
Part I

Fourier analysis and
applications to sound

processing

8



Chapter 1

Sound

A major part of the information we receive and perceive every day is in the
form of audio. Most of these sounds are transferred directly from the source
to our ears, like when we have a face to face conversation with someone or
listen to the sounds in a forest or a street. However, a considerable part of the
sounds are generated by loudspeakers in various kinds of audio machines like cell
phones, digital audio players, home cinemas, radios, television sets and so on.
The sounds produced by these machines are either generated from information
stored inside, or electromagnetic waves are picked up by an antenna, processed,
and then converted to sound. It is this kind of sound we are going to study in
this chapter. The sound that is stored inside the machines or picked up by the
antennas is usually represented as digital sound. This has certain limitations,
but at the same time makes it very easy to manipulate and process the sound
on a computer.

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Larger variations mean louder sounds,
while faster variations correspond to sounds with a higher pitch. The air pres-
sure varies continuously with time, but at a given point in time it has a precise
value. This means that sound can be considered to be a mathematical function.

Observation 1.1. A sound can be represented by a mathematical function,
with time as the free variable. When a function represents a sound, it is often
referred to as a continuous signal.

In the following we will briefly discuss the basic properties of sound: first the
significance of the size of the variations, and then how many variations there
are per second, the frequency of the sound. We also consider the important
fact that any reasonable sound may be considered to be built from very simple
basis sounds. Since a sound may be viewed as a function, the mathematical
equivalent of this is that any decent function may be constructed from very
simple basis functions. Fourier-analysis is the theoretical study of this, and in
the next chapters we are going to study this from a practical and computational
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Figure 1.1: Two examples of audio signals.

perspective. Towards the end of this chapter we also consider the basics of
digital audio, and illustrate its power by performing some simple operations on
digital sounds.

1.1 Loudness: Sound pressure and decibels

An example of a simple sound is shown in Figure 1.1(a) where the oscillations
in air pressure are plotted agains time. We observe that the initial air pressure
has the value 101 325 (we will shortly return to what unit is used here), and
then the pressure starts to vary more and more until it oscillates regularly
between the values 101 323 and 101 327. In the area where the air pressure
is constant, no sound will be heard, but as the variations increase in size, the
sound becomes louder and louder until about time t = 0.6 where the size of
the oscillations becomes constant. The following summarises some basic facts
about air pressure.

Fact 1.2 (Air pressure). Air pressure is measured by the SI-unit Pa (Pascal)
which is equivalent to N/m2 (force / area). In other words, 1 Pa corresponds
to the force exerted on an area of 1 m2 by the air column above this area. The
normal air pressure at sea level is 101 325 Pa.

Fact 1.2 explains the values on the vertical axis in Figure 1.1(a): The sound
was recorded at the normal air pressure of 101 325 Pa. Once the sound started,
the pressure started to vary both below and above this value, and after a short
transient phase the pressure varied steadily between 101 324 Pa and 101 326 Pa,
which corresponds to variations of size 1 Pa about the fixed value. Everyday
sounds typically correspond to variations in air pressure of about 0.00002–2 Pa,
while a jet engine may cause variations as large as 200 Pa. Short exposure
to variations of about 20 Pa may in fact lead to hearing damage. The volcanic
eruption at Krakatoa, Indonesia, in 1883, produced a sound wave with variations
as large as almost 100 000 Pa, and the explosion could be heard 5000 km away.
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When discussing sound, one is usually only interested in the variations in
air pressure, so the ambient air pressure is subtracted from the measurement.
This corresponds to subtracting 101 325 from the values on the vertical axis in
Figure 1.1(a). In Figure 1.1(b) the subtraction has been performed for another
sound, and we see that the sound has a slow, cos-like, variation in air pressure,
with some smaller and faster variations imposed on this. This combination
of several kinds of systematic oscillations in air pressure is typical for general
sounds. The size of the oscillations is directly related to the loudness of the
sound. We have seen that for audible sounds the variations may range from
0.00002 Pa all the way up to 100 000 Pa. This is such a wide range that it is
common to measure the loudness of a sound on a logarithmic scale. Often air
pressure is normalized so that it lies between −1 and 1: The value 0 then repre-
sents the ambient air pressure, while −1 and 1 represent the lowest and highest
representable air pressure, respectively. The following fact box summarises the
previous discussion of what a sound is, and introduces the logarithmic decibel
scale.

Fact 1.3 (Sound pressure and decibels). The physical origin of sound is vari-
ations in air pressure near the ear. The sound pressure of a sound is obtained
by subtracting the average air pressure over a suitable time interval from the
measured air pressure within the time interval. A square of this difference
is then averaged over time, and the sound pressure is the square root of this
average.

It is common to relate a given sound pressure to the smallest sound pressure
that can be perceived, as a level on a decibel scale,

Lp = 10 log10

�
p2

p2ref

�
= 20 log10

�
p

pref

�
.

Here p is the measured sound pressure while pref is the sound pressure of a
just perceivable sound, usually considered to be 0.00002 Pa.

The square of the sound pressure appears in the definition of Lp since this
represents the power of the sound which is relevant for what we perceive as
loudness.

The sounds in Figure 1.1 are synthetic in that they were constructed from
mathematical formulas (see Exercises 1.4.2 and 1.4.3). The sounds in Figure 1.2
on the other hand show the variation in air pressure when there is no math-
ematical formula involved, such as is the case for a song. In (a) there are so
many oscillations that it is impossible to see the details, but if we zoom in as
in (c) we can see that there is a continuous function behind all the ink. It is
important to realise that in reality the air pressure varies more than this, even
over the short time period in (c). However, the measuring equipment was not
able to pick up those variations, and it is also doubtful whether we would be
able to perceive such rapid variations.
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Figure 1.2: Variations in air pressure during parts of a song.
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1.2 The pitch of a sound

Besides the size of the variations in air pressure, a sound has another impor-
tant characteristic, namely the frequency (speed) of the variations. For most
sounds the frequency of the variations varies with time, but if we are to perceive
variations in air pressure as sound, they must fall within a certain range.

Fact 1.4. For a human with good hearing to perceive variations in air pressure
as sound, the number of variations per second must be in the range 20–20 000.

To make these concepts more precise, we first recall what it means for a
function to be periodic.

Definition 1.5. A real function f is said to be periodic with period τ if

f(t+ τ) = f(t)

for all real numbers t.

Note that all the values of a periodic function f with period τ are known if
f(t) is known for all t in the interval [0, τ). The prototypes of periodic functions
are the trigonometric ones, and particularly sin t and cos t are of interest to us.
Since sin(t + 2π) = sin t, we see that the period of sin t is 2π and the same is
true for cos t.

There is a simple way to change the period of a periodic function, namely
by multiplying the argument by a constant.

Observation 1.6 (Frequency). If ν is an integer, the function f(t) =
sin(2πνt) is periodic with period τ = 1/ν. When t varies in the interval
[0, 1], this function covers a total of ν periods. This is expressed by saying
that f has frequency ν.

Figure 1.3 illustrates observation 1.6. The function in (a) is the plain sin t
which covers one period when t varies in the interval [0, 2π]. By multiplying the
argument by 2π, the period is squeezed into the interval [0, 1] so the function
sin(2πt) has frequency ν = 1. Then, by also multiplying the argument by 2,
we push two whole periods into the interval [0, 1], so the function sin(2π2t) has
frequency ν = 2. In (d) the argument has been multiplied by 5 — hence the
frequency is 5 and there are five whole periods in the interval [0, 1]. Note that
any function on the form sin(2πνt+ a) has frequency ν, regardless of the value
of a.

Since sound can be modelled by functions, it is reasonable to say that a
sound with frequency ν is a trigonometric function with frequency ν.
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Figure 1.3: Versions of sin with different frequencies.
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Definition 1.7. The function sin(2πνt) represents what we will call a pure
tone with frequency ν. Frequency is measured in Hz (Herz) which is the same
as s−1 (the time t is measured in seconds).

A pure tone with frequency 440 Hz sounds like this, and a pure tone with
frequency 1500 Hz sounds like this.

Any sound may be considered to be a function. In the next chapter we are
going to see that any reasonable function may be written as a sum of simple
sin- and cos- functions with integer frequencies. When this is translated into
properties of sound, we obtain an important principle.

Observation 1.8 (Decomposition of sound into pure tones). Any sound f is
a sum of pure tones at different frequencies. The amount of each frequency re-
quired to form f is the frequency content of f . Any sound can be reconstructed
from its frequency content.

The most basic consequence of observation 1.8 is that it gives us an un-
derstanding of how any sound can be built from the simple building blocks of
pure tones. This means that we can store a sound f by storing its frequency
content, as an alternative to storing f itself. This also gives us a possibility for
lossy compression of digital sound: It turns out that in a typical audio signal
there will be most information in the lower frequencies, and some frequencies
will be almost completely absent. This can be exploited for compression if we
change the frequencies with small contribution a little bit and set them to 0, and
then store the signal by only storing the nonzero part of the frequency content.
When the sound is to be played back, we first convert the adjusted values to
the adjusted frequency content back to a normal function representation with
an inverse mapping.

Fact 1.9 (Basic idea behind audio compression). Suppose an audio signal f
is given. To compress f , perform the following steps:

1. Rewrite the signal f in a new format where frequency information be-
comes accessible.

2. Remove those frequencies that only contribute marginally to human per-
ception of the sound.

3. Store the resulting sound by coding the adjusted frequency content with
some lossless coding method.

This lossy compression strategy is essentially what is used in practice by
commercial audio formats. The difference is that commercial software does
everything in a more sophisticated way and thereby gets better compression
rates. We will return to this in later chapters.
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We will see later that Observation 1.8 also is the basis for many operations on
sounds. The same observation also makes it possible to explain more precisely
what it means that we only perceive sounds with a frequency in the range 20–
20000 Hz:

Fact 1.10. Humans can only perceive variations in air pressure as sound if
the Fourier series of the sound signal contains at least one sufficiently large
term with frequency in the range 20–20 000 Hz.

With appropriate software it is easy to generate a sound from a mathematical
function; we can ’play’ the function. If we play a function like sin(2π440t),
we hear a pleasant sound with a very distinct pitch, as expected. There are,
however, many other ways in which a function can oscillate regularly. The
function in Figure 1.1(b) for example, definitely oscillates 2 times every second,
but it does not have frequency 2 Hz since it is not a pure tone. This sound is also
not that pleasant to listen to. We will consider two more important examples
of this, which are very different from smooth, trigonometric functions.

Example 1.11. We define the square wave of period T as the function which
repeats with period T , and is 1 on the first half of each period, and −1 on the
second half. This means that we can define it as the function

f(t) =

�
1, if 0 ≤ t < T/2;

−1, if T/2 ≤ t < T .
(1.1)

In Figure 1.4(a) we have plotted the square wave when T = 1/440. This period
is chosen so that it corresponds to the pure tone we already have listened to,
and you can listen to this square wave here (in Exercise 5 you will learn how
to generate this sound). We hear a sound with the same pitch as sin(2π440t),
but note that the square wave is less pleasant to listen to: There seems to be
some sharp corners in the sound, translating into a rather shrieking, piercing
sound. We will later explain this by the fact that the square wave can be viewed
as a sum of many frequencies, and that all the different frequencies pollute the
sound so that it is not pleasant to listen to.

Example 1.12. We define the triangle wave of period T as the function which
repeats with period T , and increases linearly from −1 to 1 on the first half of
each period, and decreases linearly from 1 to −1 on the second half of each
period. This means that we can define it as the function

f(t) =

�
4t/T − 1, if 0 ≤ t < T/2;

3− 4t/T, if T/2 ≤ t < T .
(1.2)

In Figure 1.4(b) we have plotted the triangle wave when T = 1/440. Again,
this same choice of period gives us an audible sound, and you can listen to the
triangle wave here (in Exercise 5 you will learn how to generate this sound).
Again you will note that the triangle wave has the same pitch as sin(2π440t),
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Figure 1.4: The square wave and the triangle wave, two functions with regular
oscillations, but which are not simple, trigonometric functions.

and is less pleasant to listen to than this pure tone. However, one can argue
that it is somewhat more pleasant to listen to than a square wave. This will
also be explained in terms of pollution with other frequencies later.

In Section 2.1 we will begin to peek behind the curtains as to why these
waves sound so different, even though we recognize them as having the exact
same pitch.

1.3 Digital sound

In the previous section we considered some basic properties of sound, but it
was all in terms of functions defined for all time instances in some interval. On
computers and various kinds of media players the sound is usually digital which
means that the sound is represented by a large number of function values, and
not by a function defined for all times in some interval.

Definition 1.13 (Digital sound). A digital sound is a sequence x = {xi}Ni=0

that corresponds to measurements of the air pressure of a sound f , recorded
at a fixed rate of fs (the sampling frequency or sampling rate) measurements
per second, i.e.,

xi = f(i/fs), for i = 0, 1; . . . , N.

The measurements are often referred to as samples. The time between succes-
sive measurements is called the sampling period and is usually denoted Ts. If
the sound is in stereo there will be two arrays x1 and x2, one for each channel.
Measuring the sound is also referred to as sampling the sound, or analog to
digital (AD) conversion.
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In most cases, a digital sound is sampled from an analog (continuous) audio
signal. This is usually done with a technique called Pulse Code Modulation
(PCM). The audio signal is sampled at regular intervals and the sampled val-
ues stored in a suitable number format. Both the sampling frequency, and the
accuracy and number format used for storing the samples, may vary for differ-
ent kinds of audio, and both influence the quality of the resulting sound. For
simplicity the quality is often measured by the number of bits per second, i.e.,
the product of the sampling rate and the number of bits (binary digits) used to
store each sample. This is also referred to as the bit rate. For the computer to
be able to play a digital sound, samples must be stored in a file or in memory
on a computer. To do this efficiently, digital sound formats are used. A couple
of them are described in the examples below.

In Exercise 4 you will be asked to implement a Matlab-function which plays
a pure sound with a given frequency on your computer. For this you will need
to know that for a pure tone with frequency f , you can obtain its samples over
a period of 3 seconds with sampling rate fs from the code

t=0:(1/fs):3;
sd=sin(2*pi*f*t);

Here the code is in MATLAB. MATLAB code will be displayed in this way
throughout these notes.

Example 1.14. In the classical CD-format the audio signal is sampled 44 100
times per second and the samples stored as 16-bit integers. This works well for
music with a reasonably uniform dynamic range, but is problematic when the
range varies. Suppose for example that a piece of music has a very loud passage.
In this passage the samples will typically make use of almost the full range of
integer values, from −215 − 1 to 215. When the music enters a more quiet
passage the sample values will necessarily become much smaller and perhaps
only vary in the range −1000 to 1000, say. Since 210 = 1024 this means that
in the quiet passage the music would only be represented with 10-bit samples.
This problem can be avoided by using a floating-point format instead, but very
few audio formats appear to do this.

The bit rate for CD-quality stereo sound is 44100 × 2 × 16 bits/s = 1411.2
kb/s. This quality measure is particularly popular for lossy audio formats where
the uncompressed audio usually is the same (CD-quality). However, it should
be remembered that even two audio files in the same file format and with the
same bit rate may be of very different quality because the encoding programs
may be of different quality.

Example 1.15. For telephony it is common to sample the sound 8000 times per
second and represent each sample value as a 13-bit integer. These integers are
then converted to a kind of 8-bit floating-point format with a 4-bit significand.
Telephony therefore generates a bit rate of 64 000 bits per second, i.e. 64 kb/s.

Newer formats with higher quality are available. Music is distributed in vari-
ous formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with sampling
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rates up to 192 000 and up to 24 bits per sample. These formats also support
surround sound (up to seven channels in contrast to the two stereo channels on
a CD). In the following we will assume all sound to be digital. Later we will
return to how we reconstruct audible sound from digital sound.

1.4 Simple operations on digital sound

Simple operations and computations with digital sound can be done in any
programming environment. Let us take a look at how this can be done. From
Definition 1.13, digital sound is just an array of sample values x = (xi)

N−1
i=0 ,

together with the sample rate fs. Performing operations on the sound therefore
amounts to doing the appropriate computations with the sample values and the
sample rate. The most basic operation we can perform on a sound is simply
playing it, and if we are working with sound we need a mechanism for doing
this.

1.4.1 Playing a sound

You may already have listened to pure tones, square waves and triangle waves
in the last section. The corresponding sound files were generated in a way we
will describe shortly, placed in a directory available on the internet, and linked
to from these notes. A program on your computer was able to play these files
when you clicked on them. We will now describe how to use Matlab to play the
same sounds. There we have the two functions

playblocking(playerobj)
playblocking(playerobj,[start stop])

These simply play an audio segment encapsulated by the object playerobj (we
will shortly see how we can construct such an object from given audio samples
and sampling rate). playblocking means that the method playing the sound
will block until it has finished playing. We will have use for this functionality
later on, since we may play sounds in successive order. With the first function
the entire audio segment is played. With the second function the playback starts
at sample start, and ends at sample stop. These functions are just software
interfaces to the sound card in your computer. It basically sends the array of
sound samples and sample rate to the sound card, which uses some method for
reconstructing the sound to an analog sound signal. This analog signal is then
sent to the loudspeakers and we hear the sound.

Fact 1.16. The basic command in a programming environment that handles
sound takes as input an array of sound samples x and a sample rate s, and
plays the corresponding sound through the computer’s loudspeakers.

The mysterious playerobj object above can be obtained from the sound
samples (represented by a vector S) and the sampling rate (fs) by the function:
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playerobj=audioplayer(S,fs)

The sound samples can have different data types. We will always assume that
they are of type double. MATLAB requires that they have values between −1
and 1 (i.e. these represent the range of numbers which can be played through
the sound card of the computer). Also, S can actually be a matrix: Each
column in the matrix represents a sound channel. Sounds we generate from a
mathematical function on our own will typically have one only one channel, so
that S has only one column. If S originates from a stereo sound file, it will have
two columns.

You can create S on your own, and set the sampling rate to whatever value
you like. However, we can also fill in the sound samples from a sound file. To
do this from a file in the wav-format named filename, simply write

[S,fs]=wavread(filename)

The wav-format format was developed by Microsoft and IBM, and is one of
the most common file formats for CD-quality audio. It uses a 32-bit integer to
specify the file size at the beginning of the file which means that a WAV-file
cannot be larger than 4 GB. In addition to filling in the sound samples in the
vector S, this function also returns the sampling rate fs used in the file. The
function

wavwrite(S,fs,filename)

can similarly be used to write the data stored in the vector S to the wav-file by
the name filename. In the following we will both fill in the vector S on our
own by using values from mathematical functions, as well as from a file. As
an example of the first, we can listen to and write to a file the pure tone of
frequency 440Hz considered above with the help of the following code:

antsec=3;
fs=40000;
t=linspace(0,antsec,fs*antsec);
S=sin(2*pi*440*t);
playerobj=audioplayer(S,fs);
playblocking(playerobj);
wavwrite(S,fs,’puretone440.wav’);

The code creates a pure tone which lasts for three seconds (if you want the
tone to last longer, you can change the value of the variable antsec). We also
tell the computer that there are 40000 samples per second. This value is not
coincidental, and we will return to this. In fact, the sound file for the pure tone
embedded into this document was created in this way! In the same way we can
listen to the square wave with the help of the following code:

antsec=3;
fs=44100;
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samplesperperiod=round(fs/440);
oneperiod=[ones(1,round(samplesperperiod/2)) ...

-ones(1,round(samplesperperiod/2))];
allsamples=zeros(1,antsec*440*length(oneperiod));
for k=1:(antsec*440)
allsamples(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end
playerobj=audioplayer(allsamples,fs);
playblocking(playerobj);

The code creates 440 copies of the square wave per second by first computing
the number of samples needed for one period when it is known that we should
have a total of 40000 samples per second, and then constructing the samples
needed for one period. In the same fashion we can listen to the triangle wave
simply by replacing the code for generating the samples for one period with the
following:

oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...
linspace(1,-1,round(samplesperperiod/2))];

Instead of using the formula for the triangle wave, directly, we have used the
function linspace.

As an example of how to fill in the sound samples from a file, the code

[S fs] = wavread(’castanets.wav’);

reads the file castanets.wav, and stores the sound samples in the matrix S. In
this case there are two sound channels, so there are two columns in S. To work
with sound from only one channel, we extract the second channel as follows:

x=S(:,2);

wavread returns sound samples with floating point precision. If we have made
any changes to the sound samples, we need to secure that they are between −1
and 1 before we play them. If the sound samples are stored in x, this can be
achieved as follows:

x = x / max(abs(x));

x can now be played just as the signals we constructed from mathematical
formulas above.

It may be that some other environment than Matlab gives you the play
functionality on your computer. Even if no environment on your computer
supports such play-functionality at all, you may still be able to play the result
of your computations if there is support for saving the sound in some standard
format like mp3. The resulting file can then be played by the standard audio
player on your computer.
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Example 1.17 (Changing the sample rate). We can easily play back a sound
with a different sample rate than the standard one. If we in the code above
instead wrote fs=80000, the sound card will assume that the time distance
between neighbouring samples is half the time distance in the original. The
result is that the sound takes half as long, and the frequency of all tones is
doubled. For voices the result is a characteristic Donald Duck-like sound.

Conversely, the sound can be played with half the sample rate by setting
fs=20000. Then the length of the sound is doubled and all frequencies are
halved. This results in low pitch, roaring voices.

Fact 1.18. A digital sound can be played back with a double or half sample
rate by replacing

playerobj=audioplayer(S,fs);

with

playerobj=audioplayer(S,2*fs);

and

playerobj=audioplayer(S,fs/2);

respectively.

The sample file castanets.wav played at double sampling rate sounds like this,
while it sounds like this when it is played with half the sampling rate.

Example 1.19 (Playing the sound backwards). At times a popular game has
been to play music backwards to try and find secret messages. In the old days
of analog music on vinyl this was not so easy, but with digital sound it is quite
simple; we just need to reverse the samples. To do this we just loop through
the array and put the last samples first.

Fact 1.20. Let x = (xi)
N−1
i=0 be the samples of a digital sound. Then the

samples y = (yi)
N−1
i=0 of the reverse sound are given by

yi = xN−i−1, for i = 0, 1, . . . N − 1.

When we reverse the sound samples with Matlab, we have to reverse the ele-
ments in both sound channels. This can be performed as follows

sz=size(S,1);
newS=[S(sz:(-1):1,1) S(sz:(-1):1,2)];

Performing this on our sample file you generate a sound which sounds like this.

Example 1.21 (Adding noise). To remove noise from recorded sound can be
very challenging, but adding noise is simple. There are many kinds of noise,
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but one kind is easily obtained by adding random numbers to the samples of a
sound.

Fact 1.22. Let x be the samples of a digital sound of length N . A new
sound y with noise added can be obtained by adding a random number to
each sample,

y=x+c*(2*rand(1,N)-1);

where rand is a MATLAB function that returns random numbers in the inter-
val [0, 1], and c is a constant (usually smaller than 1) that dampens the noise.
The effect of writing (2*rand(1,N)-1) is that random numbers between −1
and 1 are returned instead of random numbers between 0 and 1.

Adding noise in this way will produce a general hissing noise similar to the noise
you hear on the radio when the reception is bad. As before you should add noise
to both channels. Note alse that the sound samples may be outside [−1, 1] after
adding noise, so that you should scale the samples before writing them to file.
The factor c is important, if it is too large, the noise will simply drown the
signal y: castanets.wav with noise added with c = 0.4 sounds like this, while
with c = 0.1 it sounds like this.

1.4.2 Filtering operations

Later on we will focus on particular operations on sound, where the output
is constructed by combining several input elements in a particular way. We
say that we filter the sound, and we call such operations filtering operations,
or simply filters. Filters are important since they can change the frequency
content in a signal in many ways. We will defer the precise definition of filters to
Section 3.3, where we also will give the filters listed below a closer mathematical
analysis.

Example 1.23 (Adding echo). An echo is a copy of the sound that is delayed
and softer than the original sound. We observe that the sample that comes m
seconds before sample i has index i−ms where s is the sample rate. This also
makes sense even if m is not an integer so we can use this to produce delays that
are less than one second. The one complication with this is that the number ms
may not be an integer. We can get round this by rounding ms to the nearest
integer which corresponds to adjusting the echo slightly.

Fact 1.24. Let (x, s) be a digital sound. Then the sound y with samples
given by

y=x((d+1):N)-c*x(1:(N-d));

will include an echo of the original sound. Here d=round(ms) is the integer
closest to ms, and c is a constant which is usually smaller than 1.
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This is an example of a filtering operation where each output element is con-
structed from two input elements. As in the case of noise it is important to
dampen the part that is added to the original sound, otherwise the echo will be
too loud. Note also that the formula that creates the echo does not work at the
beginning of the signal, and that the echo is unaudible if d is too small. You
can listen to the sample file with echo added with d = 10000 and c = 0.5 here.

Example 1.25 (Reducing the treble). The treble in a sound is generated by
the fast oscillations (high frequencies) in the signal. If we want to reduce the
treble we have to adjust the sample values in a way that reduces those fast
oscillations. A general way of reducing variations in a sequence of numbers is to
replace one number by the average of itself and its neighbours, and this is easily
done with a digital sound signal. If we let the new sound signal be y = (yi)

N−1
i=0

we can compute it as

y(1)=x(1);
for t=2:(N-1)
y(t)=(x(t-1)+x(t)+x(t+1))/3;

end
y(N)=x(N);

This is another example of a filtering operation, but this time three input ele-
ments are needed in order to produce an output element. Note that the vector
{1/3, 1/3, 1/3} uniquely describe how the input elements should be combined
to produce the otuput. The elements in this vector are also referred to as the
filter coefficients. Since this filter is based on forming averages it is also called
a moving average filter.

It is reasonable to let the middle sample xi count more than the neighbours
in the average, so an alternative is to compute the average by instead writing

y(t)=(x(t-1)+2*x(t)+x(t+1))/4;

The coefficients 1, 2, 1 here have been taken from row 2 in Pascal’s triangle. It
will turn out that this is a good choice of coefficients. We have not developed
the tools needed to analyse the quality of filters yet, so this will be discussed
later. We can also take averages of more numbers, where it will also turn out
that row k of Pascals triangle also is a very good choice. The values in Pascals
triangle can be computed as the coefficients of x in the expression (1 + x)k,
which also equal the binomial coefficients

�
k

r

�
for 0 ≤ r ≤ k. As an example, if

we pick coefficients from row 4 of Pascals triangle instead, we would write

y(1)=x(1); y(2)=x(2);
for t=3:(N-2)
y(t)=(x(t-2)+4*x(t-1)+6*x(t)+4*x(t+1)+x(t+2))/16;

end
y(N-1)=x(N-1); y(N)=x(N);

It will turn out that picking coefficients from a row in Pascal’s triangle works
better the longer the filter is:
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(b) The result of applying the filter from row
4 of Pascal’s triangle

Figure 1.5: Reducing the treble.

Observation 1.26. Let x be the samples of a digital sound, and let {ci}2k+1
i=1

be the numbers in row 2k of Pascal’s triangle. Then the sound with samples
y given by

y=zeros(length(x));
y(1:k)=x(1:k);
for t=(k+1):(N-k)
for j=1:(2*k+1)
y(t)=y(t)+c(j)*x(t+k+1-j))/2^k;

end
end
y((N-k+1):N)=x((N-k+1):N);

has reduced treble compared with the sound given by the samples x.

An example of the result of averaging is shown in Figure 1.5. (a) shows a real
sound sampled at CD-quality (44 100 samples per second). (b) shows the result
of applying the averaging process by using row 4 of Pascals triangle. We see that
the oscillations have been reduced, and if we play the sound it has considerably
less treble. In Exercise 9 you will be asked to implement reducing the treble
in the file castanets.wav. If you do this you should hear that the sound gets
softer when you increase k: For k = 32 the sound will be like this, for k = 256
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Figure 1.6: Reducing the bass.

it will be like this.

Example 1.27 (Reducing the bass). Another common option in an audio sys-
tem is reducing the bass. This corresponds to reducing the low frequencies in
the sound, or equivalently, the slow variations in the sample values. It turns out
that this can be accomplished by simply changing the sign of the coefficients
used for reducing the treble. We can for instance change the filter described for
the fourth row in Pascals triangle to

y(t)=(x(t-2)-4*x(t-1)+6*x(t)-4*x(t+1)+x(t+2))/16;

An example is shown in Figure 1.6. The original signal is shown in (a) and the
result in (b). We observe that the samples in (b) oscillate much more than the
samples in (a). If we play the sound in (b), it is quite obvious that the bass has
disappeared almost completely.

Observation 1.28. Let x be the samples of a digital sound, and let {ci}2k+1
i=1

be the numbers in row 2k of Pascal’s triangle. Then the sound with samples
y given by

y=zeros(length(x));
y(1:k)=x(1:k);
for t=(k+1):(N-k)
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for j=1:(2*k+1)
y(t)=x(t)+(-1)^(k+1-j)*c(j)*x(t+j-k-1))/2^k;

end
end
y((N-k+1):N)=x((N-k+1):N);

has reduced bass compared to the sound given by the samples y.

In Exercise 9 you will be asked to implement reducing the bass in the file
castanets.wav. The new sound will be difficult to hear for large k, and we
will explain why later. For k = 1 the sound will be like this, for k = 2 it will be
like this. Even if the sound is quite low, you can hear that more of the bass has
disappeared for k = 2.

There are also other operations we would like to perform for digital sound.
For instance, it would be nice to adjust a specific set of frequencies only, so
that we end up with a sound where unpleasant components of the sound have
been removed. Later on we will establish mathematics which will enable us to
contruct filters which have the properties that they work in desirable ways on
any frequencies. It will also turn out that the filters listed above can be given
a frequency interpretation: When the input sound has a given frequncy, the
output sound has the same frequency.

Exercises for Section 1.4

Ex. 1 — Compute the loudness of the Krakatoa explosion on the decibel scale,
assuming that the variation in air pressure peaked at 100 000 Pa.

Ex. 2 — Define the following sound signal

f(t) =






0 0 ≤ t ≤ 0.2
t−0.2
0.4 sin(2π440t) 0.2 ≤ t ≤ 0.6
sin(2π440t) 0.6 ≤ t ≤ 1

This corresponds to the sound plotted in Figure 1.1(a), where the sound is
unaudible in the beginning, and increases linearly in loudness over time with a
given frequency until maximum loudness is avchieved. Write a Matlab program
which generates this sound, and listen to it.

Ex. 3 — Find two constant a and b so that the function f(t) = a sin(2π440t)+
b sin(2π4400t) resembles the plot from Figure 1.1(b) as closely as possible. Gen-
erate the samples of this sound, and listen to it with Matlab.
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Ex. 4 — Let us write some code so that we can experiment with different pure
sounds

a. Write a function

function playpuresound(f)

which generates the samples over a period of 3 seconds for a pure tone
with frequency f , with sampling frequency fs = 2.5f (we will explain
this value later).

b. Use the function playpuresound to listen to pure sounds of frequency
440Hz and 1500Hz, and verify that they are the same as the sounds you
already have listened to in this section.

c. How high frequencies are you able to hear with the function playpuresound?
How low frequencies are you able to hear?

Ex. 5 — Write functions

function playsquare(T)
function playtriangle(T)

which plays the square wave of Example 1.11 and the triangle wave of Exam-
ple 1.12, respectively, where T is given by the parameter. In your code, let
the samples of the waves be taken at a frequency of 40000 samples per second.
Verify that you generate the same sounds as you played in these examples when
you set T = 1

440 .

Ex. 6 — In this exercise we will experiment as in the first examples of this
section.

a. Write a function

function playdifferentfs()

which plays the sound samples of castanets.wav with the same sample
rate as the original file, then with twice the sample rate, and then half
the sample rate. You should start with reading the file into a matrix (as
explained in this section). Are the sounds the same as those you heard
in Example 1.17?

b. Write a function

function playreverse()

which plays the sound samples of castanets.wav backwards. Is the
sound the same as the one you heard in Example 1.19?

c. Write the new sound samples from b. to a new wav-file, as described
above, and listen to it with your favourite mediaplayer.
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Ex. 7 — In this exercise, we will experiment with adding noise to a signal.
a. Write a function

function playnoise(c)

which plays the sound samples of castanets.wav with noise added for
the damping constant c as described above. Your code should add noise
to both channels of the sound, and scale the sound samples so that they
are between −1 and 1.

b. With your program, generate the two sounds played in Example 1.21,
and verify that they are the same as those you heard.

c. Listen to the sound samples with noise added for different values of c.
For which range of c is the noise audible?

Ex. 8 — In this exercise, we will experiment with adding echo to a signal.
a. Write a function

function playwithecho(c,d)

which plays the sound samples of castanets.wav with echo added for
damping constant c and delay d as described in Example 1.23.

b. Generate the sound from Example 1.23, and verify that it is the same as
the one you heard there.

c. Listen to the sound samples for different values of d and c. For which
range of d is the echo distinguisible from the sound itself? How low can
you choose c in order to still hear the echo?

Ex. 9 — In this exercise, we will experiment with increasing and reducing the
treble and bass in a signal as in examples 1.25 and 1.27.

a. Write functions

function reducetreble(k)
function reducebass(k)

which reduces bass and treble in the ways described above for the sound
from the file castanets.wav, and plays the result, when row number 2k
in Pascal’ triangle is used to construct the filters. Look into the Matlab
function conv to help you to find the values in Pascal’s triangle.

b. Generate the sounds you heard in examples 1.25 and 1.27, and verify
that they are the same.

c. In your code, it will not be necessary to scale the values after reducing
the treble, i.e. the values are already between −1 and 1. Explain why
this is the case.
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d. How high must k be in order for you to hear difference from the actual
sound? How high can you choose k and still recognize the sound at all?

1.5 Compression of sound and the MP3 standard

Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data, in ways such as in the previous section. However,
audio was represented by a large amount of data and an obvious challenge was
how to reduce the storage requirements. Lossless coding techniques like Huffman
and Lempel-Ziv coding were known and with these kinds of techniques the file
size could be reduced to about half of that required by the CD format. However,
by allowing the data to be altered a little bit it turned out that it was possible
to reduce the file size down to about ten percent of the CD format, without
much loss in quality. The MP3 audio format takes advantage of this.

MP3, or more precisely MPEG-1 Audio Layer 3, is part of an audio-visual
standard called MPEG. MPEG has evolved over the years, from MPEG-1 to
MPEG-2, and then to MPEG-4. The data on a DVD disc can be stored with
either MPEG-1 or MPEG-2, while the data on a bluray-disc can be stored with
either MPEG-2 or MPEG-4. MP3 was developed by Philips, CCETT (Centre
commun d’études de télévision et télécommunications), IRT (Institut für Rund-
funktechnik) and Fraunhofer Society, and became an international standard in
1991. Virtually all audio software and music players support this format. MP3
is just a sound format and does not specify the details of how the encoding
should be done. As a consequence there are many different MP3 encoders avail-
able, of varying quality. In particular, an encoder which works well for higher
bit rates (high quality sound) may not work so well for lower bit rates.

With MP3, the sound samples are transformed using methods we will go
through in the next section. A frequency analysis of the sound is the basis
for this transformation. Based on this frequency analysis, the sound is split
into frequency bands, each band corresponding to a particular frequency range.
With MP3, 32 frequency bands are used. Based on the frequency analysis, the
encoder uses what is called a psycho-acoustic model to compute the significance
of each band for the human perception of the sound. When we hear a sound,
there is a mechanical stimulation of the ear drum, and the amount of stimulus
is directly related to the size of the sample values of the digital sound. The
movement of the ear drum is then converted to electric impulses that travel
to the brain where they are perceived as sound. The perception process uses
a transformation of the sound so that a steady oscillation in air pressure is
perceived as a sound with a fixed frequency. In this process certain kinds of
perturbations of the sound are hardly noticed by the brain, and this is exploited
in lossy audio compression.

More precisely, when the psycho-acoustic model is applied to the frequency
content resulting from our frequency analysis, scale factors and masking thresh-
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olds are assigned for each band. The computed masking thresholds have to do
with a phenomenon called masking effects. A simple example of this is that a
loud sound will make a simultaneous low sound inaudible. For compression this
means that if certain frequencies of a signal are very prominent, most of the
other frequencies can be removed, even when they are quite large. If the sounds
are below the masking threshold, it is simply ommited by the encoder, since the
model says that the sound should be inaudible.

Masking effect is just one example of what is called a psycho-acoustic effect.
Another obvious such effect regards computing the scale factors: the human
auditory system can only perceive frequencies in the range 20 Hz – 20 000 Hz.
An obvious way to do compression is therefore to remove frequencies outside this
range, although there are indications that these frequencies may influence the
listening experience inaudibly. The computed scaling factors tell the encoder
about the precision to be used for each frequency band: If the model decides
that one band is very important for our perception of the sound, it assigns a
big scale factor to it, so that more effort is put into encoding it by the encoder
(i.e. it uses more bits to encode this band).

Using appropriate scale factors and masking thresholds provide compression,
since bits used to encode the sound are spent on parts important for our percep-
tion. Developing a useful psycho-acoustic model requires detailed knowledge of
human perception of sound. Different MP3 encoders use different such models,
so that may produce very different results, worse or better.

The information remaining after frequency analysis and using a psycho-
acoustic model is coded efficiently with (a variant of) Huffman coding. MP3
supports bit rates from 32 to 320 kb/s and the sampling rates 32, 44.1, and 48
kHz. The format also supports variable bit rates (the bit rate varies in different
parts of the file). An MP3 encoder also stores metadata about the sound, such
as the title of the audio piece, album and artist name and other relevant data.

MP3 too has evolved in the same way as MPEG, from MP1 to MP2, and to
MP3, each one more sophisticated than the other, providing better compression.
MP3 is not the latest development of audio coding in the MPEG family: AAC
(Advanced Audio Coding) is presented as the successor of MP3 by its principal
developer, Fraunhofer Society, and can achieve better quality than MP3 at the
same bit rate, particularly for bit rates below 192 kb/s. AAC became well
known in April 2003 when Apple introduced this format (at 128 kb/s) as the
standard format for their iTunes Music Store and iPod music players. AAC is
also supported by many other music players, including the most popular mobile
phones.

The technologies behind AAC and MP3 are very similar. AAC supports
more sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the
same transformation as MP3, but AAC processes 1 024 samples at a time. AAC
also uses much more sophisticated processing of frequencies above 16 kHz and
has a number of other enhancements over MP3. AAC, as MP3, uses Huffman
coding for efficient coding of the transformed values. Tests seem quite conclusive
that AAC is better than MP3 for low bit rates (typically below 192 kb/s), but
for higher rates it is not so easy to differentiate between the two formats. As
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for MP3 (and the other formats mentioned here), the quality of an AAC file
depends crucially on the quality of the encoding program.

There are a number of variants of AAC, in particular AAC Low Delay (AAC-
LD). This format was designed for use in two-way communication over a net-
work, for example the internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be toler-
ated).

1.6 Summary

We discussed the basic question of what is sound is, and concluded that sound
could be modeled as a sum of frequency components. We discussed meaningful
operations of sound, such as adjust the bass and treble, adding echo, or adding
noise. We also gave an introduction to the MP3 standard for compression of
sound.
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Chapter 2

Fourier analysis for periodic
functions: Fourier series

In Chapter 1 we identified audio signals with functions and discussed infor-
mally the idea of decomposing a sound into basis sounds to make its frequency
content available. In this chapter we will make this kind of decomposition pre-
cise by discussing how a given function can be expressed in terms of the basic
trigonometric functions. This is similar to Taylor series where functions are ap-
proximated by combinations of polynomials. But it is also different from Taylor
series because polynomials are different from polynomials, and the approxima-
tions are computed in a very different way. The theory of approximation of
functions with trigonometric functions is generally referred to as Fourier anal-
ysis. This is a central tool in practical fields like image and signal processing,
but it also an important field of research within pure mathematics. We will
only discuss Fourier analysis for functions defined on a finite interval and for
finite sequences (vectors), but Fourier analysis may also be applied to functions
defined on the whole real line and to infinite sequences.

Perhaps a bit surprising, linear algebra is a very useful tool in Fourier analy-
sis. This is because the sets of functions involved are vector spaces, both of finite
and infinite dimension. Therefore many of the tools from your linear algebra
course will be useful, in a situation that at first may seem far from matrices and
vectors.

2.1 Basic concepts

The basic idea of Fourier series is to approximate a given function by a combi-
nation of simple cos and sin functions. This means that we have to address at
least three questions:

1. How general do we allow the given function to be?
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2. What exactly are the combinations of cos and sin that we use for the
approximations?

3. How do we determine the approximation?

Each of these questions will be answered in this section.
We have already indicated that the functions we consider are defined on an

interval, and without much loss of generality we assume this interval to be [0, T ],
where T is some positive number. Note that any function f defined on [0, T ]
gives rise to a related function defined on the whole real line, by simply gluing
together copies of f . The result is a periodic function with period T that agrees
with f on [0, T ].

We have to make some more restrictions. Mostly we will assume that f
is continuous, but the theory can also be extended to functions which are only
Riemann-integrable, more precisely, that the square of the function is integrable.

Definition 2.1 (Continuous and square-integrable functions). The set of con-
tinuous, real functions defined on an interval [0, T ] is denoted C[0, T ].

A real function f defined on [0, T ] is said to be square integrable if f2 is
Riemann-integrable, i.e., if the Riemann integral of f2 on [0, T ] exists,

�
T

0
f(t)2 dt < ∞.

The set of all square integrable functions on [0, T ] is denoted L2[0, T ].

The sets of continuous and square-integrable functions can be equippped
with an inner-product, a generalisation of the so-called dot-product for vectors.

Theorem 2.2. Both L2[0, T ] and C[0, T ] are vector spaces. Moreover, if the
two functions f and g lie in L2[0, T ] (or in C[0, T ]), then the product fg is also
in L2[0, T ] (or in C[0, T ]). Moreover, both spaces are inner product spaces1,
with inner product2 defined by

�f, g� = 1

T

�
T

0
f(t)g(t) dt, (2.1)

and associated norm

�f� =

�
1

T

�
T

0
f(t)2dt. (2.2)

The mysterious factor 1/T is included so that the constant function f(t) = 1
has norm 1, i.e., its role is as a normalizing factor.

Definition 2.1 and Theorem 2.2 answer the first question above, namely how
general do we allow our functions to be. Theorem 2.2 also gives an indication
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of how we are going to determine approximations—we are going to use inner
products. We recall from linear algebra that the projection of a function f onto
a subspace W with respect to an inner product �·, ·� is the function g ∈ W which
minimizes �f−g�, which we recognise as the error3. This projection is therefore
also called a best approximation of f from W and is characterised by the fact
that the error should be orthogonal to the subspace W , i.e., we should have

�f, g� = 0, for all g ∈ W .

More precisely, if φ = {φi}mi=1 is an orthogonal basis for W , then the best
approximation g is given by

g =
m�

i=1

�f,φi�
�φi,φi�

φi. (2.3)

The error �f − g� in the approximation is often referred to as the least square
error.

We have now answered the second of our primary questions. What is left
is a description of the subspace W of trigonometric functions. This space is
spanned by the pure tones we discussed in Chapter 1.

Definition 2.3 (Fourier series). Let VN,T be the subspace of C[0, T ] spanned
by the set of functions given by

DN,T = {1, cos(2πt/T ), cos(2π2t/T ), · · · , cos(2πNt/T ),

sin(2πt/T ), sin(2π2t/T ), · · · , sin(2πNt/T )}. (2.4)

The space VN,T is called the N ’th order Fourier space. The Nth-order Fourier
series approximation of f , denoted fN , is defined as the best approximation
of f from VN,T with respect to the inner product defined by (2.1).

The space VN,T can be thought of as the space spanned by the pure tones
of frequencies 1/T , 2/T , . . . , N/T , and the Fourier series can be thought of as
linear combination of all these pure tones. From our discussion in Chapter 1,
we see that if N is sufficiently large, we get a space which can be used to
approximate most sounds in real life. The approximation fN of a sound f from
a space VN,T can also serve as a compressed version if many of the coefficients
can be set to 0 without the error becomingg too big.

Note that all the functions in the set DN,T are periodic with period T , but
most have an even shorter period. More precisely, cos(2πnt/T ) has period T/n,
and frequency n/T . In general, the term fundamental frequency is used to denote
the lowest frequency of a given periodic function.

Definition 2.3 characterises the Fourier series. The next lemma gives precise
expressions for the coefficients.

3See Section 6.3 in [7] for a review of projections and least squares approximations.
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Theorem 2.4. The set DN,T is an orthogonal basis for VN,T . In particular,
the dimension of VN,T is 2N + 1, and if f is a function in L2[0, T ], we denote
by a0, . . . , aN and b1, . . . , bN the coordinates of fN in the basis DN,T , i.e.

fN (t) = a0 +
N�

n=1

(an cos(2πnt/T ) + bn sin(2πnt/T )) . (2.5)

The a0, . . . , aN and b1, . . . , bN are called the (real) Fourier coefficients of f ,
and they are given by

a0 = �f, 1� = 1

T

�
T

0
f(t) dt, (2.6)

an = 2
�
f, cos(2πnt/T )

�
=

2

T

�
T

0
f(t) cos(2πnt/T ) dt for n ≥ 1, (2.7)

bn = 2�f, sin(2πnt/T )� = 2

T

�
T

0
f(t) sin(2πnt/T ) dt for n ≥ 1. (2.8)

Proof. To prove orthogonality, assume first that m �= n. We compute the inner
product

�cos(2πmt/T ), cos(2πnt/T )�

=
1

T

�
T

0
cos(2πmt/T ) cos(2πnt/T )dt

=
1

2T

�
T

0
(cos(2πmt/T + 2πnt/T ) + cos(2πmt/T − 2πnt/T ))

=
1

2T

�
T

2π(m+ n)
sin(2π(m+ n)t/T ) +

T

2π(m− n)
sin(2π(m− n)t/T )

�T

0

= 0.

Here we have added the two identities cos(x ± y) = cosx cos y ∓ sinx sin y
together to obtain an expression for cos(2πmt/T ) cos(2πnt/T )dt in terms of
cos(2πmt/T +2πnt/T ) and cos(2πmt/T −2πnt/T ). By testing all other combi-
nations of sin and cos also, we obtain the orthogonality of all functions in DN,T

in the same way.
We find the expressions for the Fourier coefficients from the general for-

mula (2.3). We first need to compute the following inner products of the basis
functions,

�cos(2πmt/T ), cos(2πmt/T )� = 1

2

�sin(2πmt/T ), sin(2πmt/T )� = 1

2
�1, 1� = 1,
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which are easily derived in the same way as above. The orthogonal decomposi-
tion theorem (2.3) now gives

fN (t) =
�f, 1�
�1, 1�1 + +

N�

n=1

�f, cos(2πnt/T )�
�cos(2πnt/T ), cos(2πnt/T )� cos(2πnt/T )

+
N�

n=1

�f, sin(2πnt/T )�
�sin(2πnt/T ), sin(2πnt/T )� sin(2πnt/T )

=
1
T

�
T

0 f(t)dt

1
+

N�

n=1

1
T

�
T

0 f(t) cos(2πnt/T )dt
1
2

cos(2πnt/T )

+
N�

n=1

1
T

�
T

0 f(t) sin(2πnt/T )dt
1
2

sin(2πnt/T )

=
1

T

�
T

0
f(t)dt+

N�

n=1

�
2

T

�
T

0
f(t) cos(2πnt/T )dt

�
cos(2πnt/T )

+
N�

n=1

�
2

T

�
T

0
f(t) sin(2πnt/T )dt

�
sin(2πnt/T ).

The relations (2.6)- (2.8) now follow by comparison with (2.5).

Since f is a function in time, and the an, bn represent contributions from
different frequencies, the Fourier series can be thought of as a change of coordi-
nates, from what we vaguely can call the time domain, to what we can call the
frequency domain (or Fourier domain). We will call the basis DN,T the N ’th
order Fourier basis for VN,T . We note that DN,T is not an orthonormal basis;
it is only orthogonal.

In the signal processing literature, Equation (2.5) is known as the synthesis
equation, since the original function f is synthesized as a sum of trigonometric
functions. Similarly, equations (2.6)- (2.8) are called analysis equations.

A major topic in harmonic analysis is to state conditions on f which guaran-
tees the convergence of its Fourier series. We will not discuss this in detail here,
since it turns out that, by choosing N large enough, any reasonable periodic
function can be approximated arbitrarily well by its Nth-order Fourier series
approximation. More precisely, we have the following result for the convergence
of the Fourier series, stated without proof.

Theorem 2.5 (Convergence of Fourier series). Suppose that f is periodic
with period T , and that

1. f has a finite set of discontinuities in each period.

2. f contains a finite set of maxima and minima in each period.

3.
�
T

0 |f(t)|dt < ∞.
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Figure 2.1: The cubic polynomial f(x) = − 1
3x

3 + 1
2x

2 − 3
16x+1 on the interval

[0, 1], together with its Fourier series approximation from V9,1.

Then we have that limN→∞ fN (t) = f(t) for all t, except at those points t
where f is not continuous.

The conditions in Theorem 2.5 are called the Dirichlet conditions for the
convergence of the Fourier series. They are just one example of conditions that
ensure the convergence of the Fourier series. There also exist much more gen-
eral conditions that secure convergence — these can require deep mathematical
theory, depending on the generality.

An illustration of Theorem 2.5 is shown in Figure 2.1 where the cubic poly-
nomial f(x) = − 1

3x
3 + 1

2x
2 − 3

16x + 1 is approximated by a 9th order Fourier
series. The trigonometric approximation is periodic with period 1 so the approx-
imation becomes poor at the ends of the interval since the cubic polynomial is
not periodic. The approximation is plotted on a larger interval in Figure 2.1(b),
where its periodicity is clearly visible.

Example 2.6. Let us compute the Fourier coefficients of the square wave, as
defined by (1.1) in Example 1.11. If we first use (2.6) we obtain

a0 =
1

T

�
T

0
f(t)dt =

1

T

�
T/2

0
dt− 1

T

�
T

T/2
dt = 0.
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Using (2.7) we get

an =
2

T

�
T

0
f(t) cos(2πnt/T )dt

=
2

T

�
T/2

0
cos(2πnt/T )dt− 2

T

�
T

T/2
cos(2πnt/T )dt

=
2

T

�
T

2πn
sin(2πnt/T )

�T/2

0

− 2

T

�
T

2πn
sin(2πnt/T )

�T

T/2

=
2

T

T

2πn
((sin(nπ)− sin 0)− (sin(2nπ)− sin(nπ)) = 0.

Finally, using (2.8) we obtain

bn =
2

T

�
T

0
f(t) sin(2πnt/T )dt

=
2

T

�
T/2

0
sin(2πnt/T )dt− 2

T

�
T

T/2
sin(2πnt/T )dt

=
2

T

�
− T

2πn
cos(2πnt/T )

�T/2

0

+
2

T

�
T

2πn
cos(2πnt/T )

�T

T/2

=
2

T

T

2πn
((− cos(nπ) + cos 0) + (cos(2nπ)− cos(nπ)))

=
2(1− cos(nπ)

nπ

=

�
0, if n is even;
4/(nπ), if n is odd.

In other words, only the bn-coefficients with n odd in the Fourier series are
nonzero. From this it is clear that the Fourier series is

4

π
sin(2πt/T ) +

4

3π
sin(2π3t/T ) +

4

5π
sin(2π5t/T ) +

4

7π
sin(2π7t/T ) + · · · .

With N = 20, there are 10 trigonometric terms in this sum. The corresponding
Fourier series can be plotted on the same interval with the following code.

t=0:(1/fs):3;
y=zeros(1,length(t));
for n=1:2:19
y = y + (4/(n*pi))*sin(2*pi*n*t/T);

end
plot(t,y)

In Figure 2.2(a) we have plotted the Fourier series of the square wave when
T = 1/440, and when N = 20. In Figure 2.2(b) we have also plotted the values
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Figure 2.2: The Fourier series of the square wave of Example 2.6

of the first 100 Fourier coefficients bn, to see that they actually converge to zero.
This is clearly necessary in order for the Fourier series to converge.

Even though f oscillates regularly between −1 and 1 with period T , the
discontinuities mean that it is far from the simple sin(2πt/T ) which corresponds
to a pure tone of frequency 1/T . From Figure 2.2(b) we see that the dominant
coefficient in the Fourier series is b1, which tells us how much there is of the pure
tone sin(2πt/T ) in the square wave. This is not surprising since the square wave
oscillates T times every second as well, but the additional nonzero coefficients
pollute the pure sound. As we include more and more of these coefficients, we
gradually approach the square wave, as shown for N = 20.

There is a connection between how fast the Fourier coefficients go to zero, and
how we percieve the sound. A pure sine sound has only one nonzero coefficient,
while the square wave Fourier coefficents decrease as 1/n, making the sound
less pleasant. This explains what we heard when we listened to the sound in
Example 1.11. Also, it explains why we heard the same pitch as the pure tone,
since the first frequency in the Fourier series has the same frequency as the pure
tone we listened to, and since this had the highest value.

The Fourier series approximations of the square wave can be played with the
play function, just as the square wave itself. For N = 1 and with T = 1/440
as above, it sounds like this. This sounds exactly like the pure sound with
frequency 440Hz, as noted above. For N = 5 the Fourier series approximation
sounds like this, and for N = 9 it sounds like this. Indeed these sounds are more
like the square wave itself, and as we increase N we can hear how introduction
of more frequencies gradually pollutes the sound more and more. In Exercise 7
you will be asked to write a program which verifies this.

Example 2.7. Let us also compute the Fourier coefficients of the triangle wave,
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as defined by (1.2) in Example 1.12. We now have

a0 =
1

T

�
T/2

0

4

T

�
t− T

4

�
dt+

1

T

�
T

T/2

4

T

�
3T

4
− t

�
dt.

Instead of computing this directly, it is quicker to see geometrically that the
graph of f has as much area above as below the x-axis, so that this integral
must be zero. Similarly, since f is symmetric about the midpoint T/2, and
sin(2πnt/T ) is antisymmetric about T/2, we have that f(t) sin(2πnt/T ) also is
antisymmetric about T/2, so that

�
T/2

0
f(t) sin(2πnt/T )dt = −

�
T

T/2
f(t) sin(2πnt/T )dt.

This means that, for n ≥ 1,

bn =
2

T

�
T/2

0
f(t) sin(2πnt/T )dt+

2

T

�
T

T/2
f(t) sin(2πnt/T )dt = 0.

For the final coefficients, since both f and cos(2πnt/T ) are symmetric about
T/2, we get for n ≥ 1,

an =
2

T

�
T/2

0
f(t) cos(2πnt/T )dt+

2

T

�
T

T/2
f(t) cos(2πnt/T )dt

=
4

T

�
T/2

0
f(t) cos(2πnt/T )dt =

4

T

�
T/2

0

4

T

�
t− T

4

�
cos(2πnt/T )dt

=
16

T 2

�
T/2

0
t cos(2πnt/T )dt− 4

T

�
T/2

0
cos(2πnt/T )dt

=
4

n2π2
(cos(nπ)− 1)

=

�
0, if n is even;
−8/(n2π2), if n is odd.

where we have dropped the final tedious calculations (use integration by parts).
From this it is clear that the Fourier series of the triangle wave is

− 8

π2
cos(2πt/T )− 8

32π2
cos(2π3t/T )− 8

52π2
cos(2π5t/T )− 8

72π2
cos(2π7t/T )+· · · .

In Figure 2.3 we have repeated the plots used for the square wave, for the
triangle wave. As before, we have used T = 1/440. The figure clearly shows
that the Fourier series coefficients decay much faster.

We can play different Fourier series approximations of the triangle wave, just
as those for the square wave. For N = 1 and with T = 1/440 as above, it sounds
like this. Again, this sounds exactly like the pure sound with frequency 440Hz.
For N = 5 the Fourier series approximation sounds like this, and for N = 9 it
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Figure 2.3: The Fourier series of the triangle wave of Example 2.7

sounds like this. Again these sounds are more like the triangle wave itself, and
as we increase N we can hear that introduction of more frequencies pollutes the
sound. However, since the triangle wave Fourier coefficients decrease as 1/n2

instead of 1/n as for the square wave, the sound is, although unpleasant due to
pollution by many frequencies, not as unpleasant as the square wave. Also, it
converges faster to the triangle wave itself, as also can be heard. In Exercise 7
you will be asked to write a program which verifies this.

From the previous examples we understand how we can use the Fourier
coefficients to analyse or improve the sound: Noise in a sound often corresponds
to the presence of some high frequencies with large coefficients, and by removing
these, we remove the noise. For example, we could set all the coefficients except
the first one to zero. This would change the unpleasant square wave to the pure
tone sin 2π440t, which we started our experiments with.

2.1.1 Fourier series for symmetric and antisymmetric func-

tions

In Example 2.6 we saw that the Fourier coefficients bn vanished, resulting in
a sine-series for the Fourier series. Similarly, in Example 2.7 we saw that an
vanished, resulting in a cosine-series. This is not a coincident, and is captured
by the following result, since the square wave was defined so that it was an-
tisymmetric about 0, and the triangle wave so that it was symmetric about
0.

Theorem 2.8 (Symmetry and antisymmetry). If f is antisymmetric about 0
(that is, if f(−t) = −f(t) for all t), then an = 0, so the Fourier series is actually

42

http://folk.uio.no/oyvindry/matinf2360/sounds/triangle440s9.wav


a sine-series. If f is symmetric about 0 (which means that f(−t) = f(t) for
all t), then bn = 0, so the Fourier series is actually a cosine-series.

Proof. Note first that we can write

an =
2

T

�
T/2

−T/2
f(t) cos(2πnt/T )dt bn =

2

T

�
T/2

−T/2
f(t) sin(2πnt/T )dt,

i.e. we can change the integration bounds from [0, T ] to [−T/2, T/2]. This
follows from the fact that all f(t), cos(2πnt/T ) and sin(2πnt/T ) are periodic
with period T .

Suppose first that f is symmetric. We obtain

bn =
2

T

�
T/2

−T/2
f(t) sin(2πnt/T )dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T )dt+

2

T

�
T/2

0
f(t) sin(2πnt/T )dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T )dt− 2

T

� −T/2

0
f(−t) sin(−2πnt/T )dt

=
2

T

� 0

−T/2
f(t) sin(2πnt/T )dt− 2

T

� 0

−T/2
f(t) sin(2πnt/T )dt = 0.

where we have made the substitution u = −t, and used that sin is antisymmetric.
The case when f is antisymmetric can be proved in the same way, and is left as
an exercise.

In fact, the connection between symmetric and antisymmetric functions, and
sine- and cosine series can be made even stronger by observing the following:

1. Any cosine series a0 +
�

N

n=1 an cos(2πnt/T ) is a symmetric function.

2. Any sine series
�

N

n=1 bn sin(2πnt/T ) is an antisymmetric function.

3. Any periodic function can be written as a sum of a symmetric and anti-
symmetric function by writing

f(t) =
f(t) + f(−t)

2
+

f(t)− f(−t)

2
. (2.9)

4. If fN (t) = a0 +
�

N

n=1(an cos(2πnt/T ) + bn sin(2πnt/T )), then

fN (t) + fN (−t)

2
= a0 +

N�

n=1

an cos(2πnt/T )

fN (t)− fN (−t)

2
=

N�

n=1

bn sin(2πnt/T ).

43



Exercises for Section 2.1

Ex. 1 — Find a function f which is Riemann-integrable on [0, T ], and so that�
T

0 f(t)2dt is infinite.

Ex. 2 — Given the two Fourier spaces VN1,T1 , VN2,T2 . Find necessary and
sufficient conditions in order for VN1,T1 ⊂ VN2,T2 .

Ex. 3 — Prove the second part of Theorem 2.8, i.e. show that if f is anti-
symmetric about 0 (i.e. f(−t) = −f(t) for all t), then an = 0, i.e. the Fourier
series is actually a sine-series.

Ex. 4 — Find the Fourier series coefficients of the periodic functions with
period T defined by being f(t) = t, f(t) = t2, and f(t) = t3, on [0, T ].

Ex. 5 — Write down difference equations for finding the Fourier coefficients
of f(t) = tk+1 from those of f(t) = tk, and write a program which uses this
recursion. Use the program to verify what you computed in Exercise 4.

Ex. 6 — Use the previous exercise to find the Fourier series for f(x) = − 1
3x

3+
1
2x

2 − 3
16x + 1 on the interval [0, 1]. Plot the 9th order Fourier series for this

function. You should obtain the plots from Figure 2.1.

Ex. 7 — Let us write programs so that we can listen to the Fourier approxi-
mations of the square wave and the triangle wave.

a. Write functions

function playsquaretrunk(T,N)
function playtriangletrunk(T,N)

which plays the order N Fourier approximation of the square wave and
the triangle wave, respectively, for three seconds. Verify that you can
generate the sounds you played in examples 2.6 and 2.7.

b. For these Fourier approximations, how high must you choose N for them
to be indistuingishable from the square/triangle waves themselves? Also
describe how the characteristics of the sound changes when n increases.
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2.2 Complex Fourier series

In Section 2.1 we saw how a function can be expanded in a series of sines and
cosines. These functions are related to the complex exponential function via
Eulers formula

eix = cosx+ i sinx

where i is the imaginary unit with the property that i2 = −1. Because the
algebraic properties of the exponential function are much simpler than those of
the cos and sin, it is often an advantage to work with complex numbers, even
though the given setting is real numbers. This is definitely the case in Fourier
analysis. More precisely, we would like to make the substitutions

cos(2πnt/T ) =
1

2

�
e2πint/T + e−2πint/T

�
(2.10)

sin(2πnt/T ) =
1

2i

�
e2πint/T − e−2πint/T

�
(2.11)

in Definition 2.3. From these identities it is clear that the set of complex ex-
ponential functions e2πint/T also is a basis of periodic functions (with the same
period) for VN,T . We may therefore reformulate Definition 2.3 as follows:

Definition 2.9 (Complex Fourier basis). We define the set of functions

FN,T = {e−2πiNt/T , e−2πi(N−1)t/T , · · · , e−2πit/T , (2.12)

1, e2πit/T , · · · , e2πi(N−1)t/T , e2πiNt/T }, (2.13)

and call this the order N complex Fourier basis for VN,T .

The function e2πint/T is also called a pure tone with frequency n/T , just
as for sines and cosines. We would like to show that these functions also are
orthogonal. To show this, we need to say more on the inner product we have
defined by (2.1). A weakness with this definition is that we have assumed real
functions f and g, so that this can not be used for the complex exponential
functions e2πint/T . For general complex functions we will extend the definition
of the inner product as follows:

�f, g� = 1

T

�
T

0
fḡ dt. (2.14)

The associated norm now becomes

�f� =

�
1

T

�
T

0
|f(t)|2dt. (2.15)

The motivation behind Equation 2.14, where we have conjugated the second
function, lies in the definition of an inner product for vector spaces over complex
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numbers. From before we are used to vector spaces over real numbers, but vector
spaces over complex numbers are defined through the same set of axioms as for
real vector spaces, only replacing real numbers with complex numbers. For
complex vector spaces, the axioms defining an inner product are the same as
for real vector spaces, except for that the axiom

�f, g� = �g, f� (2.16)

is replaced with the axiom
�f, g� = �g, f�, (2.17)

i.e. a conjugation occurs when we switch the order of the functions. This
new axiom can be used to prove the property �f, cg� = c̄�f, g�, which is a
somewhat different property from what we know for real inner product spaces.
This property follows by writing

�f, cg� = �cg, f� = c�g, f� = c̄�g, f� = c̄�f, g�.

Clearly the inner product 2.14 satisfies Axiom 2.17. With this definition it
is quite easy to see that the functions e2πint/T are orthonormal. Using the
orthogonal decomposition theorem we can therefore write

fN (t) =
N�

n=−N

�f, e2πint/T �
�e2πint/T , e2πint/T �

e2πint/T =
N�

n=−N

�f, e2πint/T �e2πint/T

=
N�

n=−N

�
1

T

�
T

0
f(t)e−2πint/T dt

�
e2πint/T .

We summarize this in the following theorem, which is a version of Theorem 2.4
which uses the complex Fourier basis:

Theorem 2.10. We denote by y−N , . . . , y0, . . . , yN the coordinates of fN in
the basis FN,T , i.e.

fN (t) =
N�

n=−N

yne
2πint/T . (2.18)

The yn are called the complex Fourier coefficients of f , and they are given by.

yn = �f, e2πint/T � = 1

T

�
T

0
f(t)e−2πint/T dt. (2.19)

If we reorder the real and complex Fourier bases so that the two functions
{cos(2πnt/T ), sin(2πnt/T )} and {e2πint/T , e−2πint/T } have the same index in
the bases, equations (2.10)-(2.11) give us that the change of basis matrix4 from

4See Section 4.7 in [7], to review the mathematics behind change of basis.
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DN,T to FN,T , denoted PFN,T←DN,T , is represented by repeating the matrix

1

2

�
1 1/i

1 −1/i

�

along the diagonal (with an additional 1 for the constant function 1). In other
words, since an, bn are coefficients relative to the real basis and yn, y−n the
corresponding coefficients relative to the complex basis, we have for n > 0,

�
yn
y−n

�
=

1

2

�
1 1/i

1 −1/i

��
an
bn

�
.

This can be summarized by the following theorem:

Theorem 2.11 (Change of coefficients between real and complex Fourier
bases). The complex Fourier coefficients yn and the real Fourier coefficients
an, bn of a function f are related by

y0 = a0,

yn =
1

2
(an − ibn),

y−n =
1

2
(an + ibn),

for n = 1, . . . , N .

Combining with Theorem 2.8, Theorem 2.11 can help us state properties of
complex Fourier coefficients for symmetric- and antisymmetric functions. We
look into this in Exercise 8.

Due to the somewhat nicer formulas for the complex Fourier coefficients
when compraed to the real Fourier coefficients, we will write most Fourier series
in complex form in the following.

Exercises for Section 2.2

Ex. 1 — Show that the complex functions e2πint/T are orthonormal.

Ex. 2 — Repeat Exercise 2.1.4, computing the complex Fourier series instead
of the real Fourier series.

Ex. 3 — Show that both cosn t and sinn t are in VN,T , and find an expression
for their complex Fourier coefficients.
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Ex. 4 — Consider a sum of two complex exponentials. When is their sum
also periodic? What is the fundamental period of the sum if the sum also is
periodic?

Ex. 5 — Compute the complex Fourier coefficients of the square wave using
Equation 2.19, i.e. repeat the calculations from Example 2.6 for the complex
case. Use Theorem 2.11 to verify your result.

Ex. 6 — Repeat Exercise 5 for the triangle wave.

Ex. 7 — Use Equation 2.19 to compute the complex Fourier coefficients of the
periodic functions with period T defined by, respectively, f(t) = t, f(t) = t2,
and f(t) = t3, on [0, T ]. Use Theorem 2.11 to verify you calculations from
Exercise 4.

Ex. 8 — In this exercise we will prove a version of Theorem 2.8 for complex
Fourier coefficients.

a. If f is symmetric about 0, show that yn is real, and that y−n = yn.
b. If f is antisymmetric about 0, show that the yn are purely imaginary,

y0 = 0, and that y−n = −yn.
c. Show that

�
N

n=−N
yne2πint/T is symmetric when y−n = yn for all n, and

rewrite it as a cosine-series.
d. Show that

�
N

n=−N
yne2πint/T is antisymmetric when y0 = 0 and y−n =

−yn for all n, and rewrite it as a sine-series.

2.3 Rate of convergence for Fourier series

We have earlier mentioned criteria which guarantee that the Fourier series con-
verges. Another important topic is the rate of convergence of the Fourier series,
given that it converges. If the series converges quickly, we may only need a
few terms in the Fourier series to obtain a reasonable approximation, meaning
that good Fourier series approximations can be computed quickly. We have
already seen examples which illustrate convergence rates that appear to be dif-
ferent: The square wave seemed to have very slow convergence rate near the
discontinuities, while the triangle wave did not seem to have the same problem.

Before discussing results concerning convergence rates we consider a simple
lemma which will turn out to be useful.

Lemma 2.12. If the complex Fourier coefficients of f are yn and f is differ-
entiable, then the Fourier coefficients of f �(t) are 2πin

T
yn.
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Proof. The Fourier coefficients of f �(t) are

1

T

�
T

0
f �(t)e−2πint/T dt =

1

T

��
f(t)e−2πint/T

�T
0
+

2πin

T

�
T

0
f(t)e−2πint/T dt

�

=
2πin

T
yn.

where the second equation was obtained from integration by parts.

If we turn this around, we note that the Fourier coefficients of f(t) are
T/(2πin) times those of f �(t). If f is s times differentiable, we can repeat this
argument to show that the Fourier coefficients of f(t) are

�
T/(2πin)

�s times
those of f (s)(t). In other words, the Fourier coefficients of a function which is
many times differentiable decay to zero very fast.

Observation 2.13. The Fourier series converges quickly when the function
is many times differentiable.

An illustration is found in examples 2.6 and 2.7, where we saw that the
Fourier series coefficients for the triangle wave converged more quickly to zero
than those of the square wave. This is explained by the fact that the square
wave is discontinuous, while triangle wave is continuous with a discontinuous
first derivative.

Very often, the slow convergence of a Fourier series is due to some disconti-
nuity of (a derivative of) the function at a given point. In this case a strategy to
speed up the convergence of the Fourier series could be to create an extension
of the function which is continuous, if possible, and use the Fourier series of this
new function instead. With the help of the following definition, we will show
that this strategy works, at least in cases where there is only one single point
of discontinuity (for simplicity we have assumed that the discontinuity is at 0).

Definition 2.14 (Symmetric extension of a function). Let f be a function
defined on [0, T ]. The symmetric extension of f denotes the function f̆ defined
on [0, 2T ] by

f̆(t) =

�
f(t), if 0 ≤ t ≤ T ;

f(2T − t), if T < t ≤ 2T .

Clearly f̆(0) = f̆(2T ), so when f is continuous, it can be periodically ex-
tended to a continuous function with period 2T , contrary to the function f we
started with. Also, f̆ keeps the characteristics of f , since they are equal on
[0, T ]. Also, f̆ is clearly a symmetric function, so that it can be expressed as a
cosine-series. The Fourier coefficients of the two functions are related.
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Theorem 2.15. The complex Fourier coefficients yn of f , and the cosine-
coefficients an of f̆ are related by a2n = yn + y−n.

Proof. The 2nth complex Fourier coefficient of f̆ is

1

2T

� 2T

0
f̆(t)e−2πi2nt/(2T )dt

=
1

2T

�
T

0
f(t)e−2πint/T dt+

1

2T

� 2T

T

f(2T − t)e−2πint/T dt.

Substituting u = 2T − t in the second integral we see that this is

=
1

2T

�
T

0
f(t)e−2πint/T dt− 1

2T

� 0

T

f(u)e2πinu/T du

=
1

2T

�
T

0
f(t)e−2πint/T dt+

1

2T

�
T

0
f(t)e2πint/T dt

=
1

2
yn +

1

2
y−n.

Therefore we have a2n = yn − y−n.

This result is not enough to obtain the entire Fourier series of f̆ , but at least
it gives us half of it.

Example 2.16. Let f be the function with period T defined by f(t) = 2t/T −1
for 0 ≤ t < T . In each period the function increases linearly from 0 to 1. Because
f is discontinuous at the boundaries between the periods, we would except
the Fourier series to converge slowly. Since the function is antisymmetric, the
coefficients an are zero, and we compute bn as

bn =
2

T

�
T

0

2

T

�
t− T

2

�
sin(2πnt/T )dt =

4

T 2

�
T

0

�
t− T

2

�
sin(2πnt/T )dt

=
4

T 2

�
T

0
t sin(2πnt/T )dt− 2

T

�
T

0
sin(2πnt/T )dt

= − 2

πn
,

so that the Fourier series is

− 2

π
sin(2πt/T )− 2

2π
sin(2π2t/T )− 2

3π
sin(2π3t/T )− 2

4π
sin(2π4t/T )− · · · ,

which indeed converges slowly to 0. Let us now instead consider the symmetriza-
tion of f . Clearly this is the triangle wave with period 2T , and the Fourier series
of this is

− 8

π2
cos(2πt/(2T ))− 8

32π2
cos(2π3t/(2T ))− 8

52π2
cos(2π5t/(2T ))

− 8

72π2
cos(2π7t/(2T )) + · · · .
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Figure 2.4: The Fourier series for N = 10 for the function in Example 2.16

Comparing the two series, we see that the coefficient at frequency n/T in the
first series has value −2(nπ), while in the second series it has value

− 8

(2n)2π2
= − 2

n2π2
.

The second series clearly converges faster than the first. Also, we could have
obtained half of the second set of coefficients from the first, by using Theo-
rem 2.15.

If we use T = 1/880, the symmetrization will be the square wave of Exam-
ple 2.7. Its Fourier series for N = 10 is shown in Figure 2.3(b) and the Fourier
series for for f N = 20 is shown in Figure 2.4. The value N = 10 is used since
this corresponds to the same frequencies as the previous figure for N = 20. It
is clear from the plot that the Fourier series of f is not a very good approx-
imation. However, we cannot differentiate between the Fourier series and the
function itself for the triangle wave.

2.4 Some properties of Fourier series

We will end this section by establishing some important properties of the Fourier
series, in particular the Fourier coefficients for some important functions. In
these lists, we will use the notation f → yn to indicate that yn is the n’th
Fourier coefficient of f(t).

Theorem 2.17 (Fourier series pairs). The functions 1, e2πint/T , and χ−a,a
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have the Fourier coefficients

1 → e0 = (1, 0, 0, 0 . . . , )

e2πint/T → ek = (0, 0, . . . , 1, 0, 0, . . .)

χ−a,a → sin(2πna/T )

πn
.

The 1 in ek is at position n and the function χ−a,a is the characteristic function
of the interval [−a, a], defined by

χ−a,a(t) =

�
1, if t ∈ [−a, a];

0, otherwise.

The first two pairs are easily verified, so the proofs are omitted. The case
for χ−a,a is very similar to the square wave, but easier to prove, and therefore
also omitted.

Theorem 2.18 (Fourier series properties). The mapping f → yn is linear: if
f → xn, g → yn, then

af + bg → axn + byn

For all n. Moreover, if f is real and periodic with period T , the following
properties hold:

1. yn = y−n for all n.

2. If g(t) = f(−t) and f → yn, then g → yn. In particular,

(a) if f(t) = f(−t) (i.e. f is symmetric), then all yn are real, so that
bn are zero and the Fourier series is a cosine series.

(b) if f(t) = −f(−t) (i.e. f is antisymmetric), then all yn are purely
imaginary, so that the an are zero and the Fourier series is a sine
series.

3. If g(t) = f(t − d) (i.e. g is the function f delayed by d) and f → yn,
then g → e−2πind/T yn.

4. If g(t) = e2πidt/T f(t) with d an integer, and f → yn, then g → yn−d.

5. Let d be a number. If f → yn, then f(d + t) = f(d − t) for all t if and
only if the argument of yn is −2πnd/T for all n.

The last property looks a bit mysterious. We will not have use for this
property before the next chapter.

52



Proof. The proof of linearity is left to the reader. Property 1 follows immediately
by writing

yn =
1

T

�
T

0
f(t)e−2πint/T dt =

1

T

�
T

0
f(t)e2πint/T dt

=
1

T

�
T

0
f(t)e−2πi(−n)t/T dt = y−n.

Also, if g(t) = f(−t), we have that

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
f(−t)e−2πint/T dt = − 1

T

� −T

0
f(t)e2πint/T dt

=
1

T

�
T

0
f(t)e2πint/T dt = yn.

Property 2 follows from this, since the remaining statements here were estab-
lished in Theorems 2.8, 2.11, and Exercise 2.2.8. To prove property 3, we observe
that the Fourier coefficients of g(t) = f(t− d) are

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
f(t− d)e−2πint/T dt

=
1

T

�
T

0
f(t)e−2πin(t+d)/T dt

= e−2πind/T 1

T

�
T

0
f(t)e−2πint/T dt = e−2πind/T yn.

For property 4 we observe that the Fourier coefficients of g(t) = e2πidt/T f(t) are

1

T

�
T

0
g(t)e−2πint/T dt =

1

T

�
T

0
e2πidt/T f(t)e−2πint/T dt

=
1

T

�
T

0
f(t)e−2πi(n−d)t/T dt = yn−d.

If f(d + t) = f(d − t) for all t, we define the function g(t) = f(t + d) which is
symmetric about 0, so that it has real Fourier coefficients. But then the Fourier
coefficients of f(t) = g(t− d) are e−2πind/T times the (real) Fourier coefficients
of g by property 3. It follows that yn, the Fourier coefficients of f , has argument
−2πnd/T . The proof in the other direction follows by noting that any function
where the Fourier coefficients are real must be symmetric about 0, once the
Fourier series is known to converge. This proves property 5.

From this theorem we see that there exist several cases of duality between
Fourier coefficients, and the function itself:

1. Delaying a function corresponds to multiplying the Fourier coefficients
with a complex exponential. Vice versa, multiplying a function with a
complex exponential corresponds to delaying the Fourier coefficients.
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2. Symmetry/antisymmetry for a function corresponds to the Fourier coef-
ficients being real/purely imaginary. Vice versa, a function which is real
has Fourier coefficients which are conjugate symmetric.

Note that these dualities become even more explicit if we consider Fourier series
of complex functions, and not just real functions.

Exercises for Section 2.4

Ex. 1 — Define the function f with period T on [−T/2, T/2] by

f(t) =

�
1, if −T/4 ≤ t < T/4;

−1, if |T/4| ≤ t < |T/2|.

f is just the square wave, shifted with T/4. Compute the Fourier coefficients of
f directly, and use 3. in Theorem 2.18 to verify your result.

Ex. 2 — Find a function f which has the complex Fourier series

�

n odd

4

π(n+ 4)
e2πint/T .

Hint: Attempt to use one of the properties in Theorem 2.18 on the Fourier series
of the square wave.

2.5 Summary

In this chapter we have defined and studied Fourier series, which is an approx-
imation scheme forperiodic functions using trigonometric functions. We have
established the basic properties of Fourier series, and some duality relationships
between the function and its Fourier series. We have also computed the Fourier
series of the square wave and the triangle wave, and investigated a technique
for speeding up the convergence of the Fourier series.
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Chapter 3

Fourier analysis for vectors

In Chapter 2 we saw how a function defined on an interval can be decomposed
into a linear combination of sines and cosines, or equivalently, a linear combi-
nation of complex exponential functions. However, this kind of decomposition
is not very convenient from a computational point of view. The coefficients are
given by integrals that in most cases cannot be evaluated exactly, so some kind
of numerical integration technique would have to be applied.

In this chapter our starting point is simply a vector of finite dimension.
Our aim is then to decompose this vector in terms of linear combinations of
vectors built from complex exponentials. This simply amounts to multiplying
the original vector by a matrix, and there are efficient algorithms for doing
this. It turns out that these algorithms can also be used for computing good
approximations to the continuous Fourier series in Chapter 2.

Recall from Chapter 1 that a digital sound is simply a sequence of num-
bers, in other words, a vector. An algorithm for decomposing a vector into
combinations of complex exponentials therefore corresponds to an algorithm for
decomposing a digital sound into a combination of pure tones.

3.1 Basic ideas

We start by recalling what a digital sound is and by establishing some notation
and terminology.

Fact 3.1. A digital sound is a finite sequence (or equivalently a vector) x
of numbers, together with a number (usually an integer) fs, the sample rate,
which denotes the number of measurements of the sound per second. The
length of the vector is usually assumed to be N , and it is indexed from 0 to
N − 1. Sample k is denoted by xk, i.e.,

x = (xk)
N−1
k=0 .
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Note that this indexing convention for vectors is not standard in mathe-
matics and is different from what we have used before. Note in particular that
MATLAB indexes vectors from 1, so algorithms given here must be adjusted
appropriately.

We also need the standard inner product and norm for complex vectors. At
the outset our vectors will have real components, but we are going to perform
Fourier analysis with complex exponentials which will often result in complex
vectors.

Definition 3.2. For complex vectors of length N the Euclidean inner product
is given by

�x,y� =
N−1�

k=0

xkyk. (3.1)

The associated norm is

�x� =

����
N−1�

k=0

|xk|2. (3.2)

In the previous chapter we saw that, using a Fourier series, a function with
period T could be approximated by linear combinations of the functions (the
pure tones) {e2πint/T }N

n=0. This can be generalised to vectors (digital sounds),
but then the pure tones must of course also be vectors.

Definition 3.3 (Fourier analysis for vectors). In Fourier analysis of vectors,
a vector x = (x0, . . . , xN−1) is represented as a linear combination of the N
vectors

φ
n
=

1√
N

�
1, e2πin/N , e2πi2n/N , . . . , e2πikn/N , . . . , e2πin(N−1)/N

�
.

These vectors are called the normalised complex exponentials or the pure digi-
tal tones of order N . The whole collection FN = {φ

n
}N
n=0 is called the N -point

Fourier basis.

The following lemma shows that the vectors in the Fourier basis are orthog-
onal, so they do indeed form a basis.

Lemma 3.4. The normalised complex exponentials {φn}N−1
n=0 of order N form

an orthonormal basis in RN .

Proof. Let n1 and n2 be two distinct integers in the range [0, N − 1]. The inner
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product of φ
n1

and φ
n2

is then given by

N�φ
n1
,φ

n2
� = �e2πin1k/N , e2πin2k/N �

=
N−1�

k=0

e2πin1k/Ne−2πin2k/N

=
N−1�

k=0

e2πi(n1−n2)k/N

=
1− e2πi(n1−n2)

1− e2πi(n1−n2)/N

= 0.

In particular, this orthogonality means that the the complex exponentials form
a basis. And since we also have �φ

n
,φ

n
� = 1 it is in fact an orthonormal

basis.

Note that the normalising factor 1√
N

was not present for pure tones in the
previous chapter. Also, the normalising factor 1

T
from the last chapter is not

part of the definition of the inner product in this chapter. These are small
differences which have to do with slightly different notation for functions and
vectors, and which will not cause confusion in what follows.

3.2 The Discrete Fourier Transform

Fourier analysis for finite vectors is focused around mapping a given vector
from the standard basis to the Fourier basis, performing some operations on the
Fourier representation, and then changing the result back to the standard basis.
The Fourier matrix, which represents this change of basis, is therefore of crucial
importance, and in this section we study some of its basic properties. We start
by defining the Fourier matrix.

Definition 3.5 (Discrete Fourier Transform). The change of coordinates from
the standard basis of RN to the Fourier basis FN is called the discrete Fourier
transform (or DFT). The N×N matrix FN that represents this change of basis
is called the (N -point) Fourier matrix. If x is a vector in RN , its coordinates
y = (y0, y1, . . . , yN−1) relative to the Fourier basis are called the Fourier coef-
ficients of x, in other words y = FNx). The DFT of x is sometimes denoted
by x̂.

We will normally write x for the given vector in RN , and y for the DFT of
this vector. In applied fields, the Fourier basis vectors are also called synthesis
vectors, since they can be used used to “synthesize” the vector x, with weights
provided by the DFT coefficients y = (yn)

N−1
n=0 . To be more precise, we have
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that the change of coordinates performed by the DFT can be written as

x = y0φ0 + y1φ1 + · · ·+ yN−1φN−1 =
�
φ0 φ1 · · · φ

N−1

�
y = F−1

N
y, (3.3)

where we have used the inverse of the defining relation y = FNx, and that the
φ

n
are the columns in F−1

N
(this follows from the fact that F−1

N
is the change

of coordinates matrix from the Fourier basis to the standard basis, and the
Fourier basis vectors are clearly the columns in this matrix). Equation (3.3) is
also called the synthesis equation.

Let us also find the matrix FN itself. From Lemma 3.4 we know that the
columns of F−1

N
are orthonormal. If the matrix was real, it would have been

called orthogonal, and the inverse matrix could be obtained by transposing. F−1
N

is complex however, and it is easy to see that the conjugation present in the
definition of the inner product (3.1) translates into that the inverse of a complex
matrix with orthonormal columns is given by the matrix where the entries are
both transposed and conjugated. Let us denote the conjugated transpose of T
by TH , and say that a complex matrix is unitary when T−1 = TH . From our
discussion it is clear that F−1

N
is a unitary matrix, i.e. its inverse, FN , is its

conjugate transpose. Moreover since F−1
N

is symmetric, its inverse is in fact just
its conjugate,

FN = F−1
N

.

Theorem 3.6. The Fourier matrix FN is the unitary N × N -matrix with
entries given by

(FN )nk =
1√
N

e−2πink/N ,

for 0 ≤ n, k ≤ N − 1.

Note that in the signal processing literature, it is not common to include
the normalizing factor 1/

√
N in the definition of the DFT. From our more

mathematical point of view this is useful since it makes the Fourier matrix
unitary.

In practical applications of Fourier analysis one typically applies the DFT,
performs some operations on the coefficients, and then maps the result back
using the inverse Fourier matrix. This inverse transformation is so common
that it deserves a name of its own.

Definition 3.7 (IDFT). If y ∈ RN the vector x = (FN )Hy is referred to as
the inverse discrete Fourier transform or (IDFT) of y.

That y is the DFT of x and x is the IDFT of y can also be expressed in
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component form

xk =
1√
N

N−1�

n=0

yne
2πink/N , (3.4)

yn =
1√
N

N−1�

k=0

xke
−2πink/N . (3.5)

In applied fields such as signal processing, it is more common to state the
DFT and IDFT in these component forms, rather than in the matrix forms
x = (FN )Hy and y = FNy.

Let us use now see how these formulas work out in practice by considering
some examples.

Example 3.8 (DFT on a square wave). Let us attempt to apply the DFT to
a signal x which is 1 on indices close to 0, and 0 elsewhere. Assume that

x−L = . . . = x−1 = x0 = x1 = . . . = xL = 1,

while all other values are 0. This is similar to a square wave, with some mod-
ifications: First of all we assume symmetry around 0, while the square wave
of Example 1.11 assumes antisymmetry around 0. Secondly the values of the
square wave are now 0 and 1, contrary to −1 and 1 before. Finally, we have a
different proportion of where the two values are assumed. Nevertheless, we will
also refer to the current digital sound as a square wave.

Since indices with the DFT are between 0 an N−1, and since x is assumed to
have period N , the indices [−L,L] where our signal is 1 translates to the indices
[0, L] and [N − L,N − 1] (i.e., it is 1 on the first and last parts of the vector).
Elsewhere our signal is zero. Since

�
N−1
k=N−L

e−2πink/N =
�−1

k=−L
e−2πink/N

(since e−2πink/N is periodic with period N), the DFT of x is

yn =
1√
N

L�

k=0

e−2πink/N +
1√
N

N−1�

k=N−L

e−2πink/N

=
1√
N

L�

k=0

e−2πink/N +
1√
N

−1�

k=−L

e−2πink/N

=
1√
N

L�

k=−L

e−2πink/N

=
1√
N

e2πinL/N
1− e−2πin(2L+1)/N

1− e−2πin/N

=
1√
N

e2πinL/Ne−πin(2L+1)/Neπin/N
eπin(2L+1)/N − e−πin(2L+1)/N

eπin/N − e−πin/N

=
1√
N

sin(πn(2L+ 1)/N)

sin(πn/N)
.
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This computation does in fact also give us the IDFT of the same vector, since
the IDFT just requires a change of sign in all the exponents. From this example
we see that, in order to represent x in terms of frequency components, all
components are actually needed. The situation would have been easier if only
a few frequencies were needed.

Example 3.9. In most cases it is difficult to compute a DFT by hand, due to
the entries e−2πink/N in the matrices, which typically can not be represented
exactly. The DFT is therefore usually calculated on a computer only. However,
in the case N = 4 the calculations are quite simple. In this case the Fourier
matrix takes the form

F4 =
1

2





1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



 .

We now can compute the DFT of a vector like (1, 2, 3, 4)T simply as

F4





1
2
3
4



 =
1

2





1 + 2 + 3 + 4
1− 2i− 3 + 4i
1− 2 + 3− 4
1 + 2i− 3− 4i



 =





5
−1 + i
−1

−1− i



 .

Example 3.10 (Direct implementation of the DFT). MATLAB supports com-
plex arithmetic, so the DFT can be implemented very simply and directly by
the code

function y=DFTImpl(x)
N=length(x);
FN=zeros(N);
for n=1:N
FN(n,:)=exp(-2*pi*1i*(n-1)*(0:(N-1))/N)/sqrt(N);

end
y=FN*x;

Note that n has been replaced by n − 1 in this code since n runs from 1 to N
(array indices must start at 1 in MATLAB).

A direct implementation of the IDFT, which we could call IDFTImpl can be
done similarly. Multiplying a full N × N matrix by a vector requires roughly
N2 arithmetic operations. The DFT algorithm above will therefore take a long
time when N becomes moderately large, particularly in MATLAB. It turns out
that if N is a power of 2, there is a much more efficient algorithm for computing
the DFT which we will study in a later chapter. MATLAB also has a built-in
implementation of the DFT which uses such an efficient algorithm.

The DFT has properties which are very similar to those of Fourier series, as
they were listed in Theorem 2.18. The following theorem sums this up:
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Theorem 3.11 (DFT properties). Let x be a real vector of length N . The
DFT has the following properties:

1. (�x)
N−n

= (�x)
n

for 0 ≤ n ≤ N − 1.

2. If z is the vector with the components of x reversed so that zk = xN−k

for 0 ≤ k ≤ N − 1, then �z = �x. In particular,

(a) if xk = xN−k for all n (so x is symmetric), then �x is a real vector.
(b) if xk = −xN−k for all k (so x is antisymmetric), then �x is a purely

imaginary vector.

3. If d is an integer and z is the vector with components zk = xk−d (the
vector x with its elements delayed by d), then (�z)

n
= e−2πidn/N (�x)

n
.

4. If d is an integer and z is the vector with components zk = e2πidk/Nxk,
then (�z)

n
= (�x)

n−d
.

5. Let d be a multiple of 1/2. Then the following are equivalent:

(a) xd+k = xd−k for all k so that d+ k and d− k are integers (in other
words x is symmetric about d).

(b) The argument of (�x)
n

is −2πdn/N for all n.

Proof. The methods used in the proof are very similar to those used in the proof
of Theorem 2.18. From the definition of the DFT we have

(�x)
N−n

=
1√
N

N−1�

k=0

e−2πik(N−n)/Nxk =
1√
N

N−1�

k=0

e2πikn/Nxk

=
1√
N

N−1�

k=0

e−2πikn/Nxk = (�x)
n

which proves property 1. To prove property 2, we write

(�z)
n
=

1√
N

N−1�

k=0

zke
−2πikn/N =

1√
N

N−1�

k=0

xN−ke
−2πikn/N

=
1√
N

N�

u=1

xue
−2πi(N−u)n/N =

1√
N

N−1�

u=0

xue
2πiun/N

=
1√
N

N−1�

u=0

xue−2πiun/N = (�x)
n
.

If x is symmetric it follows that z = x, so that (�x)
n
= (�x)

n
. Therefore x must

be real. The case of antisymmetry follows similarly.
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To prove property 3 we observe that

(�z)
n
=

1√
N

N−1�

k=0

xk−de
−2πikn/N =

1√
N

N−1�

k=0

xke
−2πi(k+d)n/N

= e−2πidn/N 1√
N

N−1�

k=0

xke
−2πikn/N = e−2πidn/N (�x)

n
.

For the proof of property 4 we note that the DFT of z is

(�z)
n
=

1√
N

N−1�

k=0

e2πidk/Nxne
−2πikn/N =

1√
N

N−1�

k=0

xne
−2πi(n−d)k/N = (�x)

n−d
.

Finally, to prove property 5, we note that if d is an integer, the vector z
where x is delayed by −d samples satisfies the relation (�z)

n
= e2πidn/N (�x)

n

because of property 3. Since z satisfies zn = zN−n, we have by property 2
that (�z)

n
is real, and it follows that the argument of (�x)

n
is −2πdn/N . It is

straightforward to convince oneself that property 5 also holds when d is not an
integer also (i.e., a multiple of 1/2).

For real sequences, Property 1 says that we need to store only about one half
of the DFT coefficients, since the remaining coefficients can be obtained by con-
jugation. In particular, when N is even, we only need to store y0, y1, . . . , yN/2,
since the other coefficients can be obtained by conjugating these.

3.2.1 Connection between the DFT and Fourier series

So far we have focused on the DFT as a tool to rewrite a vector in terms of
digital, pure tones. In practice, the given vector x will often be sampled from
some real data given by a function f(t). We may then talk about the frequency
content of the vector x and the frequency content of f and ask ourselves how
these are related. More precisely, what is the relationship between the Fourier
coefficients of f and the DFT of x?

In order to study this, assume for simplicity that f is a sum of finitely many
frequencies. This means that there exists an M so that f is equal to its Fourier
approximation fM ,

f(t) = fM (t) =
M�

n=−M

zne
2πint/T , (3.6)

where zn is given by

zn =
1

T

�
T

0
f(t)e−2πint/T dt.

We recall that in order to represent the frequency n/T fully, we need the cor-
responding exponentials with both positive and negative arguments, i.e., both
e2πint/T and e−2πint/T .
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Fact 3.12. Suppose f is given by its Fourier series (3.6). Then the total
frequency content for the frequency n/T is given by the two coefficients zn
and z−n.

Suppose that the vector x contains values sampled uniformly from f at N
points,

xk = f(kT/N), for k = 0, 1, . . . , N − 1. (3.7)

The vector x can be expressed in terms of its DFT y as

xk =
1√
N

N−1�

n=0

yne
2πink/N . (3.8)

If we evaluate f at the sample points we have

f(kT/N) =
M�

n=−M

zne
2πink/N , (3.9)

and a comparison now gives

M�

n=−M

zne
2πink/N =

1√
N

N−1�

n=0

yne
2πink/N for k = 0, 1, . . . , N − 1.

Exploiting the fact that both y and the complex exponentials are periodic with
period N , and assuming that we take N samples with N odd, we can rewrite
this as

M�

n=−M

zne
2πink/N =

1√
N

(N−1)/2�

n=−(N−1)/2

yne
2πink/N .

This is a matrix relation on the form Gz = Hy/
√
N , where

1. G is the N × (2M + 1)-matrix with entries 1√
N
e2πink/N ,

2. H is the N ×N -matrix with entries 1√
N
e2πink/N .

In Exercise 6 you will be asked to show that GHG = I2M+1, and that GHH =�
I 0

�
, when N ≥ 2M + 1. Thus, if we choose the number of sample points

N so that N ≥ 2M + 1, multiplying with GH on both sides in Gz = Hy/
√
N

gives us that

z =
�
I 0

�� 1√
N

y

�
,

i.e. z consists of the first 2M + 1 elements in y/
√
N . Setting N = 2M + 1 we

can summarize this.
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Proposition 3.13 (Relation between Fourier coefficients and DFT coeffi-
cients). Let f be a Fourier series

f(t) =
M�

n=−M

zne
2πint/T ,

on the interval [0, T ] and let N = 2M + 1 be an odd integer. Suppose that x
is sampled from f by

xk = f(kT/N), for k = 0, 1, . . . , N − 1.

and let y be the DFT of x. Then z = y/
√
N , and the total contribution to f

from frequency n/T , where n is an integer in the range 0 ≤ n ≤ M , is given
by yn and yN−n.

We also need a remark on what we should interpret as high and low frequency
contributions, when we have applied a DFT. The low “frequency contribution”
in f is the contribution from

e−2πiLt/T , . . . , e−2πit/T , 1, e2πit/T , . . . , e2πiLt/T

in f , i.e.
�

L

n=−L
zne2πint/T . This means that low frequencies correspond to

indices n so that −L ≤ n ≤ L. However, since DFT coefficients have indices
between 0 and N − 1, low frequencies correspond to indices n in [0, L] ∪ [N −
L,N − 1]. If we make the same argument for high frequencies, we see that they
correspond to DFT indices near N/2:

Observation 3.14 (DFT indices for high and low frequencies). When y is
the DFT of x, the low frequencies in x correspond to the indices in y near 0
and N . The high frequencies in x correspond to the indices in y near N/2.

We will use this observation in the following example, when we use the DFT
to distinguish between high and low frequencies in a sound.

Example 3.15 (Using the DFT to adjust frequencies in sound). Since the DFT
coefficients represent the contribution in a sound at given frequencies, we can
listen to the different frequencies of a sound by adjusting the DFT coefficients.
Let us first see how we can listen to the lower frequencies only. As explained,
these correspond to DFT-indices n in [0, L]∪ [N −L,N −1]. In MATLAB these
have indices from 1 to L+1, and from N−L+1 to N . The remaining frequencies,
i.e. the higher frequencies which we want to eliminate, thus have MATLAB-
indices between L + 2 and N − L. We can now perform a DFT, eliminate
high frequencies by setting the corresponding frequencies to zero, and perform
an inverse DFT to recover the sound signal with these frequencies eliminated.
With the help of the DFT implementation from Example 3.10, all this can be
achieved with the following code:

64



y=DFTImpl(x);
y((L+2):(N-L))=zeros(N-(2*L+1),1);
newx=IDFTImpl(y);

To test this in practice, we also need to obtain the actual sound samples. If
we use our sample file castanets.wav, you will see that the code runs very
slowly. In fact it seems to never complete. The reason is that DFTImpl attempts
to construct a matrix FN with as many rows and columns as there are sound
samples in the file, and there are just too many samples, so that FN grows
too big, and matrix multiplication with it gets too time-consuming. We will
shortly see much better strategies for applying the DFT to a sound file, but for
now we will simply attempt instead to split the sound file into smaller blocks,
each of size N = 32, and perform the code above on each block. It turns out
that this is less time-consuming, since big matrices are avoided. You will be
spared the details for actually splitting the sound file into blocks: you can find
the function playDFTlower(L) which performs this splitting, sets the relevant
frequency components to 0, and plays the resulting sound samples. If you try
this for L = 7 (i.e. we keep only 15 of the DFT coefficients) the result sounds
like this. You can hear the disturbance in the sound, but we have not lost that
much even if more than half the DFT coefficients are dropped. If we instead try
L = 3 the result will sound like this. The quality is much poorer now. However
we can still recognize the song, and this suggests that most of the frequency
information is contained in the lower frequencies.

Similarly we can listen to high frequencies by including only DFT coefficients
with index close to N

2 . The function playDFThigher(L) sets all DFT coefficients
to zero, except for those with indices N

2 − L, . . . , N

2 , . . . ,
N

2 + L. Let us verify
that there is less information in the higher frequencies by trying the same values
for L as above for this function. For L = 7 (i.e. we keep only the middle 15
DFT coefficients) the result sounds like this, for L = 3 the result sounds like
this. Both sounds are quite unrecognizable, confirming that most information
is contained in the lower frequencies.

Note that there may be a problem in the previous example: for each block
we compute the frequency representation of the values in that block. But the
frequency representation may be different when we take all the samples into
consideration. In other words, when we split into blocks, we can’t expect that
we exactly eliminate all the frequencies in question. This is a common problem
in signal processing theory, that one in practice needs to restrict to smaller
segments of samples, but that this restriction may have undesired effects in
terms of the frequencies in the output.

3.2.2 Interpolation with the DFT

There are two other interesting facets to Theorem 3.13, besides connecting the
DFT and the Fourier series: The first has to do with interpolation: The theo-
rem enables us to find (unique) trigonometric functions which interpolate (pass
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through) a set of data points. We have in elementary calculus courses seen how
to determine a polynomial of degree N − 1 that interpolates a set of N data
points — such polynomials are called interpolating polynomials. The following
result tells how we can find an interpolating trigonometric function using the
DFT.

Corollary 3.16 (Interpolation with the Fourier basis). Let f be a function
defined on the interval [0, T ], and let x be the sampled sequence given by

xk = f(kT/N) for k = 0, 1, . . . , N − 1.

There is exactly one linear combination g(t) on the form

g(t) =
1√
N

N−1�

n=0

yne
2πint/T

which satisfies the conditions

g(kT/N) = f(kT/N), k = 0, 1, . . . , N − 1

and its coefficients are determined by the DFT y = x̂ of x.

The proof for this follows by inserting t = 0, t = T/N , t = 2T/N , . . . ,
t = (N − 1)T/N in the equation f(t) = 1√

N

�
N−1
n=0 yne2πint/T to arrive at the

equations

f(kT/N) =
1√
N

N−1�

n=0

yne
2πink/N 0 ≤ k ≤ N − 1.

This gives us an equation system for finding the yn with the invertible Fourier
matrix as coefficient matrix, and the result follows.

3.2.3 Sampling and reconstruction with the DFT

The second interesting facet to Theorem 3.13 has to do with when reconstruction
of a function from its sample values is possible. An example of sampling a
function is illustrated in Figure 3.1. From Figure 3.1(b) it is clear that some
information is lost when we discard everything but the sample values. There
may however be an exception to this, if we assume that the function satisfies
some property. Assume that f is equal to a finite Fourier series. This means
that f can be written on the form (3.6), so that the highest frequency in the
signal is bounded by M/T . Such functions also have their own name:

Definition 3.17 (Band-limited functions). A function f is said to be band-
limited if there exists a number ν so that f does not contain frequencies higher
than ν.
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Figure 3.1: An example of sampling. Figure (a) shows how the samples are
picked from underlying continuous time function. Figure (b) shows what the
samples look like on their own.
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Figure 3.2: Sampling the function sin 2πt with two points, and the function
sin 2π4t with eight points.

Our analysis prior to Theorem 3.13 states that all periodic, band-limited
functions can be reconstructed exactly from their samples, using the DFT, as
long as the number of samples is N ≥ 2M + 1, taken uniformly over a period.
Moreover, the DFT is central in the reconstruction formula. We say that we
reconstruct f from its samples. Dividing by T we get N

T
≥ 2M+1

T
, which states

that the sampling frequency (fs = N/T is the number of samples per second)
should be bigger than two times the highest frequency (M/T ). In Figure 3.2 we
try to get some intuition on this by considering some pure tones. In Figure (a)
we consider one period of sin 2πt, and see that we need at least two sample points
in [0, 1], since one point would clearly be too little. This translates directly into
having at least eight sample points in Figure (b) where the function is sin 2π4t,
which has four periods in the interval [0, 1].

Let us restate the reconstruction of f without the DFT. The reconstruction
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formula was

f(t) =
1√
N

M�

n=−M

yne
2πint/T .

If we here substitute y = FNx we get that this equals

1

N

M�

n=−M

N−1�

k=0

xke
−2πink/Ne2πint/T

=
N−1�

k=0

1

N

�
M�

n=−M

xke
2πin(t/T−k/N)

�

=
N−1�

k=0

1

N
e−2πiM(t/T−k/N) 1− e2πi(2M+1)(t/T−k/N)

1− e2πi(t/T−k/N)
xk

=
N−1�

k=0

1

N

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/T )
f(kTs),

where we have substituted N = T/Ts (deduced from T = NTs with Ts being
the sampling period). Let us summarize our findings as follows:

Theorem 3.18 (Sampling theorem and the ideal interpolation formula for
periodic functions). Let f be a periodic function with period T , and assume
that f has no frequencies higher than νHz. Then f can be reconstructed
exactly from its samples f(0), . . . , f((N − 1)Ts) (where Ts is the sampling
period and N = T

Ts
is the number of samples per period) when the sampling

rate Fs =
1
Ts

is bigger than 2ν. Moreover, the reconstruction can be performed
through the formula

f(t) =
N−1�

k=0

f(kTs)
1

N

sin(π(t− kTs)/Ts)

sin(π(t− kTs)/T )
. (3.10)

Formula (3.10) is also called the ideal interpolation formula for periodic
functions. Such formulas, where one reconstructs a function based on a weighted
sum of the sample values, are more generally called interpolation formulas. We
will return to other interpolation formulas later, which have different properties.

Note that f itself may not be equal to a finite Fourier series, and reconstruc-
tion is in general not possible then. Interpolation as performed in Section 3.2.2
is still possible, however, but the g(t) we obtain from Corollary 3.16 may be
different from f(t).

Exercises for Section 3.2

Ex. 1 — Compute the 4 point DFT of the vector (2, 3, 4, 5)T .
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Ex. 2 — As in Example 3.9, state the exact cartesian form of the Fourier
matrix for the cases N = 6, N = 8, and N = 12.

Ex. 3 — Let x be the vector with entries xk = ck. Show that the DFT of x
is given by the vector with components

yn =
1√
N

1− cN

1− ce−2πin/N

for n = 0, . . . , N − 1.

Ex. 4 — If x is complex, Write the DFT in terms of the DFT on real se-
quences. Hint: Split into real and imaginary parts, and use linearity of the
DFT.

Ex. 5 — As in Example 3.10, write a function

function x=IDFTImpl(y)

which computes the IDFT.

Ex. 6 — Let G be the N × (2M + 1)-matrix with entries 1√
N
e2πink/N , and

H the N ×N -matrix with entries 1√
N
e2πink/N . Show that GHG = I2M+1 and

that GHH =
�
I 0

�
when N ≥ 2M + 1. Write also down an expression for

GHG when N < 2M +1, to show that it is in general different from the identity
matrix.

3.3 Operations on vectors: filters

In Chapter 1 we defined some operations on digital sounds, which we loosely
referred to as filters. One example was the averaging filter

zn =
1

4
(xn−1 + 2xn + xn+1), for n = 0, 1, . . . , N − 1 (3.11)

of Example 1.25 where x denotes the input vector and z the output vector.
Before we state the formal definition of filters, let us consider Equation (3.11)
in some more detail to get more intuition about filters.

As before we assume that the input vector is periodic with period N , so that
xn+N = xn. Our first observation is that the output vector z is also periodic
with period N since

zn+N =
1

4
(xn+N−1 + 2xn+N + xn+N+1) =

1

4
(xn−1 + 2xn + xn+1) = zn.
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The filter is also clearly a linear transformation and may therefore be represented
by an N × N matrix S that maps the vector x = (x0, x1, . . . , xN−1) to the
vector z = (z0, z1, . . . , zN−1), i.e., we have z = Sx. To find S we note that for
1 ≤ n ≤ N − 2 it is clear from Equation (3.11) that row n has the value 1/4 in
column n − 1, the value 1/2 in column n, and the value 1/4 in column n + 1.
For row 0 we must be a bit more careful, since the index −1 is outside the legal
range of the indices. This is where the periodicity helps us out so that

z0 =
1

4
(x−1 + 2x0 + x1) =

1

4
(xN−1 + 2x0 + x1) =

1

4
(2x0 + x1 + xN−1).

From this we see that row 0 has the value 1/4 in columns 1 and N − 1, and the
value 1/2 in column 0. In exactly the same way we can show that row N − 1
has the entry 1/4 in columns 0 and N − 2, and the entry 1/2 in column N − 1.
In summary, the matrix of the averaging filter is given by

S =
1

4





2 1 0 0 · · · 0 0 0 1
1 2 1 0 · · · 0 0 0 0
0 1 2 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1 2 1
1 0 0 0 · · · 0 0 1 2





. (3.12)

A matrix on this form is called a Toeplitz matrix. Such matrices are very
popular in the literature and have many applications. The general definition
may seem complicated, but is in fact quite straightforward:

Definition 3.19 (Toeplitz matrices). An N ×N -matrix S is called a Toeplitz
matrix if its elements are constant along each diagonal. More formally, Sk,l =
Sk+s,l+s for all nonnegative integers k, l, and s such that both k+ s and l+ s
lie in the interval [0, N − 1]. A Toeplitz matrix is said to be circulant if in
addition

S(k+s) mod N,(l+s) mod N = Sk,l

for all integers k, l in the interval [0, N − 1], and all s (Here mod denotes the
remainder modulo N).

As the definition says, a Toeplitz matrix is constant along each diagonal,
while the additional property of being circulant means that each row and column
of the matrix ’wraps over’ at the edges. It is quite easy to check that the matrix
S given by Equation (3.12) satisfies Definition 3.19 and is a circulant Toeplitz
matrix. A Toeplitz matrix is uniquely identified by the values on its nonzero
diagonals, and a circulant Toeplitz matrix is uniquely identified by the N/2
diagonals above or on the main diagonal, and the N/2 diagonals below the
main diagonal. We will encounter Toeplitz matrices also in other contexts in
these notes.
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In Chapter 1, the operations we loosely referred to as filters, such as for-
mula (3.11), could all be written on the form

zn =
�

k

tkxn−k. (3.13)

Many other operations are also defined in this way. The values tk will be called
filter coefficients. The range of k is not specified, but is typically an interval
around 0, since zn usually is calculated by combining xks with indices close
to n. Both positive and negative indices are allowed. As an example, for for-
mula (3.11) k ranges over −1, 0, and 1, and we have that t−1 = t1 = 1/4, and
t0 = 1/2. By following the same argument as above, the following is clear:

Proposition 3.20. Any operation defined by Equation (3.13) is a linear trans-
formation which transforms a vector of period N to another of period N . It
may therefore be represented by an N × N matrix S that maps the vector
x = (x0, x1, . . . , xN−1) to the vector z = (z0, z1, . . . , zN−1), i.e., we have
z = Sx. Moreover, the matrix S is a circulant Toeplitz matrix, and the first
column s of this matrix is given by

sk =

�
tk, if 0 ≤ k < N/2;

tk−N if N/2 ≤ k ≤ N − 1.
(3.14)

In other words, the first column of S can be obtained by placing the coefficients
in (3.13) with positive indices at the beginning of s, and the coefficients with
negative indices at the end of s.

This proposition will be useful for us, since it explains how to pass from the
form (3.13), which is most common in practice, to the matrix form S.

Example 3.21. Let us apply Proposition 3.20 on the operation defined by
formula (3.11):

1. for k = 0 Equation 3.14 gives s0 = t0 = 1/2.

2. For k = 1 Equation 3.14 gives s1 = t1 = 1/4.

3. For k = N − 1 Equation 3.14 gives sN−1 = t−1 = 1/4.

For all k different from 0, 1, and N − 1, we have that sk = 0. Clearly this gives
the matrix in Equation (3.12).

Proposition 3.20 is also useful when we have a circulant Toeplitz matrix S,
and we want to find filter coefficients tk so that z = Sx can be written as in
Equation (3.13):
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Example 3.22. Consider the matrix

S =





2 1 0 3
3 2 1 0
0 3 2 1
1 0 3 2



 .

This is a circulant Toeplitz matrix with N = 4, and we see that s0 = 2, s1 = 3,
s2 = 0, and s3 = 1. The first equation in (3.14) gives that t0 = s0 = 2, and
t1 = s1 == 3. The second equation in (3.14) gives that t−2 = s2 = 0, and
t−1 = s3 = 1. By including only the tk which are nonzero, the operation can be
written as

zn = t−1xn−(−1) + t0xn + t1xn−1 + t2xn−2 = xn+1 + 2x0 + 3xn−1.

3.3.1 Formal definition of filters and frequency response

Let us now define filters formally, and establish their relationship to Toeplitz
matrices. We have seen that a sound can be decomposed into different frequency
components, and we would like to define filters as operations which adjust these
frequency components in a predictable way. One such example is provided in
Example 3.15, where we simply set some of the frequency components to 0. The
natural starting point is to require for a filter that the output of a pure tone is
a pure tone with the same frequency.

Definition 3.23 (Digital filters and frequency response). A linear transfor-
mation S : RN �→ RN is a said to be a digital filter, or simply a filter, if it
maps any Fourier vector in RN to a multiple of itself. In other words, for any
integer n in the range 0 ≤ n ≤ N − 1 there exists a value λS,n so that

S (φn) = λS,nφn, (3.15)

i.e., the N Fourier vectors are the eigenvectors of S. The vector of (eigen)values
λS = (λS,n)

N−1
n=0 is often referred to as the frequency response of S.

We will identify the linear transformation S with its matrix relative to the
standard basis. Since the Fourier basis vectors are orthogonal vectors, S is
clearly orthogonally diagonalizable. Since also the Fourier basis vectors are the
columns in (FN )H , we have that

S = FH

N
DFN (3.16)

whenever S is a digital filter, where D has the frequency response (i.e. the
eigenvalues) on the diagonal1. In particular, if S1 and S2 are digital filters, we

1Recall that the orthogonal diagonalization of S takes the form S = PDPT , where P
contains as columns an orthonormal set of eigenvectors, and D is diagonal with the eigenvectors
listed on the diagonal (see Section 7.1 in [7]).
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can write S1 = FH

N
D1FN and S2 = FH

N
D2FN , so that

S1S2 = FH

N
D1FNFH

N
D2FN = FH

N
D1D2FN .

Since D1D2 = D2D1 for any diagonal matrices, we get the following corollary:

Corollary 3.24. All digital filters commute, i.e. if S1 and S2 are digital
filters, S1S2 = S2S1.

There are several equivalent characterizations of a digital filter. The first one
was stated above in terms of the definition through eigenvectors and eigenvalues.
The next characterization helps us prove that the operations from Chapter 1
actually are filters.

Theorem 3.25. A linear transformation S is a digital filter if and only if it
is a circulant Toeplitz matrix.

Proof. That S is a filter is equivalent to the fact that S = (FN )HDFN for some
diagonal matrix D. We observe that the entry at position (k, l) in S is given by

Sk,l =
1

N

N−1�

n=0

e2πikn/NλS,ne
−2πinl/N =

1

N

N−1�

n=0

e2π(k−l)n/NλS,n.

Another entry on the same diagonal (shifted s rows and s columns) is

S(k+s) mod N,(l+s) mod N =
1

N

N−1�

n=0

e2πi((k+s) mod N−(l+s) mod N)n/NλS,n

=
1

N

N−1�

n=0

e2πi(k−l)n/NλS,n = Sk,l,

which proves that S is a circulant Toeplitz matrix.

In particular, operations defined by (3.13) are digital filters, when restricted
to vectors with period N . The following results enables us to compute the
eigenvalues/frequency response easily, so that we do not need to form the char-
acteristic polynomial and find its roots:

Theorem 3.26. Any digital filter is uniquely characterized by the values in
the first column of its matrix. Moreover, if s is the first column in S, the
frequency response of S is given by

λS =
√
NFNs. (3.17)

Conversely, if we know the frequency response λS , the first column s of S is
given by

s =
1√
N

(FN )HλS . (3.18)
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Proof. If we replace S by (FN )HDFN we find that

FNs = FNS





1
0
...
0




= FNFH

N
DFN





1
0
...
0




= DFN





1
0
...
0




=

1√
N

D




1
...
1



 ,

where we have used the fact that the first column in FN has all entries equal
to 1/

√
N . But the the diagonal matrix D has all the eigenvalues of S on its

diagonal, and hence the last expression is the vector of eigenvalues λS , which
proves (3.17). Equation (3.18) follows directly by applying the inverse DFT to
(3.17).

Since the first column s characterizes the filter S uniquely, one often refers
to S by the vector s. The first column s is also called the impulse response.
This name stems from the fact that we can write s = Se0, i.e., the vector s is
the output (often called response) to the vector e0 (often called an impulse).

Example 3.27. The identity matrix is a digital filter since I = (FN )HIFN .
Since e0 = Se0, it has impulse response s = e0. Its frequency response has 1 in
all components and therefore preserves all frequencies, as expected.

Equations (3.16), (3.17), and (3.18) are important relations between the
matrix- and frequency representations of a filter. We see that the DFT is a
crucial ingredient in these relations. A consequence is that, once you recognize
a matrix as circulant Toeplitz, you do not need to make the tedious calculation
of eigenvectors and eigenvalues which you are used to. Let us illustrate this
with an example.

Example 3.28. Let us compute the eigenvalues and eigenvectors of the simple
matrix

S =

�
4 1
1 4

�
.

It is straightforward to compute the eigenvalues and eigenvectors of this matrix
the way you learnt in your first course in linear algebra. However, this matrix
is also a circulant Toeplitz matrix, so that we can also use the results in this
section to compute the eigenvalues and eigenvectors. Since here N = 2, we have
that e2πink/N = eπink = (−1)nk. This means that the Fourier basis vectors are
(1, 1)/

√
2 and (1,−1)/

√
2, which also are the eigenvectors of S. The eigenvalues

are the frequency response of S, which can be obtained as

√
NFNs =

√
2

1√
2

�
1 1
1 −1

��
4
1

�
=

�
5
3

�

The eigenvalues are thus 3 and 5. You could have obtained the same result
with Matlab. Note that Matlab may not return the eigenvectors exactly as the
Fourier basis vectors, since the eigenvectors are not unique (the multiple of an
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eigenvector is still an eigenvector). In this case Matlab may for instance switch
the signs of the eigenvectors. We have no control over what Matlab actually
chooses to do, since it uses some underlying numerical algorithm for computing
eigenvectors which we can’t influence.

In signal processing, the frequency content of a vector (i.e., its DFT) is
also referred to as its spectrum. This may be somewhat confusing from a linear
algebra perspective, because in this context the term spectrum is used to denote
the eigenvalues of a matrix. But because of Theorem 3.26 this is not so confusing
after all if we interpret the spectrum of a vector (in signal processing terms) as
the spectrum of the corresponding digital filter (in linear algebra terms).

3.3.2 Some properties of the frequency response

Equation (3.17) states that the frequency response can be written as

λS,n =
N−1�

k=0

ske
−2πink/N , for n = 0, 1, . . . , N − 1, (3.19)

where sk are the components of the impulse response s.

Example 3.29. When only few of the coefficients sk are nonzero, it is possible
to obtain nice expressions for the frequency response. To see this, let us compute
the frequency response of the filter defined from formula (3.11). We saw that
the first column of the corresponding Toeplitz matrix satisfied s0 = 1/2, and
sN−1 = s1 = 1/4. The frequency response is thus

λS,n =
1

2
e0 +

1

4
e−2πin/N +

1

4
e−2πin(N−1)/N

=
1

2
e0 +

1

4
e−2πin/N +

1

4
e2πin/N =

1

2
+

1

2
cos(2πn/N).

If we make the substitution ω = 2πn/N in the formula for λS,n, we may in-
terpret the frequency response as the values on a continuous function on [0, 2π).

Theorem 3.30. The function λS(ω) defined on [0, 2π) by

λS(ω) =
�

k

tke
−ikω, (3.20)

where tk are the filter coefficients of S, satisfies

λS,n = λS(2πn/N) for n = 0, 1, . . . , N − 1

for any N . In other words, regardless of N , the frequency reponse lies on the
curve λS .
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Proof. For any N we have that

λS,n =
N−1�

k=0

ske
−2πink/N =

�

0≤k<N/2

ske
−2πink/N +

�

N/2≤k≤N−1

ske
−2πink/N

=
�

0≤k<N/2

tke
−2πink/N +

�

N/2≤k≤N−1

tk−Ne−2πink/N

=
�

0≤k<N/2

tke
−2πink/N +

�

−N/2≤k≤−1

tke
−2πin(k+N)/N

=
�

0≤k<N/2

tke
−2πink/N +

�

−N/2≤k≤−1

tke
−2πink/N

=
�

−N/2≤k<N/2

tke
−2πink/N = λS(ω).

where we have used Equation (3.14).

Both λS(ω) and λS,n will be referred to as frequency responses in the fol-
lowing. When there is a need to distinguish the two we will call λS,n the vector
frequency response, and λS(ω)) the continuous frequency response. ω is also
called angular frequency.

The difference in the definition of the continuous- and the vector frequency
response lies in that one uses the filter coefficients tk, while the other uses the
impulse response sk. While these contain the same values, they are stored dif-
ferently. Had we used the impulse response to define the continuous frequency
response, we would have needed to compute

�
N−1
k=0 ske−πiω, which does not con-

verge when N → ∞ (although it gives the right values at all points ω = 2πn/N
for all N)! The filter coefficcients avoid this convergence problem, however,
since we assume that only tk with |k| small are nonzero. In other words, filter
coefficients are used in the definition of the continuous frequency response so
that we can find a continuous curve where we can find the vector frequency
response values for all N .

The frequency response contains the important characteristics of a filter,
since it says how it behaves for the different frequencies. When analyzing a
filter, we therefore often plot the frequency response. Often we plot only the
absolute value (or the magnitude) of the frequency response, since this is what
explains how each frequency is amplified or attenuated. Since λS is clearly
periodic with period 2π, we may restrict angular frequency to the interval [0, 2π).
The conclusion in Observation 3.14 was that the low frequencies in a vector
correspond to DFT indices close to 0 and N−1, and high frequencies correspond
to DFT indices close to N/2. This observation is easily translated to a statement
about angular frequencies:

Observation 3.31. When plotting the frequency response on [0, 2π), angular
frequencies near 0 and 2π correspond to low frequencies, angular frequencies
near π correspond to high frequencies

76



1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

(a)

�3 �2 �1 1 2 3

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3.3: The (absolute value of the) frequency response of the smoothing
filter in Example 1.25 which we discussed at the beginning of this section.

λS may also be viewed as a function defined on the interval [−π,π). Plotting
on [−π,π] is often done in practice, since it makes clearer what corresponds to
lower frequencies, and what corresponds to higher frequencies:

Observation 3.32. When plotting the frequency response on [−π,π), angular
frequencies near 0 correspond to low frequencies, angular frequencies near ±π
correspond to high frequencies.

Example 3.33. In Example 3.29 we computed the vector frequency response
of the filter defined in formula (3.11). The filter coefficients are here t−1 = 1/4,
t0 = 1/2, and t1 = 1/4. The continuous frequency response is thus

λS(ω) =
1

4
eiω +

1

2
+

1

4
e−iω =

1

2
+

1

2
cosω.

Clearly this matches the computation from Example 3.29. Figure 3.3 shows
plots of this frequency response, plotted on the intervals [0, 2π) and [−π,π).
Both the continuous frequency response and the vector frequency response for
N = 51 are shown. Figure (b) shows clearly how the high frequencies are
softened by the filter.

Since the frequency response is essentially a DFT, it inherits several prop-
erties from Theorem 3.11.

Theorem 3.34. The frequency response has the properties:

1. The continuous frequency response satisfies λS(−ω) = λS(ω).

2. If S is a digital filter, ST is also a digital filter. Morever, if the frequency
response of S is λS(ω), then the frequency response of ST is λS(ω).
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3. If S is symmetric, λS is real. Also, if S is antisymmetric (the element on
the opposite side of the diagonal is the same, but with opposite sign),
λS is purely imaginary.

4. If S1 and S2 are digital filters, then S1S2 also is a digital filter, and
λS1S2(ω) = λS1(ω)λS2(ω).

Proof. Property 1. and 3. follow directly from Theorem 3.11. Transposing a
matrix corresponds to reversing the first colum of the matrix and thus also the
filter coefficients. Due to this Property 2. also follows from Theorem 3.11. The
last property follows in the same was as we showed that filters commute:

S1S2 = (FN )HD1FN (FN )HD2FN = (FN )HD1D2FN .

The frequency response of S1S2 is thus obtained by multiplying the frequency
responses of S1 and S2.

In particular the frequency response may not be real, although this was
the case in the first example of this section. Theorem 3.34 applies both for
the vector- and continuous frequency response. Also, clearly S1 + S2 is a filter
when S1 and S2 are. The set of all filters is thus a vector space, which also is
closed under multiplication. Such a space is called an algebra. Since all filters
commute, this algebra is also called a commutative algebra.

Example 3.35. Assume that the filters S1 and S2 have the frequency responses
λS1(ω) = cos(2ω), λS2(ω) = 1+3 cosω. Let us see how we can use Theorem 3.34
to compute the filter coefficients and the matrix of the filter S = S1S2. We first
notice that, since both frequency responses are real, all S1, S2, and S = S1S2

are symmetric. We rewrite the frequency responses as

λS1(ω) =
1

2
(e2iω + e−2iω) =

1

2
e2iω +

1

2
e−2iω

λS2(ω) = 1 +
3

2
(eiω + e−iω) =

3

2
eiω + 1 +

3

2
e−iω.

We now get that

λS1S2(ω) = λS1(ω)λS2(ω) =

�
1

2
e2iω +

1

2
e−2iω

��
3

2
eiω + 1 +

3

2
e−iω

�

=
3

4
e3iω +

1

2
e2iω +

3

4
eiω +

3

4
e−iω +

1

2
e−2iω +

3

4
e−3iω

From this expression we see that the filter coefficients of S are t±1 = 3/4,
t±2 = 1/2, t±3 = 3/4. All other filter coefficients are 0. Using Theorem 3.20,
we get that s1 = 3/4, s2 = 1/2, and s3 = 3/4, while sN−1 = 3/4, sN−2 = 1/2,
and sN−3 = 3/4 (all other sk are 0). This gives us the matrix representation of
S.
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3.3.3 Assembling the filter matrix and compact notation

Let us return to how we first defined a filter in Equation (3.13):

zn =
�

k

tkxn−k.

As mentioned, the range of k may not be specified. In some applications in
signal processing there may in fact be infinitely many nonzero tk. However,
when x is assumed to have period N , we may as well assume that the k’s range
over an interval of length N (else many of the tk’s can be added together to
simplify the formula). Also, any such interval can be chosen. It is common to
choose the interval so that it is centered around 0 as much as possible. For this,
we can choose for instance [�N/2� − N + 1, �N/2�]. With this choice we can
write Equation (3.13) as

zn =

�N/2��

k=�N/2�−N+1

tkxn−k. (3.21)

The index range in this sum is typically even smaller, since often much less than
N of the tk are nonzero (For Equation (3.11), there were only three nonzero tk).
In such cases one often uses a more compact notation for the filter:

Definition 3.36 (Compact notation for filters). Let kmin ≤ 0, kmax ≥ 0 be
the smallest and biggest index of a filter coefficient in Equation (3.21) so that
tk �= 0 (if no such values exist, let kmin = 0, or kmax = 0), i.e.

zn =
kmax�

k=kmin

tkxn−k. (3.22)

We will use the following compact notation for S:

S = {tkmin , . . . , t−1, t0, t1, . . . , tkmax}.

In other words, the entry with index 0 has been underlined, and only the
nonzero tk’s are listed. By the length of S, denoted l(S), we mean the number
kmax − kmin.

One seldom writes out the matrix of a filter, but rather uses this compact
notation. Note that the length of S can also be written as the number of nonzero
filter coefficients minus 1. l(S) thus follows the same convention as the degree
of a polynomial: It is 0 if the polynomial is constant (i.e. one nonzero filter
coefficient).

Example 3.37. Using the compact notation for a filter, we would write S =
{1/4, 1/2, 1/4} for the filter given by formula (3.11)). For the filter

zn = xn+1 + 2x0 + 3xn−1
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from Example 3.22, we would write S = {1, 2, 3}.

Equation (3.13) is also called the convolution of the two vectors t and x.
Convolution is usually defined without the assumption that the vectors are pe-
riodic, and without any assumption on their lengths (i.e. they may be sequences
of inifinite length):

Definition 3.38 (Convolution of vectors). By the convolution of two vectors
x and y we mean the vector x ∗ y defined by

(x ∗ y)n =
�

k

xkyn−k. (3.23)

In other words, applying a filter S corresponds to convolving the filter co-
efficients of S with the input. If both x and y have infinitely many nonzero
entries, the sum is an infinite one, which may diverge. For the filters we look
at, we always have a finite number of nonzero entries tk, so we never have this
convergence problem since the sum is a finite one. MATLAB has the built-in
function conv for convolving two vectors of finite length. This function does not
indicate which indices the elements of the returned vector belongs to, however.
Exercise 11 explains how one may keep track of these indices.

Since the number of nonzero filter coefficients is typically much less than N
(the period of the input vector), the matrix S have many entries which are zero.
Multiplication with such matrices requires less additions and multiplications
than for other matrices: If S has k nonzero filter coefficients, S has Nk nonzero
entries, so that kN multiplications and (k−1)N additions are needed to compute
Sx. This is much less than the N2 multiplications and (N − 1)N additions
needed in the general case. Perhaps more important is that we need not form
the entire matrix, we can perform the matrix multiplication directly in a loop.
Exercise 10 investigates this further. For large N we risk running into out of
memory situations if we had to form the entire matrix.

3.3.4 Some examples of filters

We have now established the basic theory of filters, so it is time to study some
specific examples. Many of the filters below were introduced in Section 1.4.

Example 3.39 (Time delay filters). The simplest possible type of Toeplitz
matrix is one where there is only one nonzero diagonal. Let us define the Toeplitz
matrix Ed as the one which has first column equal to ed. In the notation above,
and when d > 0, this filter can also be written as S = {0, . . . , 1} where the 1
occurs at position d. We observe that

(Edx)n =
N−1�

k=0

(Ed)n,k xk =
N−1�

k=0

(Ed)(n−k) mod N,0 xk = x(n−d) mod N ,
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Figure 3.4: The frequency response of a filter which adds an echo with damping
factor c = 0.1 and delay d = 10.

since only when (n − k) mod N = d do we have a contribution in the sum.
It is thus clear that multiplication with Ed delays a vector by d samples, in a
circular way. For this reason Ed is also called a time delay filter. The frequency
response of the time delay filter is clearly the function λS(ω) = e−idω, which
has magnitude 1. This filter therefore does not change the magnitude of the
different frequencies.

Example 3.40 (Adding echo). In Example 1.23 we encountered a filter which
could be used for adding echo to sound. Using our compact filter notation this
can be written as

S = {1, 0, . . . , 0, c},

where the damping factor c appears after the delay d. The frequency response
of this is λS(ω) = 1+ ce−idω. This frequency response is not real, which means
that the filter is not symmetric. In Figure 3.4 we have plotted the magnitude
of this frequency response with c = 0.1 and d = 10. We see that the response
varies between 0.9 and 1.1, so that adding exho changes frequencies according
to the damping factor c. The deviation from 1 is controlled by the damping
factor c. Also, we see that the oscillation in the frequency response, as visible
in the plot, is controlled by the delay d.

Previously we have claimed that some operations, such as averaging the sam-
ples, can be used for adjusting the bass and the treble of a sound. Theorem 3.25
supports this, since the averaging operations we have defined correspond to cir-
culant Toeplitz matrices, which are filters which adjust the frequencies as dic-
tated by the frequency response. Below we will analyze the frequency response
of the corresponsing filters, to verify that it works as we have claimed for the
frequencies corresponding to bass and treble in sound.
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Example 3.41 (Reducing the treble). In Example 1.25 we encountered the
moving average filter

S =

�
1

3
,
1

3
,
1

3

�
.

This could be used for reducing the treble in a sound. If we set N = 4, the
corresponding circulant Toeplitz matrix for the filter is

S =
1

3





1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1





The frequency response is λS(ω) = (eiω +1+ e−iω)/3 = (1+ 2 cos(ω))/3. More
generally, if the filter is s = (1, · · · , 1, · · · , 1)/(2L+1), where there is symmetry
around 0, we recognize this as x/(2L+1), where x is a vector of ones and zeros,
as defined in Example 3.8. From that example we recall that

x =
1√
N

sin(πn(2L+ 1)/N)

sin(πn/N)
,

so that the frequency response of S is

λS,n =
1

2L+ 1

sin(πn(2L+ 1)/N)

sin(πn/N)
,

and
λS(ω) =

1

2L+ 1

sin((2L+ 1)ω/2)

sin(ω/2)
.

We clearly have

0 ≤ 1

2L+ 1

sin((2L+ 1)ω/2)

sin(ω/2)
≤ 1,

so this frequency response approaches 1 as ω → 0+. The frequency response
thus peaks at 0, and it is clear that this peak gets narrower and narrower as
L increases, i.e. we use more and more samples in the averaging process. This
appeals to our intuition that this kind of filters smooths the sound by keeping
only lower frequencies. In Figure 3.5 we have plotted the frequency response for
moving average filters with L = 1, L = 5, and L = 20. We see, unfortunately,
that the frequency response is far from a filter which keeps some frequencies
unaltered, while annihilating others (this is a desirable property which is refered
to as being a bandpass filter): Although the filter distinguishes between high and
low frequencies, it slightly changes the small frequencies. Moreover, the higher
frequencies are not annihilated, even when we increase L to high values.

In the previous example we mentioned a filter which kept some frequencies
unaltered, and annihilated others. This is a desirable property for filters, so let
us give names to such filters:
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Figure 3.5: The frequency response of moving average filters of different length.
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Definition 3.42. A filter S is called

1. a lowpass filter if λS(ω) ≈ 1 when ω is close to 0, and λS(ω) ≈ 0 when ω is
close to π (i.e. S keeps low frequencies and annhilates high frequencies),

2. a highpass filter if λS(ω) ≈ 1 when ω is close to π, and λS(ω) ≈ 0
when ω is close to 0 (i.e. S keeps high frequencies and annhilates low
frequencies),

3. a bandpass filter if λS(ω) ≈ 1 within some interval [a, b] ⊂ [0, 2π], and
λS(ω) ≈ 0 outside this interval.

This definition should be considered rather vague when it comes to what we
mean by “ω close to 0,π”, and “λS(ω) ≈ 0, 1”: in practice, when we talk about
lowpass and highpass filters, it may be that the frequency responses are still
quite far from what is commonly refered to as ideal lowpass or highpass filters,
where the frequency response only assumes the values 0 and 1 near 0 and π.
The next example considers an ideal lowpass filter.

Example 3.43 (Ideal lowpass filters). By definition, the ideal lowpass filter
keeps frequencies near 0, and removes frequencies near π. In Chapter 1 we
mentioned that we were not able to find the filter coefficients for such a filter.
We now have the theory in place in order to achieve this: In Example 3.15 we
implemented the ideal lowpass filter with the help of the DFT. Mathematically,
the code was equivalent to computing (FN )HDFN where D is the diagonal
matrix with the entries 0, . . . , L and N − L, . . . , N − 1 being 1, the rest being
0. Clearly this is a digital filter, with frequency response as stated. If the
filter should keep the angular frequencies |ω| ≤ ωc only, where ωc describes the
highest frequency we should keep, we should choose L so that ωc = 2πL/N .
In Example 3.8 we computed the DFT of this vector, and it followed from
Theorem 3.11 that the IDFT of this vector equals its DFT. This means that
we can find the filter coefficients by using Equation (3.18): Since the IDFT was
1√
N

sin(πk(2L+1)/N)
sin(πk/N) , the filter coefficients are

1√
N

1√
N

sin(πk(2L+ 1)/N)

sin(πk/N)
=

1

N

sin(πk(2L+ 1)/N)

sin(πk/N)
.

This means that the filter coefficients lie as N points uniformly spaced on the
curve 1

N

sin(ω(2L+1)/2)
sin(ω/2) between 0 and π. This curve has been encountered many

other places in these notes. The filter which keeps only the frequency ωc = 0 has
all filter coefficients being 1

N
(set L = 1), and when we include all frequencies

(set L = N) we get the filter where x0 = 1 and all other filter coefficients
are 0. When we are between these two cases, we get a filter where s0 is the
biggest coefficient, while the others decrease towards 0 along the curve we have
computed. The bigger L and N are, the quicker they decrease to zero. All
filter coefficients are typically nonzero for this filter, since this curve is zero
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only at certain points. This is unfortunate, since it means that the filter is
time-consuming to compute.

The two previous examples show an important duality between vectors which
are 1 on some elements and 0 on others (also called window vectors), and the
vector 1

N

sin(πk(2L+1)/N)
sin(πk/N) (also called a sinc): filters of the one type correspond

to frequency responses of the other type, and vice versa. The examples also
show that, in some cases only the filter coefficients are known, while in other
cases only the frequency response is known. In any case we can deduce the one
from the other, and both cases are important.

Filters are much more efficient when there are few nonzero filter coefficients.
In this respect the second example displays a problem: in order to create filters
with particularly nice properties (such as being an ideal lowpass filter), one
may need to sacrifice computational complexity by increasing the number of
nonzero filter coefficients. The trade-off between computational complexity and
desirable filter properties is a very important issue in filter design theory.

Example 3.44. In order to decrease the computational complexity for the ideal
lowpass filter in Example 3.43, one can for instance include only the first filter
coefficients, i.e. { 1

N

sin(πk(2L+1)/N)
sin(πk/N) }N0

k=−N0
, ignoring the last ones. Hopefully this

gives us a filter where the frequency reponse is not that different from the ideal
lowpass filter. In Figure 3.6 we show the corresponding frequency responses. In
the figure we have set N = 128, L = 32, so that the filter removes all frequencies
ω > π/2. N0 has been chosen so that the given percentage of all coefficients
are included. Clearly the figure shows that we should be careful when we omit
filter coefficients: if we drop too many, the frequency response is far away from
that of an ideal bandpass filter.

Example 3.45 (Reducing the treble II). Let S be the moving average filter of
two elements, i.e.

(Sx)n =
1

2
(xn−1 + xn).

In Example 3.41 we had an odd number of filter coefficients. Here we have only
two. We see that the frequency response in this case is

λS(ω) =
1

2
(1 + e−iω) = e−iω/2 cos(ω/2).

The frequency response is complex now, since the filter is not symmetric in this
case. Let us now apply this filter k times, and denote by Sk the resulting filter.
Theorem 3.34 gives us that the frequency response of Sk is

λSk(ω) =
1

2k
(1 + e−iω)k = e−ikω/2 cosk(ω/2),

which is a polynomial in e−iω with the coefficients taken from Pascal’s triangle.
At least, this partially explains how filters with coefficients taken from Pascal’s
triangle appear, as in Example 1.25. These filters are more desirable than the
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Figure 3.6: The frequency response which results by omitting the last filter
coefficients for the ideal lowpass filter.
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Figure 3.7: The frequency response of filters corresponding to a moving average
filter convolved with itself k times.

moving average filters, and are used for smoothing abrupt changes in images
and in sound. The reason is that, since we take a k’th power with k large, λSk

is more square-like near 0, i.e. it becomes more and more like a bandpass filter
near 0. In Figure 3.7 we have plotted the magnitude of the frequence response
when k = 5, and when k = 30. This behaviour near 0 is not so easy to see from
the figure. Note that we have zoomed in on the frequency response to the area
where it actually decreases to 0.

In Example 1.27 we claimed that we could obtain a bass-reducing filter by
using alternating signs on the filter coefficients in a treble-reducing filter. Let us
explain why this is the case. Let S be a filter with filter coefficients sk, and let
us consider the filter T with filter coefficient (−1)ksk. The frequency response
of T is

λT (ω) =
�

k

(−1)kske
−iωk =

�

k

(e−iπ)kske
−iωk

=
�

k

e−iπkske
−iωk =

�

k

ske
−i(ω+π)k = λS(ω + π).

where we have set −1 = e−iπ (note that this is nothing but Property 4. in
Theorem 3.11, with d = N/2). Now, for a lowpass filter S, λS(ω) has values
near 1 when ω is close to 0 (the low frequencies), and values near 0 when ω is
close to π (the high frequencies). For a highpass filter T , λT (ω) has values near
0 when ω is close to 0 (the low frequencies), and values near 1 when ω is close
to π (the high frequencies). When T is obtained by adding an alternating sign
to the filter coefficicents of S, The relation λT (ω) = λS(ω+π) thus says that T
is a highpass filter when S is a lowpass filter, and vice versa:
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Figure 3.8: The frequency response of the bass reducing filter, which corresponds
to row 5 of Pascal’s triangle.

Observation 3.46. Assume that T is obtained by adding an alternating sign
to the filter coefficicents of S. If S is a lowpass filter, then T is a highpass
filter. If S is a highpass filter, then T is a lowpass filter.

The following example explains why this is the case.

Example 3.47 (Reducing the bass). In Example 1.27 we constructed filters
where the rows in Pascal’s triangle appeared, but with alternating sign. The
frequency response of this when using row 5 of Pascal’s triangle is shown in
Figure 3.8. It is just the frequency response of the corresponding treble-reducing
filter shifted with π. The alternating sign can also be achieved if we write the
frequency response 1

2k (1 + e−iω)k from Example 3.45 as 1
2k (1 − e−iω)k, which

corresponds to applying the filter S(x) = 1
2 (−xn−1 + xn) k times.

3.3.5 Time-invariance of filters

The third characterization of digital filters we will prove is stated in terms of
the following concept:

Definition 3.48 (Time-invariance). A linear transformation from RN to RN

is said to be time-invariant if, for any d, the output of the delayed input vector
z defined by zn = x(n−d) mod N is the delayed output vector w defined by
wn = y(n−d) mod N .

We have the following result:
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Theorem 3.49. A linear transformation S is a digital filter if and only if it
is time-invariant.

Proof. Let y = Sx, and z,w as defined above. We have that

wn = (Sx)n−d =
N−1�

k=0

Sn−d,kxk

=
N−1�

k=0

Sn,k+dxk =
N−1�

k=0

Sn,kxk−d

=
N−1�

k=0

Sn,kzk = (Sz)n

This proves that Sz = w, so that S is time-invariant.

By Example 3.39, delaying a vector with d elements corresponds to multi-
plication with the filter Ed. That S is time-invariant could thus also have been
defined by demanding that SEd = EdS for any d. That all filters are time
invariant follows also immediately from the fact that all filters commute.

Due to Theorem 3.49, digital filters are also called LTI filters (LTI stands
for Linear, Time-Invariant). By combining the definition of a digital filter with
theorems 3.26, and 3.49, we get the following:

Theorem 3.50 (Characterizations of digital filters). The following are equiv-
alent characterizations of a digital filter:

1. S = (FN )HDFN for a diagonal matrix D, i.e. the Fourier basis is a basis
of eigenvectors for S.

2. S is a circulant Toeplitz matrix.

3. S is linear and time-invariant.

3.3.6 Linear phase filters

Some filters are particularly important for applications:

Definition 3.51 (Linear phase). We say that a digital filter S has linear phase
if there exists some d so that Sd+n,0 = Sd−n,0 for all n.

From Theorem 3.11 4. it follows that the argument of the frequency response
at n for S is −2πdn/N . Moreover, the frequency response is real if d = 0, and
this also corresponds to that the matrix is symmetric. One reason that linear
phase filters are important for applications is that they can be more efficiently
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implemented than general filters. As an example, if S is symmetric around 0,
we can write

(Sx)n =
N−1�

k=0

skxn−k =

N/2−1�

k=0

skxn−k +
N−1�

k=N/2

skxn−k

=

N/2−1�

k=0

skxn−k +

N/2−1�

k=0

sk+N/2xn−k−N/2

=

N/2−1�

k=0

skxn−k +

N/2−1�

k=0

sN/2−kxn−k−N/2

=

N/2−1�

k=0

skxn−k +

N/2−1�

k=0

skxn+k =

N/2−1�

k=0

sk(xn−k + xn+k)

If we compare the first and last expressions here, we need the same number of
summations, but the number of multiplications needed in the latter expression
has been halved. The same point can also be made about the factorization into
a composition of many moving average filters of length 2 in Example 3.45. This
also corresponds to a linear phase filter. Each application of a moving average
filter of length 2 does not really require any multiplications, since multiplication
with 1

2 really corresponds to a bitshift. Therefore, the factorization of Exam-
ple 3.45 removes the need for doing any multiplications at all, while keeping the
number of additions the same. There is a huge computational saving in this.
We will see another desirable property of linear phase filters in the next section,
and we will also return to these filters later.

3.3.7 Perfect reconstruction systems

The following is easily proved, and left as exercises:

Theorem 3.52. The following hold:

1. The set of (circulant) Toeplitz matrices form a vector space.

2. If G1 and G2 are (circulant) Toeplitz matrices, then G1G2 is also a
(circulant) Toeplitz matrix, and l(G1G2) = l(G1) + l(G2).

3. l(G) = 0 if and only if G has only one nonzero diagonal.

An immediate corollary of this is in terms of what is called perfect recon-
struction systems:
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Definition 3.53 (Perfect reconstruction system). By a perfect reconstruction
system we mean a pair of N ×N -matrices (G1, G2) so that G2G1 = I. For a
vector x we refer to z = G1x as the transformed vector. For a vector z we
refer to x = G2z as the reconstructed vector.

The terms perfect reconstruction, transformation, and reconstruction come
from signal processing, where one thinks of G1 as a transform, and G2 as another
transform which reconstructs the input to the first transform from its output.
In practice, we are interested in finding perfect reconstruction systems where
the transformed G1x is so that it is more suitable for further processing, such as
compression, or playback in an audio system. One example is the DFT: We have
already proved that (FN , (FN )H) is a perfect reconstruction system for ant N .
One problem with this system is that the Fourier matrix is not sparse. Although
efficient algorithms exist for the DFT, one may find systems which are quicker to
compute in the transform and reconstruction steps. We are therefore in practice
interested in establishing perfect reconstruction systems, where the involved
matrices have particular forms. Digital filters is one such form, since these are
quick to compute when there are few nonzero filter coefficients. Unfortunately,
related to this we have the following corollary to Theorem 3.52:

Corollary 3.54. let G1 and G2 be circulant Toeplitz matrices so that (G1, G2)
is a perfect reconstruction system. Then there exist a scalar α and an integer d
so that G1 = αEd and G2 = α−1E−d, i.e. both matrices have only one nonzero
diagonal, with the values being inverse of oneanother, and the diagonals being
symmetric about the main diagonal.

In short, this states that there do not exist perfect reconstruction systems
involving nontrivial digital filters. This sounds very bad, since filters, as we will
see, represent some of the nicest operations which can be implemented. Note
that, however, it may still be possible to construct such (G1, G2) so that G1G2

is “close to” I. Such systems can be called “recontruction systems”, and may
be very important in settings where some loss in the transformation process is
acceptable. We will not consider such systems here.

In a search for other perfect reconstruction systems than those given by the
DFT (and DCT in the next section), we thus have to look for other matrices
than those given by digital filters. In Section ?? we will see that it is possible
to find such systems for the matrices we define in the next chapter, which are a
natural generalization of digital filters.

Exercises for Section 3.3

Ex. 1 — Compute and plot the frequency response of the filter S = {1/4, 1/2, 1/4}.
Where does the frequency response achieve its maximum and minimum value,
and what are these values?
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Ex. 2 — Plot the frequency response of the filter T = {1/4,−1/2, 1/4}. Where
does the frequency response achieve its maximum and minimum value, and what
are these values? Can you write down a connection between this frequency re-
sponse and that from Exercise 1?

Ex. 3 — Consider the two filters S1 = {1, 0, . . . , 0, c} and S2 = {1, 0, . . . , 0,−c}.
Both of these can be interpreted as filters which add an echo. Show that
1
2 (S1 + S2) = I. What is the interpretation of this relation in terms of echos?

Ex. 4 — In Example 1.19 we looked at time reversal as an operation on digital
sound. In RN this can be defined as the linear mapping which sends the vector
ek to eN−1−k for all 0 ≤ k ≤ N − 1.

a. Write down the matrix for the time reversal linear mapping, and explain
from this why time reversal is not a digital filter.

b. Prove directly that time reversal is not a time-invariant operation.

Ex. 5 — Consider the linear mapping S which keeps every second component
in RN , i.e. S(e2k) = e2k, and S(e2k−1) = 0. Is S a digital filter?

Ex. 6 — A filter S1 has the frequency response 1
2 (1+cosω), and another filter

has the frequency response 1
2 (1 + cos(2ω)).

a. Is S1S2 a lowpass filter, or a highpass filter?
b. What does the filter S1S2 do with angular frequencies close to ω = π/2.

c. Find the filter coefficients of S1S2.
Hint: Use Theorem 3.34 to compute the frequency response of S1S2 first.

d. Write down the matrix of the filter S1S2 for N = 8.

Ex. 7 — Let Ed1 and Ed2 be two time delay filters. Show that Ed1Ed2 =
Ed1+d2 (i.e. that the composition of two time delays again is a time delay) in
two different ways

a. Give a direct argument which uses no computations.
b. By using Property 3 in Theorem 3.11, i.e. by using a property for the

Discrete Fourier Transform.

Ex. 8 — Let S be a digital filter. Show that S is symmetric if and only if the
frequency response satisfies sk = sN−k for all k.
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Ex. 9 — Consider again Example 3.43. Find an expression for a filter so that
only frequencies so that |ω − π| < ωc are kept, i.e. the filter should only keep
angular frequencies close to π (i.e. here we construct a highpass filter).

Ex. 10 — Assume that S is a circulant Toeplitz matrix so that only

S0,0, . . . , S0,F and S0,N−E , . . . , S0,N−1

are nonzero on the first row, where E, F are given numbers. When implementing
this filter on a computer we need to make sure that the vector indices lie in
[0, N − 1]. Show that yn = (Sx)n can be split into the following different
formulas, depending on n, to achieve this:

a. 0 ≤ n < E:

yn =
n−1�

k=0

S0,N+k−nxk +
F+n�

k=n

S0,k−nxk +
N−1�

k=N−1−E+n

S0,k−nxk. (3.24)

b. E ≤ n < N − F :

yn =
n+F�

k=n−E

S0,k−nxk. (3.25)

c. N − F ≤ n < N :

yn =

n−(N−F )�

k=0

S0,k−nxk +
n−1�

k=n−E

S0,N+k−nxk +
N−1�

k=n

S0,k−nxk. (3.26)

These three cases give us the full implementation of the filter. This
implementation is often more useful than writing down the entire matrix
S, since we save computation when many of the matrix entries are zero.

Ex. 11 — In this exercise we will find out how to keep to track of the length
and the start and end indices when we convolve two sequences

a. Let g and h be two sequences with finitely many nonzero elements. Show
that g∗h also has finitely many nonzero elements, and show that l(g∗h) =
l(g) + l(h).

b. Find expressions for the values kmin, kmax for the filter g ∗h, in terms of
those for the filters g and h.

Ex. 12 — Write a function

function [gconvh gconvhmin]=filterimpl(g,gmin,h,hmin)
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which performs the convolution of two sequences, but also keeps track of the
index of the smallest nonzero coefficient in the sequences.

Ex. 13 — Consider the matrix

S =





4 1 3 1
1 4 1 3
3 1 4 1
1 4 1 3



 .

a. Compute the eigenvalues and eigenvectors of S using the results of this
section. You should only need to perform one DFT in order to achieve
this.

b. Verify the result from a. by computing the eigenvectors and eigenvalues
the way you taught in your first course in linear algebra. This should be
a much more tedious task.

c. Use Matlab to compute the eigenvectors and eigenvalues of S also. For
some reason some of the eigenvectors seem to be different from the Fourier
basis vectors, which you would expect from the theory in this section.
Try to find an explanation for this.

Ex. 14 — Define the filter S by S = {1, 2, 3, 4, 5, 6}. Write down the matrix
for S when N = 8. Plot (the magnitude of) λS(ω), and indicate the values λS,n

for N = 8 in this plot.

Ex. 15 — Assume that the filter S is defined by the formula

zn =
1

4
xn+1 +

1

4
xn +

1

4
xn−1 +

1

4
xn−2.

Write down the matrix for S when N = 8. Compute and plot (the magnitude
of) λS(ω).

Ex. 16 — Given the circulant Toeplitz matrix

S =
1

5





1 1 1 · · · 1
1 1 1 · · · 0
0 1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
1 0 0 · · · 1
1 1 0 · · · 1
1 1 1 · · · 1
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Write down the filter coefficients of this matrix, and use the compact notation
{tkmin , . . . , t−1, t0, t1, . . . , tkmax}. Compute and plot (the magnitude) of λS(ω).

Ex. 17 — Assume that S = {1, c, c2, . . . , ck}. Compute and plot λS(ω) when
k = 4 and k = 8. How does the choice of k influence the frequency response?
How does the choice of c influence the frequency response?

Ex. 18 — Assume that S1 and S2 are two circulant Toeplitz matrices.
a. How can you express the eigenvalues of S1+S2 in terms of the eigenvalues

of S1 and S2?
b. How can you express the eigenvalues of S1S2 in terms of the eigenvalues

of S1 and S2?
c. If A and B are general matrices, can you find a formula which expresses

the eigenvalues of A+ B and AB in terms of those of A and B? If not,
can you find a counterexample to what you found in a. and b.?

Ex. 19 — In this exercise we will investigate how we can combine lowpass and
highpass filters to produce other filters

a. Assume that S1 and S2 are lowpass filters. What kind of filter is S1S2?
What if both S1 and S2 are highpass filters?

b. Assume that one of S1, S2 is a highpass filter, ans that the other is a
lowpass filter. What kind of filter S1S2 in this case?

3.4 Symmetric digital filters and the DCT

We have mentioned that most periodic functions can be approximated well by
Fourier series on the form

�
n
yne2πint/T . The convergence speed of this Fourier

series may be slow however, and we mentioned that it depends on the regularity
of the function. In particular, the convergence speed is higher when the function
is continuous. For f ∈ C[0, T ] where f(0) �= f(T ), we do not get a continuous
function if we repeat the function in periods. However, we demonstrated that we
could create a symmetric extension g, defined on [0, 2T ], so that g(0) = g(2T ).
The Fourier series of g actually took the form of a cosine-series, and we saw
that this series converged faster to g, than the Fourier series of f did to f .

In this section we will specialize this argument to vectors: by defining the
symmetric extension of a vector, we will attempt to find a better approximation
than we could with the Fourier basis vectors. This approach is useful for digital
filters also, if the filters preserve these symmetric extensions. Let us summarize
with the following idea:
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Idea 3.55 (Increasing the convergence speed of the DFT). Assume that we
have a function f , and that we take the samples xk = f(kT/N). From x ∈ RN

we would like to create an extension x̆ so that the first and last values are
equal. For such an extension, the Fourier basis vectors can give a very good
approximation to f .

As our candidate for the extension of x, we will consider the following:

Definition 3.56 (Symmetric extension of a vector). By the symmetric exten-
sion of x ∈ RN , we mean x̆ ∈ R2N defined by

x̆k =

�
xk 0 ≤ k < N

x2N−1−k N ≤ k < 2N − 1
(3.27)

We say that a vector in R2N is symmetric if it can be written as the symmetric
extension of a vector in RN .

The symmetric extension x̆ thus has the original vector x as its first half,
and a copy of x in reverse order as its second half. Clearly, the first and last
values of x̆ are equal. In other words, a vector in R2N is a symmetric extension
of a vector in RN if and only if it is symmetric about N − 1

2 . Clearly also the
set of symmetric extensions is a vector space. Our idea in terms of filters is the
following:

Idea 3.57 (Increasing the precision of a digital filter). If a filter maps a
symmetric extension of one vector to a symmetric extension of another vector
then it is a good approximation of an analog version in terms of Fourier series.

We will therefore be interested in finding filters which preserves symmetric
extensions. We will show the following, which characterize such filters:

Theorem 3.58 (Characterization of filters which preserve symmetric exten-
sions). A digital filter S of size 2N preverves symmetric extensions if and only
if S is symmetric. Moreover, S is uniquely characterized by its restriction to

RN , denoted by Sr, which is given by S1 + (S2)f , where S =

�
S1 S2

S3 S4

�
,

and where (S2)f is the matrix S2 with the columns reversed. Moreover, if we
define

dn,N =






�
1
N

, n = 0�
2
N

, 1 ≤ n < N

and dn = dn,N cos
�
2π n

2N

�
k + 1

2

��
for 0 ≤ n ≤ N−1, then {d0,d1, . . . ,dN−1}

is an orthonormal basis of eigenvectors for Sr.
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Proof. Let z = ˆ̆x. Since x̆ is symmetric about N − 1
2 , by Theorem 3.11 it

follows that the argument of zn is −2π(N − 1
2 )n/(2N). Since z2N−n is the con-

jugate of zn by the same theorem, it follows that z2N−n = e4πi(N− 1
2 )n/(2N)zn =

e−2πin/(2N)zn. It follows that a vector in R2N is a symmetric extension if and
only if its DFT is in the span of the vectors

{e0, {en + e−2πin/(2N)e2N−n}N−1
n=1 }.

These vectors are clearly orthogonal. Their span can also be written as the span
of the vectors

�
e0,

�
1√
2

�
eπin/(2N)en + e−πin/(2N)e2N−n

��N−1

n=1

�
, (3.28)

where the last vectors have been first multiplied with eπin/(2N), and then normal-
ized so that they have norm 1. Equation (3.28) now gives us an orthononormal
basis for the DFT’s of all symmetric extensions. Let us map these vectors back
with the IDFT. We get first that

(F2N )H(e0) =

�
1√
2N

,
1√
2N

, . . . ,
1√
2N

�
=

1√
2N

cos

�
2π

0

2N

�
k +

1

2

��
.

We also get that

(F2N )H
�

1√
2

�
eπin/(2N)en + e−πin/(2N)e2N−n

��

=
1√
2

�
eπin/(2N) 1√

2N
e2πink/(2N) + e−πin/(2N) 1√

2N
e2πi(2N−n)k/(2N)

�

=
1√
2

�
eπin/(2N) 1√

2N
e2πink/(2N) + e−πin/(2N) 1√

2N
e−2πink/(2N)

�

=
1

2
√
N

�
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

�

=
1√
N

cos

�
2π

n

2N

�
k +

1

2

��
.

Since F2N is unitary, and thus preserves the scalar product, this means that
�

1√
2N

cos

�
2π

0

2N

�
k +

1

2

��
,

�
1√
N

cos

�
2π

n

2N

�
k +

1

2

���N−1

n=1

�
(3.29)

is an orthonormal basis for the set of symmetric extensions in R2N . We have
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that

S

�
cos

�
2π

n

2N

�
k +

1

2

���

= S

�
1

2

�
e2πi(n/(2N))(k+1/2) + e−2πi(n/(2N))(k+1/2)

��

=
1

2

�
eπin/(2N)S

�
e2πink/(2N)

�
+ e−πin/(2N)S

�
e−2πink/(2N)

��

=
1

2

�
eπin/(2N)λS,ne

2πink/(2N) + e−πin/(2N)λS,2N−ne
−2πink/(2N)

�

=
1

2

�
λS,ne

2πi(n/(2N))(k+1/2) + λS,2N−ne
−2πi(n/(2N))(k+1/2)

�

where we have used that e2πink/(2N) is an eigenvector of S with eigenvalue
λS,n, and e−2πink/(2N) = e2πi(2N−n)k/(2N) is an eigenvector of S with eigenvalue
λS,2N−n. If S preserves symmetric extensions, we see that we must have that
λS,n = λS,2N−n, and also that the vectors listed in Equation (3.29) must be
eigenvectors for S. This is reflected in that the entries in D in the diagonalization
S = (F2N )HDF2N are symmetric about the midpoint on the diagonal. From
Exercise 3.3.8 we know that this occurs if and only if S is symmetric, which
proves the first part of the theorem.

Since S preserves symmetric extensions it is clearly characterized by its

restriction to the first N elements. With S =

�
S1 S2

S3 S4

�
, we compute this

restriction as




y0
...

yN−1



 =
�
S1 S2

�





x0
...

xN−1

xN

...
x2N−1





=
�
S1 + (S2)f

�



x0
...

xN−1



 .

S2 contains the circulant part of the matrix, and forming (S2)f means that the
circulant parts switch corners. This shows that S is uniquely characterized by
the matrix Sr as defined in the text of the theorem. Finally, since (3.29) are
eigenvectors of S, the vectors in RN restricted to their first N elements are
eigenvectors for Sr. Since the scalar product of two symmetric extensions is the
double of the scalar product of the first half of the vectors, we have that these
vectors must also be orthogonal, and that





1√
N

cos

�
2π

0

2N

�
k +

1

2

��
,

��
2

N
cos

�
2π

n

2N

�
k +

1

2

���N−1

n=1






is an orthonormal basis of eigenvectors for Sr. We see that we now can define
dn,N and the vectors dn as in the text of the theorem, and this completes the
proof.
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From the proof we clearly see the analogy between symmetric functions and
vectors: while the first can be written as a cosine-series, the second can be
written as a sum of cosine-vectors:

Corollary 3.59.

�
1√
2N

cos

�
2π

0

2N

�
k +

1

2

��
,

�
1√
N

cos

�
2π

n

2N

�
k +

1

2

���N−1

n=1

�

form an orthonormal basis for the set of all symmetric vectors in R2N .

Note also that Sr is not a circulant matrix. Therefore, its eigenvectors are
not pure tones. An example should clarify this:

Example 3.60. Consider the averaging filter g = { 1
4 ,

1
2 ,

1
4}. Let us write down

the matrix Sr for the case when N = 4. First we obtain the matrix S as




1
2

1
4 0 0 0 0 0 1

4
1
4

1
2

1
4 0 0 0 0 0

0 1
4

1
2

1
4 0 0 0 0

0 0 1
4

1
2

1
4 0 0 0

0 0 0 1
4

1
2

1
4 0 0

0 0 0 0 1
4

1
2

1
4 0

0 0 0 0 0 1
4

1
2

1
4

1
4 0 0 0 0 0 1

4
1
2





where we have drawn the boundaries between the blocks S1, S2, S3, S4. From
this we see that

S1 =





1
2

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

1
2



 S2 =





0 0 0 1
4

0 0 0 0
0 0 0 0
1
4 0 0 0



 (S2)
f =





1
4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

4



 .

From this we get

Sr = S1 + (S2)
f =





3
4

1
4 0 0

1
4

1
2

1
4 0

0 1
4

1
2

1
4

0 0 1
4

3
4



 .

The orthogonal basis we have found is given its own name:

Definition 3.61 (DCT basis). We denote by DN the orthogonal basis
{d0,d1, . . . ,dN−1}. We also call DN the N -point DCT basis.

Using the DCT basis instead of the Fourier basis we can make the following
definitions, which parallel those for the DFT:
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Definition 3.62 (Discrete Cosine Transform). The change of coordinates
from the standard basis of RN to the DCT basis DN is called the discrete
cosine transform (or DCT). The N×N matrix DN that represents this change
of basis is called the (N -point) DCT matrix. If x is a vector in RN , its coor-
dinates y = (y0, y1, . . . , yN−1) relative to the DCT basis are called the DCT
coefficients of x (in other words, y = DNx).

As with the Fourier basis vectors, the DCT basis vectors are called synthesis
vectors, since we can write

x = y0d0 + y1d1 + · · ·+ yN−1dN−1 (3.30)

in the same way as for the DFT. Following the same reasoning as for the DFT,
D−1

N
is the matrix where the dn are columns. But since these vectors are real

and orthonormal, DN must be the matrix where the dn are rows. Moreover,
since Theorem 3.58 also states that the same vectors are eigenvectors for filters
which preserve symmetric extensions, we can state the following:

Theorem 3.63. DN is the orthogonal matrix where the rows are dn. More-
over, for any digital filter S which preserves symmetric extensions, (DN )T

diagonalizes Sr, i.e. Sr = DT

N
DDN where D is a diagonal matrix.

Let us also make the following definition:

Definition 3.64 (IDCT). We will call x = (DN )Ty the inverse DCT or
(IDCT) of x.

Example 3.65. As with Example 3.9, exact expressions for the DCT can be
written down just for a few specific cases. It turns out that the case N = 4 as
considered in Example 3.9 does not give the same type of nice, exact values, so
let us instead consider the case N = 2. We have that

D4 =

� 1√
2
cos(0) 1√

2
cos(0)

cos
�
π

2

�
0 + 1

2

��
cos

�
π

2

�
1 + 1

2

��
�

=

�
1√
2

1√
2

1√
2

− 1√
2

�

The DCT of the same vector as in Example 3.9 can now be computed as:

D2

�
1
2

�
=

�
3√
2

− 1√
2

�
.

Example 3.66. A direct implementation of the DCT could be made as follows:

function y=DCTImpl(x)
N=length(x);
DN=zeros(N);
DN(1,:)=ones(1,N)/sqrt(N);
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for n=1:N
DN(n,:)=cos(2*pi*((n-1)/(2*N))*((0:N-1)+1/2))*sqrt(2/N);

end
y=DN*x;

In the next chapter we will see that one also can make a much more efficient
implementation of the DCT than this.

With the DCT one constructs a vector twice as long. One might think due
to this that one actually use matrices twice the size. This is, however, avoided
since DN has the same dimensions as FN , and we will see shortly that the same
algorithms as for the DFT also can be used for the DCT. By construction we
also see that it is easy to express the N -point DCT in terms of the 2N -point
DFT. Let us write down this connection:

1. Write e0 =
√
2 and en = eπin/(2N) for n �= 0, and define E as the diagonal

matrix with the values e0, e1, . . . on the diagonal.

2. Let B be the 2N ×N -matrix which is nonzero only when i = j or i+ j =
2N − 1, and 1 in all these places.

3. Let also A be the N × 2N -matrix with 1 on the diagonal.

We can now write
DN = E−1AF2NB. (3.31)

A here extracts the first rows of the matrix, E−1 eliminates the complex coef-
ficients, while B adds columns symmetrically. This factorization enables us to
use the efficient FFT-implementation, since the matrices A,B,E all are sparse.
We will, however, find an even more efficient implementation of the DCT, which
will avoid computing a DFT of twice the size as here.

Similarly to Theorem 3.16 for the DFT, one can think of the DCT as a
least squares approximation and the unique representation of a function having
the same sample values, but this time in terms of sinusoids instead of complex
exponentials:

Theorem 3.67 (Interpolation with the DCT basis). Let f be a function
defined on the interval [0, T ], and let x be the sampled vector given by

xk = f((2k + 1)T/(2N)) for k = 0, 1, . . . , N − 1.

There is exactly one linear combination g(t) on the form
N−1�

n=0

yndn,N cos(2π(n/2)t/T )

which satisfies the conditions

g((2k + 1)T/(2N)) = f((2k + 1)T/(2N)), k = 0, 1, . . . , N − 1,

and its coefficients are determined by y = DNx.
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The proof for this follows by inserting t = (2k + 1)T/(2N) in the equation
g(t) =

�
N−1
n=0 yndn,N cos(2π(n/2)t/T ) to arrive at the equations

f(kT/N) =
N−1�

n=0

yndn,N cos

�
2π

n

2N

�
k +

1

2

��
0 ≤ k ≤ N − 1.

This gives us an equation system for finding the yn with the invertible DCT
matrix as coefficient matrix, and the result follows.

Note the subtle change in the sample points of these cosine functions, from
kT/N for the DFT, to (2k+1)T/(2N) for the DCT. The sample points for the
DCT are thus the midpoints on the intervals in a uniform partition of [0, T ] into
N intervals, while they for the DFT are the start points on the intervals. Also,
the frequencies are divided by 2. In Figure 3.9 we have plotted the sinusoids
of Theorem 3.67 for T = 1, as well as the sample points used in that theorem.
The sample points in (a) correspond to the first column in the DCT matrix, the
sample points in (b) to the second column of the DCT matrix, and so on (up to
normalization with dn,N ). As n increases, the functions oscillate more and more.
As an example, y5 says how much content of maximum oscillation there is. In
other words, the DCT of an audio signal shows the proportion of the different
frequencies in the signal, and the two formulas y = DNx and x = (DN )Ty
allow us to switch back and forth between the time domain representation and
the frequency domain representation of the sound. In other words, once we have
computed y = DNx, we can analyse the frequency content of x. If we want to
reduce the bass we can decrease the y-values with small indices and if we want
to increase the treble we can increase the y-values with large indices.

3.4.1 Other types of symmetric extensions

Note that our definition of symmetric extension duplicates the values x0 and
xN−1: both are repeated when creating the symmetric extension. This is in
fact unnecessary when we are creating a longer vector which has equal first and
last values, and is primarily motivated from existing efficient implementations
for the DCT when all vector lengths are powers of 2. When an efficient DCT
implementation is not important, we can change the definition of the symmetric
extension as follows (it is this type of symmetric extension we will use later):

Definition 3.68 (Symmetric extension of a vector). By the symmetric exten-
sion of x ∈ RN , we mean x̆ ∈ R2N−2 defined by

x̆k =

�
xk 0 ≤ k < N

x2N−2−k N ≤ k < 2N − 3
(3.32)

In other words, a vector in R2N is a symmetric extension of a vector in RN

if and only if it is symmetric about N − 1. Theorem 3.58 now instead takes the
following form:
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Figure 3.9: The 6 different sinusoids used in DCT for N = 6, i.e. cos(2π(n/2)t),
0 ≤ n < 6. The plots also show piecewise linear functions between the the
sample points 2k+1

2N 0 ≤ k < 6, since only the values at these points are used in
Theorem 3.67.
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Theorem 3.69 (Characterization of filters which preserve symmetric exten-
sions). A real, circulant (2N − 2)× (2N − 2)-Toeplitz matrix preverves sym-
metric extensions if and only if it is symmetric. For such S, S is uniquely
characterized by its restriction to RN , denoted by Sr, which is given by

T1 +
�
0 (T2)f 0

�
, where T =

�
T1 T2

T3 T4

�
, where T1 is N × N , T2

is N × (N − 2). Moreover, an orthogonal basis of eigenvectors for Sr are
{cos

�
2π n

2N n
�
}N−1
n=0 .

Proof. Let z = ˆ̆x. Since x̆ is symmetric about 0, by Theorem 3.11 it follows that
zn = z2(N−1)−n), so that the DFT of a symmetrix extension (as now defined)
is in the span of the vectors

{e0, {en + e2(N−1)−n}N−1
n=1 }.

It follows as before that
cos

�
2π

n

2(N − 1)
n

�

is a basis of eigenvectors. The same type of symmetry about the midpoint on
the diagonal follows as before, which as before is equivalent to symmetry of the
matrix.

It is not customary to write down an orthonormal basis for the eigenvectors
in this case, since we don’t have the same type of efficient DCT implementation
due to the lact of powers of 2.

3.4.2 Use of DCT in lossy compression of sound

The DCT is particularly popular for processing the sound before compression.
MP3 is based on applying a variant of the DCT (called the Modified Discrete
Cosine Transform, MDCT) to groups of 576 (in special circumstances 192) sam-
ples. One does not actually apply the DCT directly. Rather one applies a much
more complex transformation, which can be implemented in parts by using DCT
in a clever way.

We mentioned previously that we could achieve compression by setting the
Fourier coefficients which are small to zero. Translated to the DCT, we should
set the DCT coefficients which are small to zero, and we apply the inverse
DCT in order to reconstruct the signal in order to play it again. Let us test
compression based on this idea. The plots in figure 3.10 illustrate the principle.
A signal is shown in (a) and its DCT in (b). In (d) all values of the DCT with
absolute value smaller than 0.02 have been set to zero. The signal can then be
reconstructed with the inverse DCT of theorem ??; the result of this is shown
in (c). The two signals in (a) and (c) visually look almost the same even though
the signal in (c) can be represented with less than 25 % of the information
present in (a).
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Figure 3.10: The signal in (a) are the sound samples from a small part of a
song. The plot in (b) shows the DCT of the signal. In (d), all values of the
DCT that are smaller than 0.02 in absolute value have been set to 0, a total of
309 values. In (c) the signal has been reconstructed from these perturbed values
of the DCT. The values have been connected by straight lines to make it easier
to interpret the plots.
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We test this compression strategy on a data set that consists of 300 001
points. We compute the DCT and set all values smaller than a suitable tolerance
to 0. With a tolerance of 0.04, a total of 142 541 values are set to zero. When
we then reconstruct the sound with the inverse DCT, we obtain a signal that
differs at most 0.019 from the original signal. To verify that the new file is
not too different from the old file, we can take the read sound samples from
castanets.wav, run the following function for different eps

function A=skipsmallvals(eps,A)
B=dct(A);
B=(B>=eps).*B;
A=invdct(B);

and play the new samples. Finally we can store the signal by storing a gzip’ed
version of the DCT-values (as 32-bit floating-point numbers) of the perturbed
signal. This gives a file with 622 551 bytes, which is 88 % of the gzip’ed version
of the original data.

The choice of the DCT in the MP3 standard has much to do with that the
DCT, just as the DFT, has a very efficient implementation, as we will see next.

Exercises for Section 3.4

Ex. 1 — In Section 3.4.2 we implemented the function skipsmallvals, which
ran a DCT on the entire vector. Explain why there are less computation involved
in splitting the vector into many parts and performing a DCT for each part.
Change the code accordingly.

Ex. 2 — As in Example 3.65, state the exact cartesian form of the DCT ma-
trix for the case N = 3.

Ex. 3 — Assume that S is a symmetric digital filter with support [−E,E].
Let us, as in Exercise 3.3.10, see how we can make sure that the indices keep
inside [0, N − 1]. Show that zn = (Tx)n in this case can be split into the
following different formulas, depending on n:

a. 0 ≤ n < E:

zn = T0,0xn+
n�

k=1

T0,k(xn+k+xn−k)+
E�

k=n+1

T0,k(xn+k+xn−k+N ). (3.33)

b. E ≤ n < N − E:

zn = T0,0xn +
E�

k=1

T0,k(xn+k + xn−k). (3.34)
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c. N − F ≤ n < N :

zn = T0,0xn+
N−1−n�

k=1

T0,k(xn+k+xn−k)+
E�

k=N−1−n+1

T0,k(xn+k−N+xn−k).

(3.35)

Ex. 4 — Assume that {T0,−E , . . . , T0,0, . . . , T0,E} are the coefficicients of a
symmetric, digital filter S, and let t = {T0,1, . . . , T0,E}. Write a function

function z=filterT(t,x)

which takes the vector t as input, and returns z = Tx using the formulas
deduced in Exercise 3.

Ex. 5 — Repeat Exercise 1.4.9 by reimplementing the functions reducetreble
and reducesbass using the function filterT from the previous exercise. The
resulting sound files should sound the same, since the only difference is that we
have modified the way we handle the beginning and end portion of the sound
samples.

Ex. 6 — Using Python, define a class Transform with methods transformImpl
and ItransformImpl. Define two subclasses of Transform, DCTTransform,
FFTTransform), which implements these two functions by calling Python coun-
terparts of FFTImpl, IFFTImpl, DCTImpl, and IDCTImpl.

3.5 Summary

We defined the Discrete Fourier transform, which could be thought of as the
Fourier series of a vector. We exploited properties of the DFT, which corre-
sponded nicely to the corresponding properties for Fourier series. We defined
digital filters, which turned out to be linear transformations diagonalized by
the DFT. Also we showed that the techniques from the last section we used to
speed up the convergence of the Fourier series, could also be used for the DFT.
In this way we arrived at the definition of the DCT.
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Chapter 4

Implementation of the DFT
and the DCT

The main application of the DFT and the DCT is as tools to compute frequency
information in large datasets. It is therefore important that these operations
can be performed by efficient algorithms. Straightforward implementation from
the definition is not efficient if the data sets are large. However, it turns out
that the underlying matrices may be factored in a way that leads to much more
efficient algorithms, and this is the topic of the present chapter.

4.1 The Fast Fourier Transform (FFT)

In this section we will discuss the most widely used implementation of the DFT,
which is usually referred to as the Fast Fourier Transform (FFT). For simplicity,
we will assume that N , the length of the vector that is to be transformed by
the DFT, is a power of 2. In this case it is relatively easy to simplify the DFT
algorithm via a factorisation of the Fourier matrix. The foundation is provided
by a simple reordering of the DFT.

Theorem 4.1 (FFT algorithm). Let y = FNx be the N -point DFT of x with
N an even number. Foran any integer n in the interval [0, N/2− 1] the DFT
y of x is then given by

yn =
1√
2

�
(FN/2x

(e))n + e−2πin/N (FN/2x
(o))n

�
, (4.1)

yN/2+n =
1√
2

�
(FN/2x

(e))n − e−2πin/N (FN/2x
(o))n

�
, (4.2)

where x(e),x(o) are the sequences of length N/2 consisting of the even and
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odd samples of x, respectively. In other words,

(x(e))k = x2k for 0 ≤ k ≤ N/2− 1,

(x(o))k = x2k+1 for 0 ≤ k ≤ N/2− 1.

Put differently, the formulas (4.1)–(4.2) reduces the computation of an N -
point DFT to 2 N/2-point DFT’s. It turns out that this can speed up compu-
tations considerably, but let us first check that these formulas are correct.

Proof. Suppose first that 0 ≤ n ≤ N/2 − 1. We start by splitting the sum in
the expression for the DFT into even and odd indices,

yn =
1√
N

N−1�

k=0

xke
−2πink/N

=
1√
N

N/2−1�

k=0

x2ke
−2πin2k/N +

1√
N

N/2−1�

k=0

x2k+1e
−2πin(2k+1)/N

=
1√
2

1�
N/2

N/2−1�

k=0

x2ke
−2πink/(N/2)

+ e−2πin/N 1√
2

1�
N/2

N/2−1�

k=0

x2k+1e
−2πink/(N/2)

=
1√
2

�
FN/2x

(e)
�

n

+
1√
2
e−2πin/N

�
FN/2x

(o)
�

n

,

where we have substituted x(e) and x(o) as in the text of the theorem, and
recognized the N/2-point DFT in two places. For the second half of the DFT
coefficients, i.e. {yN/2+n}0≤n≤N/2−1, we similarly have

yN/2+n =
1√
N

N−1�

k=0

xke
−2πi(N/2+n)k/N =

1√
N

N−1�

k=0

xke
−πike−2πink/N

=
1√
N

N/2−1�

k=0

x2ke
−2πin2k/N − 1√

N

N/2−1�

k=0

x2k+1e
−2πin(2k+1)/N

=
1√
2

1�
N/2

N/2−1�

k=0

x2ke
−2πink/(N/2)

− e−2πin/N 1√
2

1�
N/2

N/2−1�

k=0

x2k+1e
−2πink/(N/2)

=
1√
2

�
FN/2x

(e)
�

n

− 1√
2
e−2πin/N

�
FN/2x

(o)
�

n

.
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This concludes the proof.

It turns out that Theorem 4.1 can be interpreted as a matrix factorization.
For this we need to define the concept of a block matrix.

Definition 4.2. Let m0, . . . , mr−1 and n0, . . . , ns−1 be integers, and let
A(i,j) be an mi × nj-matrix for i = 0, . . . , r − 1 and j = 0, . . . , s − 1. The
notation

A =





A(0,0) A(0,1) · · · A(0,s−1)

A(1,0) A(1,1) · · · A(1,s−1)

...
...

...
...

A(r−1,0) A(r−1,1) · · · A(r−1,s−1)





denotes the (m0 + m1 + . . . + mr−1) × (n0 + n1 + . . . + ns−1)-matrix where
the matrix entries occur as in the A(i,j) matrices, in the way they are ordered,
and with solid lines indicating borders between the blocks. When A is written
in this way it is referred to as a block matrix.

We will express the Fourier matrix in factored form involving block matrices.
The following observation is just a formal way to split a vector into its even and
odd components.

Observation 4.3. Define the permutation matrix PN by

(PN )i,2i = 1,

(PN )i,2i−N+1 = 1,

(PN )i,j = 0,

for 0 ≤ i ≤ N/2− 1;
for N/2 ≤ i < N ;
for all other i and j;

and let x be a column vector. The mapping x → Px permutes the components
of x so that the even components are placed first and the odd components last,

PNx =

�
x(e)

x(o)

�
,

with x(e), x(o) defined as in Theorem 4.1.

Let DN/2 be the (N/2) × (N/2)-diagonal matrix with entries (DN/2)n,n =

e−2πin/N for n = 0, 1, . . . , N/2 − 1. It is clear from Equation (4.1) that the
first half of y is then given by obtained as

1√
2

�
FN/2 DN/2FN/2

�
PNx,

and from Equation (4.2) that the second half of y can be obtained as

1√
2

�
FN/2 −DN/2FN/2

�
PNx.
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From these two formulas we can derive the promised factorisation of the Fourier
matrix.

Theorem 4.4 (DFT matrix factorization). The Fourier matrix may be fac-
tored as

FN =
1√
2

�
FN/2 DN/2FN/2

FN/2 −DN/2FN/2

�
PN . (4.3)

This factorization in terms of block matrices is commonly referred to as the
FFT factorization of the Fourier matrix. In implementations, this factorization
is typically repeated, so that FN/2 is replaced with a factorization in terms of
FN/4, this again with a factorization in terms of FN/8, and so on.

The input vector x to the FFT algorithm is mostly assumed to be real. In
this case, the second half of the FFT factorization can be simplified, since we
have shown that the second half of the Fourier coefficients can be obtained by
symmetry from the first half. In addition we need the formula

yN/2 =
1√
N

N/2−1�

n=0

�
(x(e))n − (x(o))n

�

to obtain coefficient N

2 , since this is the only coefficient which can’t be obtained
from y0, y1, . . . , yN/2−1 by symmetry.

In an implementation based on formula (4.3), we would first compute PNx,
which corresponds to splitting x into the even-indexed and odd-indexed samples.
The two leftmost blocks in the block matrix in (4.3) correspond to applying the
N

2 -point DFT to the even samples. The two rightmost blocks correspond to
applying the N/2-point DFT to the odd samples, and multiplying the result
with DN/2. The results from these transforms are finally added together. By
repeating the splitting we will eventually come to the case where N = 1. Then
F1 is just the scalar 1, so the DFT is the trivial assignment y0 = x0. The FFT
can therefore be implemented by the following MATLAB code:

function y = FFTImpl(x)
N = length(x);
if N == 1

y = x(1);
else

xe = x(1:2:(N-1));
xo = x(2:2:N);
ye = FFTImpl(xe);
yo = FFTImpl(xo);
D=exp(-2*pi*1j*(0:N/2-1)’/N);
y = [ ye + yo.*D; ye - yo.*D]/sqrt(2);

end

Note that this function is recursive; it calls itself. If this is you first encounter
with a recursive program, it is worth running through the code for N = 4, say.
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4.1.1 The Inverse Fast Fourier Transform (IFFT)

The IDFT is very similar to the DFT, and it is straightforward to prove the
following analog to Theorem 4.1 and (4.3).

Theorem 4.5 (IDFT matrix factorization). The inverse of the Fourier matrix
can be factored as

(FN )H =
1√
2

�
(FN/2)

H EN/2(FN/2)
H

(FN/2)
H −EN/2(FN/2)

H

�
PN , (4.4)

where EN/2 is the (N/2) × (N/2)-diagonal matrix with entries given by
(EN/2)n,n = e2πin/N , for n = 0, 1, . . . , N/2− 1.

We note that the only difference between the factored forms of FN and FH

N

is the positive exponent in e2πin/N . With this in mind it is straightforward to
modify FFTImpl.m so that it performs the inverse DFT.

MATLAB has built-in functions for computing the DFT and the IDFT,
called fft and ifft. Note, however, that these functions do not used the
normalization 1/

√
N that we have adopted here. The MATLAB help pages give

a short description of these algorithms. Note in particular that MATLAB makes
no assumption about the length of the vector. MATLAB may however check
if the length of the vector is 2r, and in those cases a variant of the algorithm
discussed here is used. In general, fast algorithms exist when the vector length
N can be factored as a product of small integers.

Many audio and image formats make use of the FFT. To get optimal speed
these algorithms typically split the signals into blocks of length 2r with r some
integer in the range 5–10 and utilise a suitable variant of the algorithms discussed
above.

4.1.2 Reduction in the number of multiplications with the

FFT

Before we continue we also need to explain why the FFT and IFFT factoriza-
tions lead to more efficient implementations than the direct DFT and IDFT
implementations. We first need some terminology for how we count the number
of operations of a given type in an algorithm. In particular we are interested
in in the limiting behaviour when N becomes large, which is the motivation for
the following definition.

Definition 4.6 (Order of an algorithm). Let RN be the number of operations
of a given type (such as multiplication, addition) in an algorithm, where N
describes the dimension of the data in the algorithm (such as the size of the
matrix or length of the vector), and let f be a positive function. The algorithm
is said to be of order N , which is written O(f(N)), if the number of operations
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grows as f(N) for large N , or more precisely, if

lim
N→∞

RN

f(N)
= c > 0.

We will also use this notation for functions, and say that a real function g
is O(f(x)) if lim g(x)/f(x) = 0 where the limit mostly will be taken as x → 0
(this means that g(x) is much smaller than f(x) when x approaches the limit).

Let us see how we can use this terminology to describe the complexity of
the FFT algorithm. Let MN be the number of multiplications needed by the
N -point FFT as defined by Theorem 4.1. It is clear from the algorithm that

MN = 2MN/2 +N/2. (4.5)

The factor 2 corresponds to the two matrix multiplications, while the term N/2
denotes the multiplications in the exponent of the exponentials that make up
the matrix DN/2 (or EN/2) — the factor 2πi/N may be computed once and for
all outside the loops. We have not counted the multiplications with 1/sqrt(2).
The reason is that, in most implementations, this factor is absorbed in the
definition of the DFT itself.

Note that all multiplications performed by the FFT are complex. It is normal
to count the number of real multiplications instead, since any multiplication of
two complex numbers can be performed as four multiplications of real numbers
(and two additions), by writing the number in terms of its real and imaginary
part, and myltiplying them together. Therefore, if we instead define MN to be
the number of real multiplications required by the FFT, we obtain the alterna-
tive recurrence relation

MN = 2MN/2 + 2N. (4.6)

In Exercise 1 you will be asked to derive the solution of this equation and
show that the number of real multiplications required by this algorithm is
O(2N log2 N). In contrast, the direct implementation of the DFT requires N2

complex multiplications, and thus 4N2 real multiplications. The exact same
numbers are found for the IFFT.

Theorem 4.7 (Number of operations in the FFT and IFFT algorithms). The
N -point FFT and IFFT algorithms both require O(2N log2 N) real multipli-
cations. In comparison, the number of real multiplications required by direct
implementations of the N -point DFT and IDFT is 4N2.

In other words, the FFT and IFFT significantly reduce the number of mul-
tiplications, and one can show in a similar way that the number of additions
required by the algorithm is also roughly O(N log2 N). This partially explains
the efficiency of the FFT algorithm. Another reason is that since the FFT splits
the calculation of the DFT into computing two DFT’s of half the size, the FFT
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is well suited for parallel computing: the two smaller FFT’s can be performed
independently of one another, for instance in two different computing cores on
the same computer.

Since filters are diagonalized by the DFT, it may be tempting to implement
a filter by applying an FFT, multiplying with the frequency response, and then
apply the IFFT. This is not usually done, however. The reason is that most
filters have too few nonzero coefficients for this approach to be efficient — it
is then better to use the direct algorithm for the DFT, since this may lead to
fewer multiplications than the O(N log2 N) required by the FFT.

Exercises for Section 4.1

Ex. 1 — In this exercise we will compute the number of real multiplications
needed by the FFT algorithm given in the text. The starting point will be the
difference equation (4.6) for the number of real multiplications for an N -point
FFT.

a. Explain why xr = M2r is the solution to the difference equation xr+1 −
2xr = 4 · 2r.

b. Show that the general solution to the difference equation is xr = 2r2r +
C2r.

c. Explain why MN = O(2N log2 N) (you do not need to write down the
initial conditions for the difference equation in order to find the particular
solution).

Ex. 2 — When we wrote down the difference equation MN = 2MN/2+2N for
the number of multiplications in the FFT algorithm, you could argue that some
multiplications were not counted. Which multiplications in the FFT algorithm
were not counted when writng down this difference equation? Do you have a
suggestion to why these multiplications were not counted?

Ex. 3 — Write down a difference equation for computing the number of real
additions required by the FFT algorithm.

Ex. 4 — It is of course not always the case that the number of points in a
DFT is N = 2n. In this exercise we will see how we can attack the more general
case.

a. Assume that N can be divided by 3, and consider the following splitting,
which follows in the same way as the splitting used in the deduction of
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the FFT-algorithm:

yn =
1√
N

N−1�

k=0

xke
−2πink/N

=
1√
N

N/3−1�

k=0

x3ke
−2πin3k/N +

1√
N

N/3−1�

k=0

x3k+1e
−2πin(3k+1)/N

+
1√
N

N/3−1�

k=0

x3k+2e
−2πin(3k+2)/N

Find a formula which computes y0, y1, . . . , yN/3−1 by performing 3 DFT’s
of size N/3.

b. Find similar formulas for computing yN/3, yN/3+1, . . . , y2N/3−1, and y2N/3, y2N/3+
1, . . . , yN−1. State a similar factorization of the DFT matrix as in The-
orem 4.4, but this time where the matrix has 3× 3 blocks.

c. Assume that N = 3n, and that you implement the FFT using the formu-
las you have deduced in a. and b.. How many multiplications does this
algorithm require?

d. Sketch a general procedure for speeding up the computation of the DFT,
which uses the factorization of N into a product of prime numbers.

4.2 Efficient implementations of the DCT

In the preceding section we defined the DCT by expressing it in terms of the
DFT. In particular, we can apply efficient implementations of the DFT, which
we will shortly look at. However, the way we have defined the DCT, there
is a penalty in that we need to compute a DFT of twice the length. We are
also forced to use complex arithmetic (note that any complex multiplication
corresponds to 4 real multiplications, and that any complex addition corresponds
to 2 real additions). Is there a way to get around these penalties, so that we can
get an implementation of the DCT which is more efficient, and uses less additions
and multiplications than the one you made in Exercise 1? The following theorem
states an expression of the DCT which achieves this. This expression is, together
with a similar result for the DFT in the next section, much used in practical
implementations:

Theorem 4.8 (DCT algorithm). Let y = DNx be the N -point DCT of the
vector x. Then we have that

yn = cn,N
�
cos

�
π

n

2N

�
�((FNx(1))n) + sin

�
π

n

2N

�
�((FNx(1))n)

�
, (4.7)
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where c0,N = 1 and cn,N =
√
2 for n ≥ 1, and where x(1) ∈ RN is defined by

(x(1))k = x2k for 0 ≤ k ≤ N/2− 1

(x(1))N−k−1 = x2k+1 for 0 ≤ k ≤ N/2− 1,

Proof. The N -point DCT of x is

yn = dn,N

N−1�

k=0

xk cos

�
2π

n

2N

�
k +

1

2

��
.

Splitting this sum into two sums, where the indices are even and odd, we get

yn = dn,N

N/2−1�

k=0

x2k cos

�
2π

n

2N

�
2k +

1

2

��

+ dn,N

N/2−1�

k=0

x2k+1 cos

�
2π

n

2N

�
2k + 1 +

1

2

��
.

If we reverse the indices in the second sum, this sum becomes

dn,N

N/2−1�

k=0

xN−2k−1 cos

�
2π

n

2N

�
N − 2k − 1 +

1

2

��
.

If we then also shift the indices with N/2 in this sum, we get

dn,N

N−1�

k=N/2

x2N−2k−1 cos

�
2π

n

2N

�
2N − 2k − 1 +

1

2

��

= dn,N

N−1�

k=N/2

x2N−2k−1 cos

�
2π

n

2N

�
2k +

1

2

��
,

where we used that cos is symmetric and periodic with period 2π. We see that
we now have the same cos-terms in the two sums. If we thus define the vector
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x(1) as in the text of the theorem, we see that we can write

yn = dn,N

N−1�

k=0

(x(1))k cos

�
2π

n

2N

�
2k +

1

2

��

= dn,N�
�

N−1�

k=0

(x(1))ke
−2πin(2k+ 1

2 )/(2N)

�

=
√
Ndn,N�

�
e−πin/(2N) 1√

N

N−1�

k=0

(x(1))ke
−2πink/N

�

= cn,N�
�
e−πin/(2N)(FNx(1))n

�

= cn,N
�
cos

�
π

n

2N

�
�((FNx(1))n) + sin

�
π

n

2N

�
�((FNx(1))n)

�
,

where we have recognized the N -point DFT, and where cn,N =
√
Ndn,N . In-

serting the values for dn,N , we see that c0,N = 1 and cn,N =
√
2 for n ≥ 1, which

agrees with the definition of cn,N in the theorem. This completes the proof.

With the result above we have avoided computing a DFT of double size.
If we in the proof above define the N × N -diagonal matrix QN by Qn,n =
cn,Ne−πin/(2N), the result can also be written on the more compact form

y = DNx = �
�
QNFNx(1)

�
.

We will, however, not use this form, since there is complex arithmetic involved,
contrary to (4.7). Let us see how we can use (4.7) to implement the DCT, once
we already have implemented the DFT in terms of the function FFTImpl as in
Section 4.1:

function y = DCTImpl(x)
N = length(x);
if N == 1

y = x;
else

x1 = [x(1:2:(N-1)); x(N:(-2):2)];
y = FFTImpl(x1);
rp = real(y);
ip = imag(y);
y = cos(pi*((0:(N-1))’)/(2*N)).*rp + sin(pi*((0:(N-1))’)/(2*N)).*ip;
y(2:N) = sqrt(2)*y(2:N);

end

In the code, the vector x(1) is created first by rearranging the components, and
it is sent as input to FFTImpl. After this we take real parts and imaginary parts,
and multiply with the cos- and sin-terms in (4.7).
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4.2.1 Efficient implementations of the IDCT

As with the FFT, it is straightforward to modify the DCT implementation so
that it returns the IDCT. To see how we can do this, write from Theorem 4.8,
for n ≥ 1

yn = cn,N
�
cos

�
π

n

2N

�
�((FNx(1))n) + sin

�
π

n

2N

�
�((FNx(1))n)

�

yN−n = cN−n,N

�
cos

�
π
N − n

2N

�
�((FNx(1))N−n) + sin

�
π
N − n

2N

�
�((FNx(1))N−n)

�

= cn,N
�
sin

�
π

n

2N

�
�((FNx(1))n)− cos

�
π

n

2N

�
�((FNx(1))n)

�
,

where we have used the symmetry of FN for real signals. These two equations
enable us to determine �((FNx(1))n) and �((FNx(1))n) from yn and yN−n. We
get

cos
�
π

n

2N

�
yn + sin

�
π

n

2N

�
yN−n = cn,N�((FNx(1))n)

sin
�
π

n

2N

�
yn − cos

�
π

n

2N

�
yN−n = cn,N�((FNx(1))n).

Adding we get

cn,N (FNx(1))n =cos
�
π

n

2N

�
yn + sin

�
π

n

2N

�
yN−n + i(sin

�
π

n

2N

�
yn − cos

�
π

n

2N

�
yN−n)

=(cos
�
π

n

2N

�
+ i sin

�
π

n

2N

�
)(yn − iyN−n) = eπin/(2N)(yn − iyN−n).

This means that (FNx(1))n = 1
cn,N

eπin/(2N)(yn − iyN−n) for n ≥ 1. For n = 0,
since �((FNx(1))n) = 0 we have that (FNx(1))0 = 1

c0,N
y0. This means that

x(1) can be recovered by taking the IDFT of the vector with component 0 being
1

c0,N
y0 = y0, and the remaining components being 1

cn,N
eπin/(2N)(yn − iyN−n):

Theorem 4.9 (IDCT algorithm). Let x = (DN )Ty be the IDCT of y. and let
z be the vector with component 0 being 1

c0,N
y0, and the remaining components

being 1
cn,N

eπin/(2N)(yn − iyN−n). Then we have that

x(1) = (FN )Hz,

where x(1) is defined as in Theorem 4.8.

The implementation of IDCT can thus go as follows:

function x = IDCTImpl(y)
N = length(y);
if N == 1

x = y(1);
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else
Q=exp(pi*1i*((0:(N-1))’)/(2*N));
Q(2:N)=Q(2:N)/sqrt(2);
yrev=y(N:(-1):2);
toapply=[ y(1); Q(2:N).*(y(2:N)-1i*yrev) ];
x1=IFFTImpl(toapply);
x=zeros(N,1);
x(1:2:(N-1))=x1(1:(N/2));
x(2:2:N)=x1(N:(-1):(N/2+1));

end

MATLAB also has a function for computing the DCT and IDCT, called dct,
and idct. These functions are defined in MATLAB exactly as they are here,
contrary to the case for the FFT.

4.2.2 Reduction in the number of multiplications with the

DCT

Let us also state a result which confirms that the DCT and IDCT implementa-
tions we have described give the same type of reductions in the number multi-
plications as the FFT and IFFT:

Theorem 4.10 (Number of multiplications required by the DCT and IDCT
algorithms). Both the N -point DCT and IDCT factorizations given by Theo-
rem 4.8 and Theorem 4.9 require O(2(N + 1) log2 N) real multiplications. In
comparison, the number of real multiplications required by a direct implemen-
tation of the N -point DCT and IDCT is N2.

Proof. By Theorem 4.7, the number of multiplications required by the FFT is
O(2N log2 N). By Theorem 4.8, two additional multiplications are needed for
each index, giving additionally 2N multiplications in total, so that we end up
with O(2(N + 1) log2 N) real multiplications. For the IDCT, note first that
the vector z = 1

cn,N
eπin/(2N)(yn − iyN−n) seen in Theorem 4.9 should require

4N real multiplications to compute. But since the IDFT of z is real, z must
have conjugate symmetry between the first half and the second half of the
coefficients, so that we only need to perform 2N multiplications. Since the
IFFT takes an additional O(2N log2 N) real multiplications, we end up with
a total of O(2N + 2N log2 N) = O(2(N + 1) log2 N) real multiplications also
here. It is clear that the direct implementation of the DCT and IDCT needs
N2 multiplications, since only real arithmetic is involved.

Since the DCT and IDCT can be implemented using the FFT and IFFT,
it has the same advantages as the FFT when it comes to parallel computing.
Much literature is devoted to reducing the number of multiplications in the
DFT and the DCT even further than what we have done. In the next section
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we will show an example on how this can be achieved, with the help of extra
work and some tedious math. Some more notes on computational complexity
are in order. For instance, we have not counted the operations sin and cos in
the DCT. The reason is that these values can be precomputed, since we take the
sine and cosine of a specific set of values for each DCT or DFT of a given size.
This is contrary to to multiplication and addition, since these include the input
values, which are only known at runtime. We have, however, not written down
that we use precomputed arrays for sine and cosine in our algorithms: This is
an issue to include in more optimized algorithms. Another point has to do with
multiplication of 1√

N
. As long as N = 22r, multiplication with N need not be

considered as a multiplication, since it can be implemented using a bitshift.

4.2.3 *An efficient joint implementation of the DCT and

the FFT

We will now present a more advanced FFT algorithm, which will turn out to
decrease the number of multiplications and additions even further. It also has
the advantage that it avoids complex number arithmetic altogether (contrary to
Theorem 4.1), and that it factors the computation into smaller FFTs and DCTs
so that we can also use our previous DCT implementation. This implementation
of the DCT and the DFT is what is mostly used in practice. For simplicity we
will drop this presentation for the inverse transforms, and concentrate only on
the DFT and the DCT.

Theorem 4.11 (Revised FFT algorithm). Let y = FNx be the N -point DFT
of the real vector x. Then we have that

�(yn) =






1√
2
�((FN/2x

(e))n) + (EDN/4z)n 0 ≤ n ≤ N/4− 1
1√
2
�((FN/2x

(e))n) n = N/4
1√
2
�((FN/2x

(e))n)− (EDN/4z)N/2−n N/4 + 1 ≤ n ≤ N/2− 1

(4.8)

�(yn) =






1√
2
�((FN/2x

(e))n) q = 0
1√
2
�((FN/2x

(e))n) + (EDN/4w)N/4−n 1 ≤ n ≤ N/4− 1
1√
2
�((FN/2x

(e))n) + (EDN/4w)n−N/4 N/4 ≤ n ≤ N/2− 1

(4.9)

where x(e) is as defined in Theorem 4.1, where z,w ∈ RN/4 defined by

zk = x2k+1 + xN−2k−1 0 ≤ k ≤ N/4− 1,

wk = (−1)k(xN−2k−1 − x2k+1) 0 ≤ k ≤ N/4− 1,

and where E is a diagonal matrix with diagonal entries E0,0 = 1
2 and En,n =

1
2
√
2

for n ≥ 1.
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Proof. Taking real and imaginary parts in (4.1) we obtain

�(yn) =
1√
2
�((FN/2x

(e))n +
1√
2
�((DN/2FN/2x

(o))n)

�(yn) =
1√
2
�((FN/2x

(e))n +
1√
2
�((DN/2FN/2x

(o))n).

These equations explain the first parts on the right hand side in (4.8) and (4.9).
Furthermore, for 0 ≤ n ≤ N/4− 1 we can write

�((DN/2FN/2x
(o))n)

=
1�
N/2

�(e−2πin/N
N/2−1�

k=0

(x(o))ke
−2πink/(N/2))

=
1�
N/2

�(
N/2−1�

k=0

(x(o))ke
−2πin(k+ 1

2 )/(N/2))

=
1�
N/2

N/2−1�

k=0

(x(o))k cos

�
2π

n(k + 1
2 )

N/2

�

=
1�
N/2

N/4−1�

k=0

(x(o))k cos

�
2π

n(k + 1
2 )

N/2

�

+
1�
N/2

N/4−1�

k=0

(x(o))N/2−1−k cos

�
2π

n(N/2− 1− k + 1
2 )

N/2

�

=
1√
2

1�
N/4

N/4−1�

k=0

((x(o))k + (x(o))N/2−1−k) cos

�
2π

n
�
k + 1

2

�

N/2

�

= (E0DN/4z)n,

where we have used that cos is periodic with period 2π and symmetric, where z is
the vector defined in the text of the theorem, where we have recognized the DCT
matrix, and where E0 is a diagonal matrix with diagonal entries (E0)0,0 = 1√

2

and (E0)n,n = 1
2 for n ≥ 1 (E0 absorbs the factor 1√

N/2
, and the factor dn,N

from the DCT). By absorbing the additional factor 1√
2
, we get a matrix E as

stated in the theorem. For N/4 + 1 ≤ n ≤ N/2 − 1, everything above but the
last statement is valid. We can now use that

cos

�
2π

n(k + 1
2 )

N/2

�
= − cos

�
2π

�
N

2 − n
� �

k + 1
2

�

N/2

�

to arrive at −(E0DN/4z)N/2−n instead. For the case n = N

4 all the cosine
entries are zero, and this completes (4.8). For the imaginary part, we obtain as
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above

�((DN/2FN/2x
(o))n)

=
1�
N/2

N/4−1�

k=0

((x(o))N/2−1−k − (x(o))k) sin

�
2π

n(k + 1
2 )

N/2

�

=
1�
N/2

N/4−1�

k=0

((x(o))N/2−1−k − (x(o))k)(−1)k cos

�
2π

(N/4− n)(k + 1
2 )

N/2

�
.

where we have used that sin is periodic with period 2π and anti-symmetric, that

sin

�
2π

n(k + 1
2 )

N/2

�
= cos

�
π

2
− 2π

n(k + 1
2 )

N/2

�

= cos

�
2π

(N/4− n)(k + 1
2 )

N/2
− kπ

�

= (−1)k cos

�
2π

(N/4− n)(k + 1
2 )

N/2

�
,

When n = 0 this is 0 since all the cosines entries are zero. When 1 ≤ n ≤ N/4
this is (E0DN/4w)N/4−n, where w is the vector defined as in the text of the
theorem. For N/4 ≤ n ≤ N/2 − 1 we arrive instead at (E0DN/4z)n−N/4,
similarly to as above. This also proves (4.9), and the proof is done.

As for Theorem 4.1, this theorem says nothing about the coefficients yn for
n > N

2 . These are obtained in the same way as before through symmetry. The
theorem also says nothing about yN/2. This can be obtained with the same
formula as in Theorem 4.1.

It is more difficult to obtain a matrix interpretation for Theorem 4.11, so
we will only sketch an algorithm which implements it. The following code
implements the recursive formulas for �FN and �FN in the theorem:

function y = FFTImpl2(x)
N = length(x);
if N == 1

y = x;
elseif N==2

y = 1/sqrt(2)*[x(1) + x(2); x(1) - x(2)];
else

xe = x(1:2:(N-1));
xo = x(2:2:N);
yx = FFTImpl2(xe);

z = x(N:(-2):(N/2+2))+x(2:2:(N/2));
dctz = DCTImpl(z);
dctz(1)=dctz(1)/2;

122



dctz(2:length(dctz)) = dctz(2:length(dctz))/(2*sqrt(2));

w = (-1).^((0:(N/4-1))’).*(x(N:-2:(N/2+2))-x(2:2:(N/2)));
dctw = DCTImpl(w);
dctw(1)=dctw(1)/2;
dctw(2:length(dctw)) = dctw(2:length(dctw))/(2*sqrt(2));

y = yx/sqrt(2);
y(1:(N/4))=y(1:(N/4))+dctz;
if (N>4)
y((N/4+2):(N/2))=y((N/4+2):(N/2))-dctz((N/4):(-1):2);
y(2:(N/4))=y(2:(N/4))+1j*dctw((N/4):(-1):2);

end
y((N/4+1):(N/2))=y((N/4+1):(N/2))+1j*dctw;
y = [y; ...

sum(xe-xo)/sqrt(N); ...
conj(y((N/2):(-1):2))];

end

In addition, we need to change the code for DCTImpl so that it calls FFTImpl2
instead of FFTImpl. The following can now be shown:

Theorem 4.12 (Number of multiplications required by the revised FFT algo-
rithm). Let MN be the number of real multiplications required by the revised
algorithm of Theorem 4.11. Then we have that MN = O( 23N log2 N).

This is a big reduction from the O(2N log2 N) required by the FFT algorithm
from Theorem 4.1. We will not prove Theorem 4.12. Instead we will go through
the steps in a proof in Exercise 3. The revised FFT has yet a bigger advantage
that the FFT when it comes to parallel computing: It splits the computation
into, not two FFT computations, but three computations (one of which is an
FFT, the other two DCT’s). This makes it even easier to make use of many
cores on computers which have support for this.

Exercises for Section 4.2

Ex. 1 — Write a function

function samples=DCTImpl(x)

which returns the DCT of the column vector x ∈ R2N as a column vector. The
function should use the FFT-implementation from the previous section, and the
factorization C = E−1AFB from above. The function should not construct the
matrices A,B,E explicitly.
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Ex. 2 — Explain why, if FFTImpl needs MN multiplications AN additions,
then the number of multiplications and additions required by DCTImpl are MN+
2N and AN +N , respectively.

Ex. 3 — In this exercise we will compute the number of real multiplications
needed by the revised N -point FFT algorithm of Theorem 4.11, denoted MN .

a. Explain from the algorithm of Theorem 4.11 that

MN = 2(MN/4 +N/2) +MN/2 = N +MN/2 + 2MN/4. (4.10)

b. Explain why xr = M2r is the solution to the difference equation

xr+2 − xr+1 − 2xr = 4× 2r.

c. Show that the general solution to the difference equation is

xr =
2

3
r2r + C2r +D(−1)r.

d. Explain why MN = O( 23N log2 N) (you do not need to write down the
initial conditions for the difference equation in order to find the particular
solution to it).

4.3 Summary

We obtained an implementation of the DFT which is more efficient in terms of
the number of arithmetic operations than a direct implementation of the DFT.
We also showed that this could be used for obtaining an efficient implementation
of the DCT.

124


	I Fourier analysis and applications to sound processing
	Sound
	Loudness: Sound pressure and decibels
	The pitch of a sound
	Digital sound
	Simple operations on digital sound
	Playing a sound
	Filtering operations

	Compression of sound and the MP3 standard
	Summary

	Fourier analysis for periodic functions: Fourier series
	Basic concepts
	Fourier series for symmetric and antisymmetric functions

	Complex Fourier series
	Rate of convergence for Fourier series
	Some properties of Fourier series
	Summary

	Fourier analysis for vectors
	Basic ideas
	The Discrete Fourier Transform
	Connection between the DFT and Fourier series
	Interpolation with the DFT
	Sampling and reconstruction with the DFT

	Operations on vectors: filters
	Formal definition of filters and frequency response
	Some properties of the frequency response
	Assembling the filter matrix and compact notation
	Some examples of filters
	Time-invariance of filters
	Linear phase filters
	Perfect reconstruction systems

	Symmetric digital filters and the DCT
	Other types of symmetric extensions
	Use of DCT in lossy compression of sound

	Summary

	Implementation of the DFT and the DCT
	The Fast Fourier Transform (FFT)
	The Inverse Fast Fourier Transform (IFFT)
	Reduction in the number of multiplications with the FFT

	Efficient implementations of the DCT
	Efficient implementations of the IDCT
	Reduction in the number of multiplications with the DCT
	*An efficient joint implementation of the DCT and the FFT

	Summary



