitz matrices, which are filters which adjust the frequencies as dic-
tated by the frequency response. Below we will analyze the frequency response
of the corresponsing filters, to verify that it works as we have claimed for the
frequencies corresponding to bass and treble in sound.

81

Example 3.41 (Reducing the treble). In Example 1.25 we encountered the
moving average filter

S =

�
1

3
,
1

3
,
1

3

�
.

This could be used for reducing the treble in a sound. If we set N = 4, the
corresponding circulant Toeplitz matrix for the filter is

S =
1

3

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

The frequency response is λS(ω) = (eiω +1+ e−iω)/3 = (1+ 2 cos(ω))/3. More
generally, if the filter is s = (1, · · · , 1, · · · , 1)/(2L+1), where there is symmetry
around 0, we recognize this as x/(2L+1), where x is a vector of ones and zeros,
as defined in Example 3.8. From that example we recall that

x =
1√
N

sin(πn(2L+ 1)/N)

sin(πn/N)
,

so that the frequency response of S is

λS,n =
1

2L+ 1

sin(πn(2L+ 1)/N)

sin(πn/N)
,

and
λS(ω) =

1

2L+ 1

sin((2L+ 1)ω/2)

sin(ω/2)
.

We clearly have

0 ≤ 1

2L+ 1

sin((2L+ 1)ω/2)

sin(ω/2)
≤ 1,

so this frequency response approaches 1 as ω → 0+. The frequency response
thus peaks at 0, and it is clear that this peak gets narrower and narrower as
L increases, i.e. we use more and more samples in the averaging process. This
appeals to our intuition that this kind of filters smooths the sound by keeping
only lower frequencies. In Figure 3.5 we have plotted the frequency response for
moving average filters with L = 1, L = 5, and L = 20. We see, unfortunately,
that the frequency response is far from a filter which keeps some frequencies
unaltered, while annihilating others (this is a desirable property which is refered
to as being a bandpass filter): Although the filter distinguishes between high and
low frequencies, it slightly changes the small frequencies. Moreover, the higher
frequencies are not annihilated, even when we increase L to high values.

In the previous example we mentioned a filter which kept some frequencies
unaltered, and annihilated others. This is a desirable property for filters, so let
us give names to such filters:

82

0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) L=1
0 2 4 6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) L=5

0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) L=20

Figure 3.5: The frequency response of moving average filters of different length.

83

Definition 3.42. A filter S is called

1. a lowpass filter if λS(ω) ≈ 1 when ω is close to 0, and λS(ω) ≈ 0 when ω is
close to π (i.e. S keeps low frequencies and annhilates high frequencies),

2. a highpass filter if λS(ω) ≈ 1 when ω is close to π, and λS(ω) ≈ 0
when ω is close to 0 (i.e. S keeps high frequencies and annhilates low
frequencies),

3. a bandpass filter if λS(ω) ≈ 1 within some interval [a, b] ⊂ [0, 2π], and
λS(ω) ≈ 0 outside this interval.

This definition should be considered rather vague when it comes to what we
mean by “ω close to 0,π”, and “λS(ω) ≈ 0, 1”: in practice, when we talk about
lowpass and highpass filters, it may be that the frequency responses are still
quite far from what is commonly refered to as ideal lowpass or highpass filters,
where the frequency response only assumes the values 0 and 1 near 0 and π.
The next example considers an ideal lowpass filter.

Example 3.43 (Ideal lowpass filters). By definition, the ideal lowpass filter
keeps frequencies near 0, and removes frequencies near π. In Chapter 1 we
mentioned that we were not able to find the filter coefficients for such a filter.
We now have the theory in place in order to achieve this: In Example 3.15 we
implemented the ideal lowpass filter with the help of the DFT. Mathematically,
the code was equivalent to computing (FN)HDFN where D is the diagonal
matrix with the entries 0, . . . , L and N − L, . . . , N − 1 being 1, the rest being
0. Clearly this is a digital filter, with frequency response as stated. If the
filter should keep the angular frequencies |ω| ≤ ωc only, where ωc describes the
highest frequency we should keep, we should choose L so that ωc = 2πL/N .
In Example 3.8 we computed the DFT of this vector, and it followed from
Theorem 3.11 that the IDFT of this vector equals its DFT. This means that
we can find the filter coefficients by using Equation (3.18): Since the IDFT was
1√
N

sin(πk(2L+1)/N)
sin(πk/N) , the filter coefficients are

1√
N

1√
N

sin(πk(2L+ 1)/N)

sin(πk/N)
=

1

N

sin(πk(2L+ 1)/N)

sin(πk/N)
.

This means that the filter coefficients lie as N points uniformly spaced on the
curve 1

N

sin(ω(2L+1)/2)
sin(ω/2) between 0 and π. This curve has been encountered many

other places in these notes. The filter which keeps only the frequency ωc = 0 has
all filter coefficients being 1

N
(set L = 1), and when we include all frequencies

(set L = N) we get the filter where x0 = 1 and all other filter coefficients
are 0. When we are between these two cases, we get a filter where s0 is the
biggest coefficient, while the others decrease towards 0 along the curve we have
computed. The bigger L and N are, the quicker they decrease to zero. All
filter coefficients are typically nonzero for this filter, since this curve is zero

84

only at certain points. This is unfortunate, since it means that the filter is
time-consuming to compute.

The two previous examples show an important duality between vectors which
are 1 on some elements and 0 on others (also called window vectors), and the
vector 1

N

sin(πk(2L+1)/N)
sin(πk/N) (also called a sinc): filters of the one type correspond

to frequency responses of the other type, and vice versa. The examples also
show that, in some cases only the filter coefficients are known, while in other
cases only the frequency response is known. In any case we can deduce the one
from the other, and both cases are important.

Filters are much more efficient when there are few nonzero filter coefficients.
In this respect the second example displays a problem: in order to create filters
with particularly nice properties (such as being an ideal lowpass filter), one
may need to sacrifice computational complexity by increasing the number of
nonzero filter coefficients. The trade-off between computational complexity and
desirable filter properties is a very important issue in filter design theory.

Example 3.44. In order to decrease the computational complexity for the ideal
lowpass filter in Example 3.43, one can for instance include only the first filter
coefficients, i.e. { 1

N

sin(πk(2L+1)/N)
sin(πk/N) }N0

k=−N0
, ignoring the last ones. Hopefully this

gives us a filter where the frequency reponse is not that different from the ideal
lowpass filter. In Figure 3.6 we show the corresponding frequency responses. In
the figure we have set N = 128, L = 32, so that the filter removes all frequencies
ω > π/2. N0 has been chosen so that the given percentage of all coefficients
are included. Clearly the figure shows that we should be careful when we omit
filter coefficients: if we drop too many, the frequency response is far away from
that of an ideal bandpass filter.

Example 3.45 (Reducing the treble II). Let S be the moving average filter of
two elements, i.e.

(Sx)n =
1

2
(xn−1 + xn).

In Example 3.41 we had an odd number of filter coefficients. Here we have only
two. We see that the frequency response in this case is

λS(ω) =
1

2
(1 + e−iω) = e−iω/2 cos(ω/2).

The frequency response is complex now, since the filter is not symmetric in this
case. Let us now apply this filter k times, and denote by Sk the resulting filter.
Theorem 3.34 gives us that the frequency response of Sk is

λSk(ω) =
1

2k
(1 + e−iω)k = e−ikω/2 cosk(ω/2),

which is a polynomial in e−iω with the coefficients taken from Pascal’s triangle.
At least, this partially explains how filters with coefficients taken from Pascal’s
triangle appear, as in Example 1.25. These filters are more desirable than the

85

0 2 4 6

0

0.5

1

(a) all N = 128 filter coefficients
0 2 4 6

0

0.5

1

(b) 1/4 of all filter coefficients

0 2 4 6

0

0.5

1

(c) 1/16 of all filter coefficients
0 2 4 6

0

0.5

1

(d) 1/32 of all filter coefficients

Figure 3.6: The frequency response which results by omitting the last filter
coefficients for the ideal lowpass filter.

86

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

(a) k=5
0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

(b) k=30

Figure 3.7: The frequency response of filters corresponding to a moving average
filter convolved with itself k times.

moving average filters, and are used for smoothing abrupt changes in images
and in sound. The reason is that, since we take a k’th power with k large, λSk

is more square-like near 0, i.e. it becomes more and more like a bandpass filter
near 0. In Figure 3.7 we have plotted the magnitude of the frequence response
when k = 5, and when k = 30. This behaviour near 0 is not so easy to see from
the figure. Note that we have zoomed in on the frequency response to the area
where it actually decreases to 0.

In Example 1.27 we claimed that we could obtain a bass-reducing filter by
using alternating signs on the filter coefficients in a treble-reducing filter. Let us
explain why this is the case. Let S be a filter with filter coefficients sk, and let
us consider the filter T with filter coefficient (−1)ksk. The frequency response
of T is

λT (ω) =
�

k

(−1)kske
−iωk =

�

k

(e−iπ)kske
−iωk

=
�

k

e−iπkske
−iωk =

�

k

ske
−i(ω+π)k = λS(ω + π).

where we have set −1 = e−iπ (note that this is nothing but Property 4. in
Theorem 3.11, with d = N/2). Now, for a lowpass filter S, λS(ω) has values
near 1 when ω is close to 0 (the low frequencies), and values near 0 when ω is
close to π (the high frequencies). For a highpass filter T , λT (ω) has values near
0 when ω is close to 0 (the low frequencies), and values near 1 when ω is close
to π (the high frequencies). When T is obtained by adding an alternating sign
to the filter coefficicents of S, The relation λT (ω) = λS(ω+π) thus says that T
is a highpass filter when S is a lowpass filter, and vice versa:

87

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Figure 3.8: The frequency response of the bass reducing filter, which corresponds
to row 5 of Pascal’s triangle.

Observation 3.46. Assume that T is obtained by adding an alternating sign
to the filter coefficicents of S. If S is a lowpass filter, then T is a highpass
filter. If S is a highpass filter, then T is a lowpass filter.

The following example explains why this is the case.

Example 3.47 (Reducing the bass). In Example 1.27 we constructed filters
where the rows in Pascal’s triangle appeared, but with alternating sign. The
frequency response of this when using row 5 of Pascal’s triangle is shown in
Figure 3.8. It is just the frequency response of the corresponding treble-reducing
filter shifted with π. The alternating sign can also be achieved if we write the
frequency response 1

2k (1 + e−iω)k from Example 3.45 as 1
2k (1 − e−iω)k, which

corresponds to applying the filter S(x) = 1
2 (−xn−1 + xn) k times.

3.3.5 Time-invariance of filters

The third characterization of digital filters we will prove is stated in terms of
the following concept:

Definition 3.48 (Time-invariance). A linear transformation from RN to RN

is said to be time-invariant if, for any d, the output of the delayed input vector
z defined by zn = x(n−d) mod N is the delayed output vector w defined by
wn = y(n−d) mod N .

We have the following result:

88

Theorem 3.49. A linear transformation S is a digital filter if and only if it
is time-invariant.

Proof. Let y = Sx, and z,w as defined above. We have that

wn = (Sx)n−d =
N−1�

k=0

Sn−d,kxk

=
N−1�

k=0

Sn,k+dxk =
N−1�

k=0

Sn,kxk−d

=
N−1�

k=0

Sn,kzk = (Sz)n

This proves that Sz = w, so that S is time-invariant.

By Example 3.39, delaying a vector with d elements corresponds to multi-
plication with the filter Ed. That S is time-invariant could thus also have been
defined by demanding that SEd = EdS for any d. That all filters are time
invariant follows also immediately from the fact that all filters commute.

Due to Theorem 3.49, digital filters are also called LTI filters (LTI stands
for Linear, Time-Invariant). By combining the definition of a digital filter with
theorems 3.26, and 3.49, we get the following:

Theorem 3.50 (Characterizations of digital filters). The following are equiv-
alent characterizations of a digital filter:

1. S = (FN)HDFN for a diagonal matrix D, i.e. the Fourier basis is a basis
of eigenvectors for S.

2. S is a circulant Toeplitz matrix.

3. S is linear and time-invariant.

3.3.6 Linear phase filters

Some filters are particularly important for applications:

Definition 3.51 (Linear phase). We say that a digital filter S has linear phase
if there exists some d so that Sd+n,0 = Sd−n,0 for all n.

From Theorem 3.11 4. it follows that the argument of the frequency response
at n for S is −2πdn/N . Moreover, the frequency response is real if d = 0, and
this also corresponds to that the matrix is symmetric. One reason that linear
phase filters are important for applications is that they can be more efficiently

89

implemented than general filters. As an example, if S is symmetric around 0,
we can write

(Sx)n =
N−1�

k=0

skxn−k =

N/2−1�

k=0

skxn−k +
N−1�

k=N/2

skxn−k

=

N/2−1�

k=0

skxn−k +

N/2−1�

k=0

sk+N/2xn−k−N/2

=

N/2−1�

k=0

skxn−k +

N/2−1�

k=0

sN/2−kxn−k−N/2

=

N/2−1�

k=0

skxn−k +

N/2−1�

k=0

skxn+k =

N/2−1�

k=0

sk(xn−k + xn+k)

If we compare the first and last expressions here, we need the same number of
summations, but the number of multiplications needed in the latter expression
has been halved. The same point can also be made about the factorization into
a composition of many moving average filters of length 2 in Example 3.45. This
also corresponds to a linear phase filter. Each application of a moving average
filter of length 2 does not really require any multiplications, since multiplication
with 1

2 really corresponds to a bitshift. Therefore, the factorization of Exam-
ple 3.45 removes the need for doing any multiplications at all, while keeping the
number of additions the same. There is a huge computational saving in this.
We will see another desirable property of linear phase filters in the next section,
and we will also return to these filters later.

3.3.7 Perfect reconstruction systems

The following is easily proved, and left as exercises:

Theorem 3.52. The following hold:

1. The set of (circulant) Toeplitz matrices form a vector space.

2. If G1 and G2 are (circulant) Toeplitz matrices, then G1G2 is also a
(circulant) Toeplitz matrix, and l(G1G2) = l(G1) + l(G2).

3. l(G) = 0 if and only if G has only one nonzero diagonal.

An immediate corollary of this is in terms of what is called perfect recon-
struction systems:

90

Definition 3.53 (Perfect reconstruction system). By a perfect reconstruction
system we mean a pair of N ×N -matrices (G1, G2) so that G2G1 = I. For a
vector x we refer to z = G1x as the transformed vector. For a vector z we
refer to x = G2z as the reconstructed vector.

The terms perfect reconstruction, transformation, and reconstruction come
from signal processing, where one thinks of G1 as a transform, and G2 as another
transform which reconstructs the input to the first transform from its output.
In practice, we are interested in finding perfect reconstruction systems where
the transformed G1x is so that it is more suitable for further processing, such as
compression, or playback in an audio system. One example is the DFT: We have
already proved that (FN , (FN)H) is a perfect reconstruction system for ant N .
One problem with this system is that the Fourier matrix is not sparse. Although
efficient algorithms exist for the DFT, one may find systems which are quicker to
compute in the transform and reconstruction steps. We are therefore in practice
interested in establishing perfect reconstruction systems, where the involved
matrices have particular forms. Digital filters is one such form, since these are
quick to compute when there are few nonzero filter coefficients. Unfortunately,
related to this we have the following corollary to Theorem 3.52:

Corollary 3.54. let G1 and G2 be circulant Toeplitz matrices so that (G1, G2)
is a perfect reconstruction system. Then there exist a scalar α and an integer d
so that G1 = αEd and G2 = α−1E−d, i.e. both matrices have only one nonzero
diagonal, with the values being inverse of oneanother, and the diagonals being
symmetric about the main diagonal.

In short, this states that there do not exist perfect reconstruction systems
involving nontrivial digital filters. This sounds very bad, since filters, as we will
see, represent some of the nicest operations which can be implemented. Note
that, however, it may still be possible to construct such (G1, G2) so that G1G2

is “close to” I. Such systems can be called “recontruction systems”, and may
be very important in settings where some loss in the transformation process is
acceptable. We will not consider such systems here.

In a search for other perfect reconstruction systems than those given by the
DFT (and DCT in the next section), we thus have to look for other matrices
than those given by digital filters. In Section 6.1 we will see that it is possible
to find such systems for the matrices we define in the next chapter, which are a
natural generalization of digital filters.

Exercises for Section 3.3

Ex. 1 — Compute and plot the frequency response of the filter S = {1/4, 1/2, 1/4}.
Where does the frequency response achieve its maximum and minimum value,
and what are these values?

91

Ex. 2 — Plot the frequency response of the filter T = {1/4,−1/2, 1/4}. Where
does the frequency response achieve its maximum and minimum value, and what
are these values? Can you write down a connection between this frequency re-
sponse and that from Exercise 1?

Ex. 3 — Consider the two filters S1 = {1, 0, . . . , 0, c} and S2 = {1, 0, . . . , 0,−c}.
Both of these can be interpreted as filters which add an echo. Show that
1
2 (S1 + S2) = I. What is the interpretation of this relation in terms of echos?

Ex. 4 — In Example 1.19 we looked at time reversal as an operation on digital
sound. In RN this can be defined as the linear mapping which sends the vector
ek to eN−1−k for all 0 ≤ k ≤ N − 1.

a. Write down the matrix for the time reversal linear mapping, and explain
from this why time reversal is not a digital filter.

b. Prove directly that time reversal is not a time-invariant operation.

Ex. 5 — Consider the linear mapping S which keeps every second component
in RN , i.e. S(e2k) = e2k, and S(e2k−1) = 0. Is S a digital filter?

Ex. 6 — A filter S1 has the frequency response 1
2 (1+cosω), and another filter

has the frequency response 1
2 (1 + cos(2ω)).

a. Is S1S2 a lowpass filter, or a highpass filter?
b. What does the filter S1S2 do with angular frequencies close to ω = π/2.

c. Find the filter coefficients of S1S2.
Hint: Use Theorem 3.34 to compute the frequency response of S1S2 first.

d. Write down the matrix of the filter S1S2 for N = 8.

Ex. 7 — Let Ed1 and Ed2 be two time delay filters. Show that Ed1Ed2 =
Ed1+d2 (i.e. that the composition of two time delays again is a time delay) in
two different ways

a. Give a direct argument which uses no computations.
b. By using Property 3 in Theorem 3.11, i.e. by using a property for the

Discrete Fourier Transform.

Ex. 8 — Let S be a digital filter. Show that S is symmetric if and only if the
frequency response satisfies sk = sN−k for all k.

92

Ex. 9 — Consider again Example 3.43. Find an expression for a filter so that
only frequencies so that |ω − π| < ωc are kept, i.e. the filter should only keep
angular frequencies close to π (i.e. here we construct a highpass filter).

Ex. 10 — Assume that S is a circulant Toeplitz matrix so that only

S0,0, . . . , S0,F and S0,N−E , . . . , S0,N−1

are nonzero on the first row, where E, F are given numbers. When implementing
this filter on a computer we need to make sure that the vector indices lie in
[0, N − 1]. Show that yn = (Sx)n can be split into the following different
formulas, depending on n, to achieve this:

a. 0 ≤ n < E:

yn =
n−1�

k=0

S0,N+k−nxk +
F+n�

k=n

S0,k−nxk +
N−1�

k=N−1−E+n

S0,k−nxk. (3.24)

b. E ≤ n < N − F :

yn =
n+F�

k=n−E

S0,k−nxk. (3.25)

c. N − F ≤ n < N :

yn =

n−(N−F)�

k=0

S0,k−nxk +
n−1�

k=n−E

S0,N+k−nxk +
N−1�

k=n

S0,k−nxk. (3.26)

These three cases give us the full implementation of the filter. This
implementation is often more useful than writing down the entire matrix
S, since we save computation when many of the matrix entries are zero.

Ex. 11 — In this exercise we will find out how to keep to track of the length
and the start and end indices when we convolve two sequences

a. Let g and h be two sequences with finitely many nonzero elements. Show
that g∗h also has finitely many nonzero elements, and show that l(g∗h) =
l(g) + l(h).

b. Find expressions for the values kmin, kmax for the filter g ∗h, in terms of
those for the filters g and h.

Ex. 12 — Write a function

function [gconvh gconvhmin]=filterimpl(g,gmin,h,hmin)

93

which performs the convolution of two sequences, but also keeps track of the
index of the smallest nonzero coefficient in the sequences.

Ex. 13 — Consider the matrix

S =

4 1 3 1
1 4 1 3
3 1 4 1
1 4 1 3

 .

a. Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve
this.

b. Verify the result from a. by computing the eigenvectors and eigenvalues
the way you taught in your first course in linear algebra. This should be
a much more tedious task.

c. Use Matlab to compute the eigenvectors and eigenvalues of S also. For
some reason some of the eigenvectors seem to be different from the Fourier
basis vectors, which you would expect from the theory in this section.
Try to find an explanation for this.

Ex. 14 — Define the filter S by S = {1, 2, 3, 4, 5, 6}. Write down the matrix
for S when N = 8. Plot (the magnitude of))λS(ω), and indicate the values
λS,n for N = 8 in this plot.

Ex. 15 — Assume that the filter S is defined by the formula

zn =
1

4
xn+1 +

1

4
xn +

1

4
xn−1 +

1

4
xn−2.

Write down the matrix for S when N = 8. Compute and plot (the magnitude
of) λS(ω).

Ex. 16 — Given the circulant Toeplitz matrix

S =
1

5

1 1 1 · · · 1
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 1
1 1 0 · · · 1
1 1 1 · · · 1

94

Write down the filter coefficients of this matrix, and use the compact notation
{tkmin , . . . , t−1, t0, t1, . . . , tkmax}. Compute and plot (the magnitude) of λS(ω).

Ex. 17 — Assume that S = {1, c, c2, . . . , ck}. Compute and plot λS(ω) when
k = 4 and k = 8. How does the choice of k influence the frequency response?
How does the choice of c influence the frequency response?

Ex. 18 — Assume that S1 and S2 are two circulant Toeplitz matrices.
a. How can you express the eigenvalues of S1+S2 in terms of the eigenvalues

of S1 and S2?
b. How can you express the eigenvalues of S1S2 in terms of the eigenvalues

of S1 and S2?
c. If A and B are general matrices, can you find a formula which expresses

the eigenvalues of A+ B and AB in terms of those of A and B? If not,
can you find a counterexample to what you found in a. and b.?

Ex. 19 — In this exercise we will investigate how we can combine lowpass and
highpass filters to produce other filters

a. Assume that S1 and S2 are lowpass filters. What kind of filter is S1S2?
What if both S1 and S2 are highpass filters?

b. Assume that one of S1, S2 is a highpass filter, ans that the other is a
lowpass filter. What kind of filter S1S2 in this case?

3.4 Symmetric digital filters and the DCT

We have mentioned that most periodic functions can be approximated well by
Fourier series on the form

�
n
yne2πint/T . The convergence speed of this Fourier

series may be slow however, and we mentioned that it depends on the regularity
of the function. In particular, the convergence speed is higher when the function
is continuous. For f ∈ C[0, T] where f(0) �= f(T), we do not get a continuous
function if we repeat the function in periods. However, we demonstrated that we
could create a symmetric extension g, defined on [0, 2T], so that g(0) = g(2T).
The Fourier series of g actually took the form of a cosine-series, and we saw
that this series converged faster to g, than the Fourier series of f did to f .

In this section we will specialize this argument to vectors: by defining the
symmetric extension of a vector, we will attempt to find a better approximation
than we could with the Fourier basis vectors. This approach is useful for digital
filters also, if the filters preserve these symmetric extensions. Let us summarize
with the following idea:

95

Idea 3.55 (Increasing the convergence speed of the DFT). Assume that we
have a function f , and that we take the samples xk = f(kT/N). From x ∈ RN

we would like to create an extension x̆ so that the first and last values are
equal. For such an extension, the Fourier basis vectors can give a very good
approximation to f .

As our candidate for the extension of x, we will consider the following:

Definition 3.56 (Symmetric extension of a vector). By the symmetric exten-
sion of x ∈ RN , we mean x̆ ∈ R2N defined by

x̆k =

�
xk 0 ≤ k < N

x2N−1−k N ≤ k < 2N − 1
(3.27)

We say that a vector in R2N is symmetric if it can be written as the symmetric
extension of a vector in RN .

The symmetric extension x̆ thus has the original vector x as its first half,
and a copy of x in reverse order as its second half. Clearly, the first and last
values of x̆ are equal. In other words, a vector in R2N is a symmetric extension
of a vector in RN if and only if it is symmetric about N − 1

2 . Clearly also the
set of symmetric extensions is a vector space. Our idea in terms of filters is the
following:

Idea 3.57 (Increasing the precision of a digital filter). If a filter maps a
symmetric extension of one vector to a symmetric extension of another vector
then it is a good approximation of an analog version in terms of Fourier series.

We will therefore be interested in finding filters which preserves symmetric
extensions. We will show the following, which characterize such filters:

Theorem 3.58 (Characterization of filters which preserve symmetric exten-
sions). A digital filter S of size 2N preverves symmetric extensions if and only
if S is symmetric. Moreover, S is uniquely characterized by its restriction to

RN , denoted by Sr, which is given by S1 + (S2)f , where S =

�
S1 S2

S3 S4

�
,

and where (S2)f is the matrix S2 with the columns reversed. Moreover, if we
define

dn,N =

�
1
N

, n = 0�
2
N

, 1 ≤ n < N

and dn = dn,N cos
�
2π n

2N

�
k + 1

2

��
for 0 ≤ n ≤ N−1, then {d0,d1, . . . ,dN−1}

is an orthonormal basis of eigenvectors for Sr.

96

Proof. Let z = ˆ̆x. Since x̆ is symmetric about N − 1
2 , by Theorem 3.11 it

follows that the argument of zn is −2π(N − 1
2)n/(2N). Since z2N−n is the con-

jugate of zn by the same theorem, it follows that z2N−n = e4πi(N− 1
2)n/(2N)zn =

e−2πin/(2N)zn. It follows that a vector in R2N is a symmetric extension if and
only if its DFT is in the span of the vectors

{e0, {en + e−2πin/(2N)
e2N−n}N−1

n=1 }.

These vectors are clearly orthogonal. Their span can also be written as the span
of the vectors

�
e0,

�
1√
2

�
eπin/(2N)

en + e−πin/(2N)
e2N−n

��N−1

n=1

�
, (3.28)

where the last vectors have been first multiplied with eπin/(2N), and then normal-
ized so that they have norm 1. Equation (3.28) now gives us an orthononormal
basis for the DFT’s of all symmetric extensions. Let us map these vectors back
with the IDFT. We get first that

(F2N)H(e0) =

�
1√
2N

,
1√
2N

, . . . ,
1√
2N

�
=

1√
2N

cos

�
2π

0

2N

�
k +

1

2

��
.

We also get that

(F2N)H
�

1√
2

�
eπin/(2N)

en + e−πin/(2N)
e2N−n

��

=
1√
2

�
eπin/(2N) 1√

2N
e2πink/(2N) + e−πin/(2N) 1√

2N
e2πi(2N−n)k/(2N)

�

=
1√
2

�
eπin/(2N) 1√

2N
e2πink/(2N) + e−πin/(2N) 1√

2N
e−2πink/(2N)

�

=
1

2
√
N

�
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

�

=
1√
N

cos

�
2π

n

2N

�
k +

1

2

��
.

Since F2N is unitary, and thus preserves the scalar product, this means that
�

1√
2N

cos

�
2π

0

2N

�
k +

1

2

��
,

�
1√
N

cos

�
2π

n

2N

�
k +

1

2

���N−1

n=1

�
(3.29)

is an orthonormal basis for the set of symmetric extensions in R2N . We have

97

that

S

�
cos

�
2π

n

2N

�
k +

1

2

���

= S

�
1

2

�
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

��

=
1

2

�
eπin/(2N)S

�
e2πink/(2N)

�
+ e−πin/(2N)S

�
e−2πink/(2N)

��

=
1

2

�
eπin/(2N)λS,ne

2πink/(2N) + e−πin/(2N)λS,2N−ne
−2πink/(2N)

�

=
1

2

�
λS,ne

2πi(n/(2N))(k+1/2) + λS,2N−ne
−2πi(n/(2N))(k+1/2)

�

where we have used that e2πink/(2N) is an eigenvector of S with eigenvalue
λS,n, and e−2πink/(2N) = e2πi(2N−n)k/(2N) is an eigenvector of S with eigenvalue
λS,2N−n. If S preserves symmetric extensions, we see that we must have that
λS,n = λS,2N−n, and also that the vectors listed in Equation (3.29) must be
eigenvectors for S. This is reflected in that the entries in D in the diagonalization
S = (F2N)HDF2N are symmetric about the midpoint on the diagonal. From
Exercise 3.3.8 we know that this occurs if and only if S is symmetric, which
proves the first part of the theorem.

Since S preserves symmetric extensions it is clearly characterized by its

restriction to the first N elements. With S =

�
S1 S2

S3 S4

�
, we compute this

restriction as

y0
...

yN−1

 =
�
S1 S2

�

x0
...

xN−1

xN

...
x2N−1

=
�
S1 + (S2)f

�

x0
...

xN−1

 .

S2 contains the circulant part of the matrix, and forming (S2)f means that the
circulant parts switch corners. This shows that S is uniquely characterized by
the matrix Sr as defined in the text of the theorem. Finally, since (3.29) are
eigenvectors of S, the vectors in RN restricted to their first N elements are
eigenvectors for Sr. Since the scalar product of two symmetric extensions is the
double of the scalar product of the first half of the vectors, we have that these
vectors must also be orthogonal, and that

1√
N

cos

�
2π

0

2N

�
k +

1

2

��
,

��
2

N
cos

�
2π

n

2N

�
k +

1

2

���N−1

n=1

is an orthonormal basis of eigenvectors for Sr. We see that we now can define
dn,N and the vectors dn as in the text of the theorem, and this completes the
proof.

98

From the proof we clearly see the analogy between symmetric functions and
vectors: while the first can be written as a cosine-series, the second can be
written as a sum of cosine-vectors:

Corollary 3.59.

�
1√
2N

cos

�
2π

0

2N

�
k +

1

2

��
,

�
1√
N

cos

�
2π

n

2N

�
k +

1

2

���N−1

n=1

�

form an orthonormal basis for the set of all symmetric vectors in R2N .

Note also that Sr is not a circulant matrix. Therefore, its eigenvectors are
not pure tones. An example should clarify this:

Example 3.60. Consider the averaging filter g = { 1
4 ,

1
2 ,

1
4}. Let us write down

the matrix Sr for the case when N = 4. First we obtain the matrix S as

1
2

1
4 0 0 0 0 0 1

4
1
4

1
2

1
4 0 0 0 0 0

0 1
4

1
2

1
4 0 0 0 0

0 0 1
4

1
2

1
4 0 0 0

0 0 0 1
4

1
2

1
4 0 0

0 0 0 0 1
4

1
2

1
4 0

0 0 0 0 0 1
4

1
2

1
4

1
4 0 0 0 0 0 1

4
1
2

where we have drawn the boundaries between the blocks S1, S2, S3, S4. From
this we see that

S1 =

1
2

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

1
2

 S2 =

0 0 0 1
4

0 0 0 0
0 0 0 0
1
4 0 0 0

 (S2)
f =

1
4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4

 .

From this we get

Sr = S1 + (S2)
f =

3
4

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

3
4

 .

The orthogonal basis we have found is given its own name:

Definition 3.61 (DCT basis). We denote by DN the orthogonal basis
{d0,d1, . . . ,dN−1}. We also call DN the N -point DCT basis.

Using the DCT basis instead of the Fourier basis we can make the following
definitions, which parallel those for the DFT:

99

Definition 3.62 (Discrete Cosine Transform). The change of coordinates
from the standard basis of RN to the DCT basis DN is called the discrete
cosine transform (or DCT). The N×N matrix DN that represents this change
of basis is called the (N -point) DCT matrix. If x is a vector in RN , its coor-
dinates y = (y0, y1, . . . , yN−1) relative to the DCT basis are called the DCT
coefficients of x (in other words, y = DNx).

As with the Fourier basis vectors, the DCT basis vectors are called synthesis
vectors, since we can write

x = y0d0 + y1d1 + · · ·+ yN−1dN−1 (3.30)

in the same way as for the DFT. Following the same reasoning as for the DFT,
D−1

N
is the matrix where the dn are columns. But since these vectors are real

and orthonormal, DN must be the matrix where the dn are rows. Moreover,
since Theorem 3.58 also states that the same vectors are eigenvectors for filters
which preserve symmetric extensions, we can state the following:

Theorem 3.63. DN is the orthogonal matrix where the rows are dn. More-
over, for any digital filter S which preserves symmetric extensions, (DN)T

diagonalizes Sr, i.e. Sr = DT

N
DDN where D is a diagonal matrix.

Let us also make the following definition:

Definition 3.64 (IDCT). We will call x = (DN)Ty the inverse DCT or
(IDCT) of x.

Example 3.65. As with Example 3.9, exact expressions for the DCT can be
written down just for a few specific cases. It turns out that the case N = 4 as
considered in Example 3.9 does not give the same type of nice, exact values, so
let us instead consider the case N = 2. We have that

D4 =

� 1√
2
cos(0) 1√

2
cos(0)

cos
�
π

2

�
0 + 1

2

��
cos

�
π

2

�
1 + 1

2

��
�

=

�
1√
2

1√
2

1√
2

− 1√
2

�

The DCT of the same vector as in Example 3.9 can now be computed as:

D2

�
1
2

�
=

�
3√
2

− 1√
2

�
.

Example 3.66. A direct implementation of the DCT could be made as follows:

function y=DCTImpl(x)

N=length(x);

DN=zeros(N);

DN(1,:)=ones(1,N)/sqrt(N);

100

for n=1:N

DN(n,:)=cos(2*pi*((n-1)/(2*N))*((0:N-1)+1/2))*sqrt(2/N);

end

y=DN*x;

In the next chapter we will see that one also can make a much more efficient
implementation of the DCT than this.

With the DCT one constructs a vector twice as long. One might think due
to this that one actually use matrices twice the size. This is, however, avoided
since DN has the same dimensions as FN , and we will see shortly that the same
algorithms as for the DFT also can be used for the DCT. By construction we
also see that it is easy to express the N -point DCT in terms of the 2N -point
DFT. Let us write down this connection:

1. Write e0 =
√
2 and en = eπin/(2N) for n �= 0, and define E as the diagonal

matrix with the values e0, e1, . . . on the diagonal.

2. Let B be the 2N ×N -matrix which is nonzero only when i = j or i+ j =
2N − 1, and 1 in all these places.

3. Let also A be the N × 2N -matrix with 1 on the diagonal.

We can now write
DN = E−1AF2NB. (3.31)

A here extracts the first rows of the matrix, E−1 eliminates the complex coef-
ficients, while B adds columns symmetrically. This factorization enables us to
use the efficient FFT-implementation, since the matrices A,B,E all are sparse.
We will, however, find an even more efficient implementation of the DCT, which
will avoid computing a DFT of twice the size as here.

Similarly to Theorem 3.16 for the DFT, one can think of the DCT as a
least squares approximation and the unique representation of a function having
the same sample values, but this time in terms of sinusoids instead of complex
exponentials:

Theorem 3.67 (Interpolation with the DCT basis). Let f be a function
defined on the interval [0, T], and let x be the sampled vector given by

xk = f((2k + 1)T/(2N)) for k = 0, 1, . . . , N − 1.

There is exactly one linear combination g(t) on the form
N−1�

n=0

yndn,N cos(2π(n/2)t/T)

which satisfies the conditions

g((2k + 1)T/(2N)) = f((2k + 1)T/(2N)), k = 0, 1, . . . , N − 1,

and its coefficients are determined by y = DNx.

101

The proof for this follows by inserting t = (2k + 1)T/(2N) in the equation
g(t) =

�
N−1
n=0 yndn,N cos(2π(n/2)t/T) to arrive at the equations

f(kT/N) =
N−1�

n=0

yndn,N cos

�
2π

n

2N

�
k +

1

2

��
0 ≤ k ≤ N − 1.

This gives us an equation system for finding the yn with the invertible DCT
matrix as coefficient matrix, and the result follows.

Note the subtle change in the sample points of these cosine functions, from
kT/N for the DFT, to (2k+1)T/(2N) for the DCT. The sample points for the
DCT are thus the midpoints on the intervals in a uniform partition of [0, T] into
N intervals, while they for the DFT are the start points on the intervals. Also,
the frequencies are divided by 2. In Figure 3.9 we have plotted the sinusoids
of Theorem 3.67 for T = 1, as well as the sample points used in that theorem.
The sample points in (a) correspond to the first column in the DCT matrix, the
sample points in (b) to the second column of the DCT matrix, and so on (up to
normalization with dn,N). As n increases, the functions oscillate more and more.
As an example, y5 says how much content of maximum oscillation there is. In
other words, the DCT of an audio signal shows the proportion of the different
frequencies in the signal, and the two formulas y = DNx and x = (DN)Ty
allow us to switch back and forth between the time domain representation and
the frequency domain representation of the sound. In other words, once we have
computed y = DNx, we can analyse the frequency content of x. If we want to
reduce the bass we can decrease the y-values with small indices and if we want
to increase the treble we can increase the y-values with large indices.

3.4.1 Other types of symmetric extensions

Note that our definition of symmetric extension duplicates the values x0 and
xN−1: both are repeated when creating the symmetric extension. This is in
fact unnecessary when we are creating a longer vector which has equal first and
last values, and is primarily motivated from existing efficient implementations
for the DCT when all vector lengths are powers of 2. When an efficient DCT
implementation is not important, we can change the definition of the symmetric
extension as follows (it is this type of symmetric extension we will use later):

Definition 3.68 (Symmetric extension of a vector). By the symmetric exten-
sion of x ∈ RN , we mean x̆ ∈ R2N−2 defined by

x̆k =

�
xk 0 ≤ k < N

x2N−2−k N ≤ k < 2N − 3
(3.32)

In other words, a vector in R2N is a symmetric extension of a vector in RN

if and only if it is symmetric about N − 1. Theorem 3.58 now instead takes the
following form:

102

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(a) cos(2π(0/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(b) cos(2π(1/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(c) cos(2π(2/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(d) cos(2π(3/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(e) cos(2π(4/2)t)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

(f) cos(2π(5/2)t)

Figure 3.9: The 6 different sinusoids used in DCT for N = 6, i.e. cos(2π(n/2)t),
0 ≤ n < 6. The plots also show piecewise linear functions between the the
sample points 2k+1

2N 0 ≤ k < 6, since only the values at these points are used in
Theorem 3.67.

103

Theorem 3.69 (Characterization of filters which preserve symmetric exten-
sions). A real, circulant (2N − 2)× (2N − 2)-Toeplitz matrix preverves sym-
metric extensions if and only if it is symmetric. For such S, S is uniquely
characterized by its restriction to RN , denoted by Sr, which is given by

T1 +
�
0 (T2)f 0

�
, where T =

�
T1 T2

T3 T4

�
, where T1 is N × N , T2

is N × (N − 2). Moreover, an orthogonal basis of eigenvectors for Sr are
{cos

�
2π n

2N n
�
}N−1
n=0 .

Proof. Let z = ˆ̆x. Since x̆ is symmetric about 0, by Theorem 3.11 it follows that
zn = z2(N−1)−n), so that the DFT of a symmetrix extension (as now defined)
is in the span of the vectors

{e0, {en + e2(N−1)−n}N−1
n=1 }.

It follows as before that
cos

�
2π

n

2(N − 1)
n

�

is a basis of eigenvectors. The same type of symmetry about the midpoint on
the diagonal follows as before, which as before is equivalent to symmetry of the
matrix.

It is not customary to write down an orthonormal basis for the eigenvectors
in this case, since we don’t have the same type of efficient DCT implementation
due to the lact of powers of 2.

3.4.2 Use of DCT in lossy compression of sound

The DCT is particularly popular for processing the sound before compression.
MP3 is based on applying a variant of the DCT (called the Modified Discrete
Cosine Transform, MDCT) to groups of 576 (in special circumstances 192) sam-
ples. One does not actually apply the DCT directly. Rather one applies a much
more complex transformation, which can be implemented in parts by using DCT
in a clever way.

We mentioned previously that we could achieve compression by setting the
Fourier coefficients which are small to zero. Translated to the DCT, we should
set the DCT coefficients which are small to zero, and we apply the inverse
DCT in order to reconstruct the signal in order to play it again. Let us test
compression based on this idea. The plots in figure 3.10 illustrate the principle.
A signal is shown in (a) and its DCT in (b). In (d) all values of the DCT with
absolute value smaller than 0.02 have been set to zero. The signal can then be
reconstructed with the inverse DCT of theorem ??; the result of this is shown
in (c). The two signals in (a) and (c) visually look almost the same even though
the signal in (c) can be represented with less than 25 % of the information
present in (a).

104

100 200 300 400

�0.10
�0.05

0.05
0.10
0.15

(a)

100 200 300 400
�0.2

0.2

0.4

(b)

100 200 300 400

�0.10

�0.05

0.05

0.10

0.15

(c)

100 200 300 400
�0.2

0.2

0.4

(d)

Figure 3.10: The signal in (a) are the sound samples from a small part of a
song. The plot in (b) shows the DCT of the signal. In (d), all values of the
DCT that are smaller than 0.02 in absolute value have been set to 0, a total of
309 values. In (c) the signal has been reconstructed from these perturbed values
of the DCT. The values have been connected by straight lines to make it easier
to interpret the plots.

105

We test this compression strategy on a data set that consists of 300 001
points. We compute the DCT and set all values smaller than a suitable tolerance
to 0. With a tolerance of 0.04, a total of 142 541 values are set to zero. When
we then reconstruct the sound with the inverse DCT, we obtain a signal that
differs at most 0.019 from the original signal. To verify that the new file is
not too different from the old file, we can take the read sound samples from
castanets.wav, run the following function for different eps

function A=skipsmallvals(eps,A)

B=dct(A);

B=(B>=eps).*B;

A=invdct(B);

and play the new samples. Finally we can store the signal by storing a gzip’ed
version of the DCT-values (as 32-bit floating-point numbers) of the perturbed
signal. This gives a file with 622 551 bytes, which is 88 % of the gzip’ed version
of the original data.

The choice of the DCT in the MP3 standard has much to do with that the
DCT, just as the DFT, has a very efficient implementation, as we will see next.

Exercises for Section 3.4

Ex. 1 — In Section 3.4.2 we implemented the function skipsmallvals, which
ran a DCT on the entire vector. Explain why there are less computation involved
in splitting the vector into many parts and performing a DCT for each part.
Change the code accordingly.

Ex. 2 — As in Example 3.65, state the exact cartesian form of the DCT ma-
trix for the case N = 3.

Ex. 3 — Assume that S is a symmetric digital filter with support [−E,E].
Let us, as in Exercise 3.3.10, see how we can make sure that the indices keep
inside [0, N − 1]. Show that zn = (Tx)n in this case can be split into the
following different formulas, depending on n:

a. 0 ≤ n < E:

zn = T0,0xn+
n�

k=1

T0,k(xn+k+xn−k)+
E�

k=n+1

T0,k(xn+k+xn−k+N). (3.33)

b. E ≤ n < N − E:

zn = T0,0xn +
E�

k=1

T0,k(xn+k + xn−k). (3.34)

106

c. N − F ≤ n < N :

zn = T0,0xn+
N−1−n�

k=1

T0,k(xn+k+xn−k)+
E�

k=N−1−n+1

T0,k(xn+k−N+xn−k).

(3.35)

Ex. 4 — Assume that {T0,−E , . . . , T0,0, . . . , T0,E} are the coefficicients of a
symmetric, digital filter S, and let t = {T0,1, . . . , T0,E}. Write a function

function z=filterT(t,x)

which takes the vector t as input, and returns z = Tx using the formulas
deduced in Exercise 3.

Ex. 5 — Repeat Exercise 1.4.9 by reimplementing the functions reducetreble
and reducesbass using the function filterT from the previous exercise. The
resulting sound files should sound the same, since the only difference is that we
have modified the way we handle the beginning and end portion of the sound
samples.

Ex. 6 — Using Python, define a class Transform with methods transformImpl
and ItransformImpl. Define two subclasses of Transform, DCTTransform,
FFTTransform), which implements these two functions by calling Python coun-
terparts of FFTImpl, IFFTImpl, DCTImpl, and IDCTImpl.

3.5 Summary

We defined the Discrete Fourier transform, which could be thought of as the
Fourier series of a vector. We exploited properties of the DFT, which corre-
sponded nicely to the corresponding properties for Fourier series. We defined
digital filters, which turned out to be linear transformations diagonalized by
the DFT. Also we showed that the techniques from the last section we used to
speed up the convergence of the Fourier series, could also be used for the DFT.
In this way we arrived at the definition of the DCT.

107

