
Part II

Wavelets and applications to
image processing
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Chapter 5

Wavelets

In Part I on Fourier analysis our focus was to approximate periodic functions or
vectors in terms of trigonometric functions. We saw that the Discrete Fourier
transform could be used to obtain the representation of a vector in terms of
such functions, and the computations could be done efficiently with the FFT
algorithm. This was useful for analyzing, filtering, and compression of sound
and other discrete data. However, Fourier series and the DFT also have some
serious limitations:

1. First of all, the functions used in the approximation are periodic with
short periods. In contrast, for most functions encountered in applications
the frequency content changes with time. Although Fourier analysis tools
also exist for analyzing non-periodic functions, these tools mostly have a
theoretical significance and are rarely used in practice, because of lack of
efficient implementations.

2. Secondly, all components of the Fourier basis vectors are nonzero — in
fact they all have absolute value 1 at all points. This means that, in order
to compute a value using the representation in the Fourier basis, we must
for each instance in time sum over all N vectors in the basis. This is
time-consuming when N is large.

In this chapter we are going to introduce the basic properties of an alternative
to Fourier analysis, namely wavelets. Similar to Fourier analysis, wavelets are
also based on the idea of transforming a function to a different basis. But in
contrast to Fourier analysis, where the basis is fixed, wavelets provide a general
framework with many different types of bases. In this chapter, we introduce
the framework via the simplest wavelets. We then discuss some general wavelet
concepts before we consider a second example.
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(a) (b)

Figure 5.1: A view of Earth from space (a) and a zoomed in view (b).

5.1 Why wavelets?

Figure 5.1 shows two views of the Earth. The one on the left is the startup
image in Google Earth, a program for viewing satellite images, maps and other
geographic information. The right image is a zoomed-in view of a small part of
the Earth. There is clearly an amazing amount of information available behind a
program like Google Earth, with images detailed enough to differentiate between
buildings and even trees or cars all over the Earth. So when the Earth is spinning
in the opening screen, all the Earth’s buildings appear to be spinning with it!
If this was the case, the Earth would not be spinning on the screen. There
would just be so much information to process that a laptop would not be able
to display a rotating Earth.

There is a simple reason that the globe can be shown spinning in spite of the
huge amounts of information that need to be handled. We are going to see later
that a digital image is just a rectangular array of numbers that represent the
colour at a dense set of points. As an example, the images in Figure 5.1 are both
made up of a grid with 1576 points in the horizontal direction and 1076 points
in the vertical direction, for a total of 1 695 776 points. The colour at a point is
represented by three eight-bit integers, which means that the image file contains
a total of 5 087 328 bytes. So regardless of how close to the surface of the Earth
our viewpoint is, the resulting image always contains the same number of points.
This means that when we are far away from the Earth we can use a very coarse
model of the geographic information that is being displayed, but as we zoom in,
we need to display more details and therefore need a more accurate model.

Observation 5.1. When discrete information is displayed in an image, there
is no need to use a mathematical model that contains more detail than what
is visible in the image.

A consequence of Observation 5.1 is that for applications like Google Earth
we should use a mathematical model that makes it easy to switch between
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Figure 5.2: Two examples of piecewise constant functions.

different levels of detail, or different resolutions. Such models are called mul-

tiresolution models, and wavelets are prominent examples of this kind of models.

5.2 Wavelets constructed from piecewise constant

functions

There are many different kinds of wavelets that all share certain standard prop-
erties. In this section we will introduce the simplest wavelets and through this
also the general framework for constructing wavelets. The construction goes in
two steps: First we introduce the resolution spaces, and then the detail spaces
and wavelets.

5.2.1 Resolution spaces

The starting point is the space of piecewise constant functions on an interval
[0, N).

Definition 5.2 (The resolution space V0). Let N be a natural number. The
resolution space V0 is defined as the space of functions defined on the interval
[0, N) that are constant on each subinterval [n, n+ 1) for n = 0, . . . , N − 1.

Two examples of functions in V0 for N = 10 are shown in Figure 5.2. It is
easy to check that V0 is a linear space, and for computations it is useful to know
the dimension of the space and have a basis.

Lemma 5.3. Define the function φ(t) by

φ(t) =

�
1, if 0 ≤ t < 1;

0, otherwise;
(5.1)
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Figure 5.3: The functions φ2 (a) and φ7 (b) in V0.

and set φn(t) = φ(t − n) for any integer n. The space V0 has dimension N ,
and the N functions {φn}N−1

n=0 form an orthonormal basis for V0 with respect
to the standard inner product

�f, g� =
�

N

0
f(t)g(t) dt. (5.2)

In particular, any f ∈ V0 can be represented as

f(t) =
N−1�

n=0

cnφn(t) (5.3)

for suitable coefficients (cn)N−1
n=0 . The function φn is referred to as the charac-

teristic function of the interval [n, n+ 1)

Two examples of the basis functions defined in Lemma 5.5 are shown in
Figure 5.3.

Proof. Two functions φn1 and φn2 with n1 �= n2 clearly satisfy
�
φn1(t)φn2(t)dt =

0 since φn1(t)φn2(t) = 0 for all values of x. It is also easy to check that �φn� = 1
for all n. Finally, any function in V0 can be written as a linear combination the
functions φ0, φ1, . . . , φN−1, so the conclusion of the lemma follows.

In our discussion of Fourier analysis, the starting point was the function
sin 2πt that has frequency 1. We can think of the space V0 as being analogous
to this function: The function

�
N−1
n=0 (−1)nφn(t) is (part of the) square wave

that we discussed in Chapter 1, and which also oscillates regularly like the sine
function, see Figure 5.4 (a). The difference is that we have more flexibility
since we have a whole space at our disposal instead of just one function —
Figure 5.4 (b) shows another function in V0.

In Fourier analysis we obtained a linear space of possible approximations by
including sines of frequency 1, 2, 3, . . . , up to some maximum. We use a similar
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Figure 5.4: The square wave in V0 (a) and an approximation to cos t from V0.

approach for constructing wavelets, but we double the frequency each time and
label the spaces as V0, V1, V2, . . .

Definition 5.4 (Refined resolution spaces). The space Vm for the interval
[0, N) is the space of piecewise linear functions defined on [0, N) that are
constant on each subinterval [n/2m, (n+ 1)/2m) for n = 0, 1, . . . , 2mN − 1.

Some examples of functions in the spaces V1, V2 and V3 for the interval [0, 10]
are shown in Figure 5.5. As m increases, we can represent smaller details. In
particular, the function in (d) is a piecewise constant function that oscillates
like sin 2π22t on the interval [0, 10].

It is easy to find a basis for Vm, we just use the characteristic functions of
each subinterval.

Lemma 5.5. Let [0, N) be a given interval with N some positive integer, and
let Vm denote the resolution space of piecewise constant functions for some
integer m ≥ 0. Then the dimension of Vm is 2mN . Define the functions

φm,n(t) = 2m/2
φ(2mt− n), for n = 0, 1, . . . , 2mN − 1, (5.4)

where φ is the characteristic function of the interval [0, 1]. The functions
{φm,n}2

m
N−1

n=0 form an orthonormal basis for Vm, and any function f ∈ Vm

can be represented as

f(t) =
2mN−1�

n=0

cnφm,n(t)

for suitable coefficients (cn)
2mN−1
n=0 .

Proof. The functions given in (5.25) are exactly the characteristic functions of
the subintervals [n/2m, (n + 1)/2m) which we referred to in Definition 5.4, so
the proof is very similar to the proof of Lemma 5.5. The one mysterious thing
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Figure 5.5: Piecewise constant approximations to cos t on the interval [0, 10] in
the spaces V1 (a), V2 (b), and V3 (c). The plot in (d) shows the square wave in
V2.
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may be the normalisation factor 2−m/2. This comes from the fact that
�

N

0
φ(2mt− n)2 dt =

� (n+1)/2m

n/2m
φ(2mt− n)2 dt = 2−m

� 1

0
φ(u)2 du = 2−m

.

The normalisation therefore ensures that �φm,n� = 1.

In the theory of wavelets, the function φ is also called a scaling function. The
origin behind this name is that the scaled (and translated) functions φm,n of φ
are used as basis functions for the refined resolution spaces. Later on we will see
that other scaling functions φ can be chosen, where the scaled versions φm,n will
be used to define similar resolution spaces, with slightly different properties.

5.2.2 Function approximation property

Each time m is increased by 1, the dimension of Vm doubles, and the subinterval
on which the functions in Vm are constant are halved in size. It therefore seems
reasonable that, for most functions, we can find good approximations in Vm

provided m is big enough.

Theorem 5.6. Let f be a given function that is continuous on the interval
[0, N ]. Given � > 0, there exists an integer m ≥ 0 and a function g ∈ Vm such
that ��f(t)− g(t)

�� ≤ �

for all t in [0, N ].

Proof. Since f is (uniformly) continuous on [0, N ], we can find an integer m so
that

��f(t1)− f(t2)
�� ≤ � for any two numbers t1 and t2 in [0, N ] with |t1 − t2| ≤

2−m. Define the approximation g by

g(t) =
2mN−1�

n=0

f
�
tm,n+1/2

�
φm,n(t),

where tm,n+1/2 is the midpoint of the subinterval
�
n2−m

, (n+ 1)2−m
�
,

tm,n+1/2 = (n+ 1/2)2−m
.

For t in this subinterval we then obviously have |f(t)−g(t)| ≤ �, and since these
intervals cover [0, N ], the conclusion holds for all t ∈ [0, N ].

Theorem 5.6 does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L

2-norm, we have

�f − g�2 =

�
N

0

��f(t)− g(t)
��2 dt ≤ N�

2
,

so �f − g� ≤ �
√
N . We therefore have the following corollary.
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(b) The projection onto V2.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(c) The projection onto V4.
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Figure 5.6: Comparison of the function defined by f(t) = t
2 on [0, 1] with the

projection onto different spaces Vm.

Corollary 5.7. Let f be a given continuous function on the interval [0, N ]
and let proj

Vm
(f) denote the best approximation to f from Vm. Then

lim
m→∞

�f − proj
Vm

(f)� = 0.

Figure 5.6 illustrates how some of the approximations of the function f(x) =
x
2 from the resolution spaces for the interval [0, 1] improve with increasing m.

5.2.3 Detail spaces and wavelets

So far we have described a family of function spaces that allow us to determine
arbitrarily good approximations to a continuous function. The next step is to
introduce the so-called detail spaces and the wavelet functions. For this we focus
on the two spaces V0 and V1.

We start by observing that since

[n, n+ 1) = [2n/2, (2n+ 1)/2) ∪ [(2n+ 1)/2, (2n+ 2)/2)
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we have
φ0,n =

1√
2
φ1,2n +

1√
2
φ1,2n+1. (5.5)

This provides a formal proof of the intuitive observation that V0 ⊂ V1. For if
g ∈ V0, then we can write

g(t) =
N−1�

n=0

cnφ0,n(t) =
N−1�

n=0

cn

�
φ1,2n + φ1,2n+1

�
/

√
2.

The right-hand side clearly lies in V1. A similar argument shows that Vk ⊂ Vk+1

for any integer k ≥ 0.

Lemma 5.8. The spaces V0, V1, . . . , Vm, . . . are nested,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm · · · .

The next step is to investigate what happens if we start with a function g1

in V1 and project this to an approximation g0 in V0.

Lemma 5.9. Let proj
V0

denote the orthogonal projection onto the subspace
V0. Then the projection of a basis function φ1,n is given by

proj
V0
(φ1,n) =

�
φ0,n/2/

√
2, if n is even;

φ0,(n−1)/2/
√
2, if n is odd.

(5.6)

If g1 ∈ V1 is given by

g1 =
2N−1�

n=0

c1,nφ1,n, (5.7)

then

proj
V0
(g1) = g0 =

N−1�

n=0

c0,nφ0,n

where c0,n is given by
c0,n =

c1,2n + c1,2n+1√
2

. (5.8)

Proof. We first observe that φ1,n(t) �= 0 if and only if n/2 ≤ t < (n + 1)/2.
Suppose that n is even. Then the intersection

�
n

2
,
n+ 1

2

�
∩ [n1, n1 + 1) (5.9)
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is nonempty only if n1 = n

2 . Using the orthogonal decomposition formula we
get

proj
V0
(φ1,n) =

N−1�

k=0

�φ1,n,φ0,k�φ0,k = �φ1,n,φ0,n1�φ0,n1

=

� (n+1)/2

n/2

√
2 dtφ0,n/2 =

1√
2
φ0,n/2.

When n is odd, the intersection (5.9) is nonempty only if n1 = (n− 1)/2, which
gives the second formula in (5.6) in the same way.

We project the function g1 in V1 using the formulas in (5.6). We split the
sum in (5.7) into even and odd values of n,

g1 =
2N−1�

n=0

c1,nφ1,n =
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1. (5.10)

We can now apply the two formulas in (5.6),

proj
V0
(g1) = proj

V0

�
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

�

=
N−1�

n=0

c1,2n proj
V0
(φ1,2n) +

N−1�

n=0

c1,2n+1 proj
V0
(φ1,2n+1)

=
N−1�

n=0

c1,2nφ0,n/
√
2 +

N−1�

n=0

c1,2n+1φ0,n/
√
2

=
N−1�

n=0

c1,2n + c1,2n+1√
2

φ0,n

which proves (5.8)

When g1 ∈ V1 is projected onto V0, the result g0 = proj
V0
g1 is in general

different from g0. We can write g1 = g0 + e0, where e0 = g1 − g0 represents
the error we have commited in making this projection. e0 lies in the ortogonal
complement of V0 in V1 (in particular, e0 ∈ V1).

Definition 5.10. We will denote by W0 the orthogonal complement of V0 in
V1. We also call W0 a detail space

The name detail space is used since e0 ∈ W0 can be considered as the
detail which is left out when considering g0 instead of g1 (due to the expression
g1 = g0 + e0). We will write V1 = V0 ⊕ W0 to say that any element in V1

can be written uniquely as a sum of an element in V0, and an element in the
orthogonal complement W0. ⊕ here denotes what is called a direct sum, which
can be more generally defined as follows for any vector spaces which are linearly
independent:
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Definition 5.11 (Direct sum of vector spaces). Assume that U, V ⊂ W are
vector spaces, and that U and V are mutually linearly independent. By U⊕V

we mean the vector space consisting of all vectors of the form u + v, where
u ∈ U , v ∈ V . We will also call U ⊕ V the direct sum of U and V .

This definition also makes sense if we have several vector spaces, since the
direct sum clearly obeys the associate law U ⊕ (V ⊕W ) = (U ⊕V )⊕W , i.e. we
can define U ⊕ V ⊕W = U ⊕ (V ⊕W ). We will have use for this use of direct
sum of several vector space in the next section.

In other words, the resolution space V1 is the direct sum of the lower order
resolution space V0, and the detail space W0. The expression g1 = g0+e0 is thus
a decomposition into a low-resolution approximation, and the details which are
left out in this approximation. In the context of our Google Earth example, in
Figure 5.1 you should interpret g0 as the image in (a), g1 as the image in (b),
and e0 as the additional details which are needed to reproduce (b) from (a).
While Lemma 5.12 explained how we can compute the low level approximation
g0 from g1, the next result states how we can compute the detail/error e0 from
g1.

Lemma 5.12. With W0 the orthogonal complement of V0 in V1, set

ψ̂0,n =
φ1,2n − φ1,2n+1

2

for n = 0, 1, . . . , N − 1. Then ψ̂0,n ∈ W0 and

proj
W0

(φ1,n) =

�
ψ̂0,n/2, if n is even;
−ψ̂0,(n−1)/2, if n is odd.

(5.11)

If g1 ∈ V1 is given by g1 =
�2N−1

n=0 c1,nφ1,n, then

proj
W0

(g1) = e0 =
N−1�

n=0

ŵ0,nψ̂0,n

where ŵ0,n is given by
ŵ0,n = c1,2n − c1,2n+1. (5.12)

Proof. We start by determining the error when φ1,n, for n even, is projected
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onto V0. The error is then

proj
W0

(φ1,n) = φ1,n −
φ0,n/2√

2

= φ1,n − 1√
2

�
1√
2
φ1,n +

1√
2
φ1,n+1

�

=
1

2
φ1,n − 1

2
φ1,n+1

= ψ̂0,n/2.

Here we used the relation (5.6) in the second equation. When n is odd we have

proj
W0

(φ1,n) = φ1,n −
φ0,(n−1)/2√

2

= φ1,n − 1√
2

�
1√
2
φ1,n−1 +

1√
2
φ1,n

�

=
1

2
φ1,n − 1

2
φ1,n−1

= −ψ̂0,(n−1)/2.

For a general function g1 we first split the sum into even and odd terms as
in (5.10) and then project each part onto W0,

proj
W0

(g1) = proj
W0

�
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

�

=
N−1�

n=0

c1,2n proj
W0

(φ1,2n) +
N−1�

n=0

c1,2n+1 proj
W0

(φ1,2n+1)

=
N−1�

n=0

c1,2nψ̂0,n −
N−1�

n=0

c1,2n+1ψ̂0,n

=
N−1�

n=0

(c1,2n − c1,2n+1)ψ̂0,n

which is (5.12)

In Figure 5.7 we have useed lemmas 5.9 and 5.12 to plot the projections of
φ1,0 ∈ V1 onto V0 and W0. It is an interesting exercise to see from the plots
why exactly these functions should be least-squares approximations of φ1,n. It
is also an interesting exercise to prove the following from lemmas 5.9 and 5.12:

Proposition 5.13. Let f(t) ∈ V1, and let fn,1 be the value f attains on
[n, n+ 1/2), and fn,2 the value f attains on [n+ 1/2, n+ 1). Then proj

V0
(f)

is the function in V0 which equals (fn,1 + fn,2)/2 on the interval [n, n + 1).
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Figure 5.7: The projection of a basis function in V1 onto V0 and W0.

Moreover, proj
W0

(f) is the function in W0 which is (fn,1 − fn,2)/2 on [n, n+
1/2), and −(fn,1 − fn,2)/2 on [n+ 1/2, n+ 1).

In other words, the projection on V0 is constructed by averaging on two
subintervals, while the projection on W0 is constructed by taking the difference
from the mean. This sounds like a reasonable candidate for the least-squares
approximations. In the exercise we generalize these observations.

Consider the functions ψ̂0,n = (φ1,2n − φ1,2n+1)/2 from Lemma 5.12. They
are clearly orthogonal since their nonzero parts do not overlap. We also note
that �ψ̂0,n� =

√
2/2, since it has absolute value

√
2/2 on two intervals of length

1/2. The functions defined by ψ0,n(t) =
√
2 ψ̂0,n(t) will therefore form an or-

thonormal set.

Lemma 5.14. Define the function ψ by

ψ(t) =
�
φ1,0(t)− φ1,1(t)

�
/

√
2 = φ(2t)− φ(2t− 1) (5.13)

and set

ψ0,n(t) = ψ(t− n) =
�
φ1,2n(t)− φ1,2n+1(t)

�
/

√
2 for n = 0, 1, . . . , N − 1.

(5.14)
Then the set {ψ0,n}N−1

n=0 is an orthonormal basis for W0, the orthogonal com-
plement of V0 in V1.

Later we will encounter other functions, which also will be denoted by ψ,
and have similar properties as stated in Lemma 5.14. In the theory of wavelets,
such ψ are called mother wavelets. In Figure 5.8 we have plotted the functions
φ and ψ. There is one important property of ψ, which we will return to:
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Figure 5.8: The functions we used to analyse the space of piecewise constant
functions

Observation 5.15. We have that
�
N

0 ψ(t)dt = 0.

This can be seen directly from the plot in Figure 5.8, since the parts of the
graph above and below the x-axis cancel.

We now have all the tools needed to define the Discrete Wavelet Transform.

Theorem 5.16 (Discrete Wavelet Transform). The space V1 can be decom-
posed as the orthogonal sum V1 = V0 ⊕W0 where W0 is the orthogonal com-
plement of V0 in V1, and V1 therefore has the two bases

φ1 = (φ1,n)
2N−1
n=0 and (φ0,ψ0) =

�
(φ0,n)

N−1
n=0 , (ψ0,n)

N−1
n=0

�
.

The Discrete Wavelet Transform (DWT) is the change of coordinates from the
basis φ1 to the basis (φ0,ψ0). If

g1 =
2N−1�

n=0

c1,nφ1,n ∈ V1

g0 =
N−1�

n=0

c0,nφ0,n ∈ V0

e0 =
N−1�

n=0

w0,nψ0,n ∈ W0

and g1 = g0 + e0, then the DWT is given by

c0,n = (c1,2n + c1,2n+1)/
√
2 (5.15)

w0,n = (c1,2n − c1,2n+1)/
√
2. (5.16)
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Conversely, the Inverse Discrete Wavelet Transform (IDWT) is the change of
coordinates from the basis (φ0,ψ0) to the basis φ1, and is given by

c1,2n = (c0,n + w0,n)/
√
2 (5.17)

c1,2n+1 = (c0,n − w0,n)/
√
2. (5.18)

Proof. Most of this theorem has already been established. In particular, the
formulas (5.15)–(5.16) are just (5.8) and (5.12). What remains is to prove the
formulas (5.17)–(5.18). For this we note from (5.5) and (5.14) that

g0 + e0 =
N−1�

n=0

c0,nφ0,n +
N−1�

n=0

w0,nψ0,n (5.19)

=
N−1�

n=0

c0,n(φ1,2n + φ1,2n+1)/
√
2 +

N−1�

n=0

w0,n(φ1,2n − φ1,2n+1)/
√
2

(5.20)

=
N−1�

n=0

(c0,n + w0,n)φ1,2n/
√
2 + (c0,n − w0,n)φ1,2n+1/

√
2. (5.21)

It is common to reorder the basis vectors in (φ0,ψ0) to

C1 = {φ0,0,ψ0,0,φ0,1,ψ0,1, · · · ,φ0,N−1,ψ0,N−1}. (5.22)

The subscript 1 is used since C1 is a basis for V1. This reordering of the basis
functions is useful since it makes it easier to write down the change of coordinates
matrices. To be more precise, from formulas (5.17)–(5.18) it is apparent that
Pφ1←C1 is the matrix where

�
1√
2

1√
2

1√
2

− 1√
2

�

is repeated along the main diagonal N times. Also, from formulas (5.15)–(5.16)
it is apparent that PC1←φ1

is the same matrix. Such matrices are called block

diagonal matrices. This particular block diagonal matrix is clearly orthogonal,
since it transforms one orthonormal base to another.

Exercises for Section 5.2

Ex. 1 — Show that the coordinate vector for f ∈ V0 in the basis {φ0,0,φ0,1, . . . ,φ0,N−1}
is (f(0), f(1), . . . .f(N − 1)).
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Ex. 2 — Show that

proj
V0
(f) =

N−1�

n=0

��
n+1

n

f(t)dt

�
φ0,n(t) (5.23)

for any f . Show also that the first part of Proposition 5.13 follows from this.

Ex. 3 — Show that

�
�

n

��
n+1

n

f(t)dt

�
φ0,n(t)− f�2

= �f, f� −
�

n

��
n+1

n

f(t)dt

�2

.

This, together with the previous exercise, gives us an expression for the least-
squares error for f from V0 (at least after taking square roots).

Ex. 4 — Consider the projection T of V1 onto V0.
a. Show that T (φ) = φ and T (ψ) = 0.
b. Show that the matrix of T relative to C1 is given by the diagonal matrix

where 1 and 0 are repeated alternatingly on the diagonal, N times (i.e.
1 at the even indices, 0 at the odd indices).

c. Show in a similar way that the projection of V1 onto W0 has a matrix
relative to C1 given by the diagonal matrix where 1 and 0 also are repeated
alternatingly on the diagonal, but with the opposite order.

Ex. 5 — Use lemma 5.9 to write down the matrix for the linear transformation
proj

V0
: V1 → V0 relative to the bases φ1 and φ0. Also, use lemma 5.12 to write

down the matrix for the linear transformation proj
W0

: V1 → W0 relative to the
bases φ1 and ψ0.

Ex. 6 — Show that

proj
W0

(f) =
N−1�

n=0

��
n+1/2

n

f(t)dt−
�

n+1

n+1/2
f(t)dt

�
ψ0,n(t) (5.24)

for any f . Show also that the second part of Proposition 5.13 follows from this.
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5.3 Multiresolution analysis for piecewise constant

functions

In the Section 5.2 we introduced the important decomposition V1 = V0 ⊕ W0

which lets us rewrite a function in V1 as an approximation in V0 and the corre-
sponding error in W0 which is orthogonal to the approximation. The resolution
spaces Vm were in fact defined for all integers m ≥ 0. It turns out that all these
resolution spaces can be decomposed in the same way as V1.

Definition 5.17. The orthogonal complement of Vm−1 in Vm is denoted
Wm−1. All the spaces {Wk}k are also called detail spaces.

The first question we will try to answer is how we can, for f ∈ Vm, extract
the corresponding detail in Wm−1.

5.3.1 Extraction of details at higher resolutions

We first need to define ψm,n in terms of ψ, similarly to how we defined φm,n in
terms of φ,

ψm,n(t) = 2m/2
ψ(2mt− n), for n = 0, 1, . . . , 2mN − 1. (5.25)

As in Lemma 5.14, it is straightforward to prove that ψ
m

= {ψm,n}2
m
N−1

n=0 is
an orthonormal basis for Wm. Moreover, we have the following result, which is
completey analogous to Theorem 5.16.

Theorem 5.18. The space Vm can be decomposed as the orthogonal sum
Vm = Vm−1 ⊕ Wm−1 where Wm−1 is the orthogonal complement of Vm−1 in
Vm, and Vm has the two bases

φ
m

= (φm,n)
2mN−1
n=0

and
(φ

m−1,ψm−1) =
�
(φm−1,n)

2m−1
N−1

n=0 , (ψm−1,n)
2m−1

N−1
n=0

�
.

If

gm =
2mN−1�

n=0

cm,nφm,n ∈ Vm,

gm−1 =
2m−1

N−1�

n=0

cm−1,nφm−1,n ∈ Vm−1,

em−1 =
2m−1

N−1�

n=0

wm−1,nψm−1,n ∈ Wm−1,
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and gm = gm−1 + em−1, then the change of coordinates from the basis φ
m

to
the basis (φ

m−1,ψm−1) is given by

cm−1,n = (cm,2n + cm,2n+1)/
√
2, (5.26)

wm−1,n = (cm,2n − cm,2n+1)/
√
2. (5.27)

Conversely, the change of coordinates from the basis (φ
m−1,ψm−1) to the

basis φ
m

is given by

cm,2n = (cm−1,n + wm−1,n)/
√
2, (5.28)

cm,2n+1 = (cm−1,n − wm−1,n)/
√
2. (5.29)

We will omit the proof of Theorem 5.18, and only remark that it can be
proved by making the substitution t → 2mu in Lemma 5.9 and Lemma 5.12, and
then following the proof of Theorem 5.16. Clearly, we can now find the change
of coordinate matrices as before, and as before this is most easily expressed if
we reorder the basis vectors for (φ

m−1,ψm−1) again as in Equation (5.22), i.e.
we define

Cm = {φm−1,0,ψm−1,0,φm−1,1,ψm−1,1, · · · ,φm−1,2m−1N−1,ψm−1,2m−1N−1}.
(5.30)

The bases φ
m

and Cm are both referred to as wavelet bases. It is now apparent
that both change of coordinates matrices Pφm←Cm , PCm←φm

can be obtained
by repeating the matrix

1√
2

�
1 1
1 −1

�

along the diagonal, but this time it is repeated 2m−1
N times. In mathematical

statements in the following, we will always express a change of coordinates in
terms of the wavelet bases φ

m
and Cm, due to the nice expression this ma-

trix then has. In implementations, however, we also need to reorder Cm to
(φ

m−1,ψm−1), in order to prepare for successive changes of coordinates, as we
will now describe.

Let us return to our interpretation of the Discrete Wavelet Transform as
writing a function g1 ∈ V1 as a sum of a function g0 ∈ V0 at low resolution,
and a detail function e0 ∈ W0. Theorem 5.18 states similarly how we can write
gm ∈ Vm as a sum of a function gm−1 ∈ Vm−1 at lower resolution, and a detail
function em−1 ∈ Wm−1. The same decomposition can of course be applied to
gm−1 in Vm−1, then to the resulting approximation gm−2 in Vm−2, and so on,

Vm = Vm−1 ⊕Wm−1

= Vm−2 ⊕Wm−2 ⊕Wm−1

...
= V0 ⊕W0 ⊕W1 ⊕ · · ·⊕Wm−2 ⊕Wm−1. (5.31)
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This change of coordinates corresponds to replacing as many φ-functions as we
can with ψ-functions, i.e. replacing the original function with a sum of as much
detail at different resolutions as possible. Let us give a name to the bases we
will use for these direct sums.

Definition 5.19 (Canonical basis for direct sum). Let C1, C2 . . . , Cn be inde-
pendent vector spaces, and let B1,B2, . . . ,Bn be corresponding bases. The ba-
sis {B1,B2, . . . ,Bn}, i.e., the basis where the basis vectors from Bi are included
before Bj when i < j, is referred to as the canonical basis for C1⊕C2⊕ · · ·⊕Cn

and is dentoed B1 ⊕ B2 ⊕ . . .⊕ Bn.

When we above say “basis for V0 ⊕ W0 ⊕ W1 ⊕ · · · ⊕ Wm−2 ⊕ Wm−1”, we
really mean the canonical basis for this space. In general, the Discrete Wavelet
Transform is used to denote a change of coordinates from φm to the canonical
basis, for any m.

Definition 5.20 (m-level Discrete Wavelet Transform). Let Fm denote the
change of coordinates matrix from φ

m
to the canonical basis

φ0 ⊕ψ0 ⊕ψ1 ⊕ · · ·⊕⊕ψ
m−2 ⊕ψ

m−1

for V0 ⊕W0 ⊕W1 ⊕ · · ·⊕Wm−2 ⊕Wm−1. The matrix Fm is called a (m-level)
Discrete Wavelet Transform, or a DWT. After this change of coordinates, the
resulting coordinates are called wavelet coefficients. The change of coordinates
the opposite way is called an (m-level) Inverse Discrete Wavelet Transform, or
IDWT.

Clearly, this generalizes the Discrete Wavelet Transform defined in Sec-
tion 5.2. At each level in a DWT, Vk is split into one part from Vk−1, and
one part from Wk−1. We can visualize this with the following figure, where the
arrows represent changes of coordinates:

Vm
��

��

Vm−1
��

��

Vm−2
��

��

· · · ��

��

V0

Wm−1 Wm−2 Wm−3 W0

The part from Wk−1 is not subject to further transformation. This is seen in
the figure since Wm−1 is a leaf node, i.e. there are no arrows going out from
Wm−1. In a similar illustration for the IDWT, the arrows would go the opposite
way. The Discrete Wavelet Transform is the analogue in a wavelet setting to
the Discrete Fourier transform. When applying the DFT to a vector of length
N , one starts by viewing this vector as coordinates relative to the standard
basis. When applying the DWT to a vector of length N , one instead views
the vector as coordinates relative to the basis φ

m
. This makes sense in light of

Exercise 5.2.1.
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The DWT is what is used in practice when transforming a signal using
wavelets, and it is straightforward to implement: One simply needs to iter-
ate(5.26)-(5.27) for m,m− 1, . . . , 1, also at each step, the coordinates in φ

m−1

should be placed before the ones in ψ
m−1, due to the order of the basis vectors

in the canonical basis of the direct sum. At each step, only the first coordinates
are further transformed. The following function, called DWTHaarImpl, follows
this procedure. It takes as input the number of levels m, as well as the input
vector x, runs the m-level DWT on x, and returns the result:

function xnew=DWTHaarImpl(x,m)

xnew=x;

for mres=m:(-1):1

len=length(xnew)/2^(m-mres);

c=(xnew(1:2:(len-1))+xnew(2:2:len))/sqrt(2);

w=(xnew(1:2:(len-1))-xnew(2:2:len))/sqrt(2);

xnew(1:len)=[c w];

end

Note that this implementation is not recursive, contrary to the FFT. The for-
loop here runs through the different resolutions. Inside the loop we perform the
change of coordinates from φ

k
to (φ

k−1,ψk−1) by applying equations (5.26)-
(5.27). This works on the first coordinates, since the coordinates from φ

k
are

stored first in
Vk ⊕Wk ⊕Wk+1 ⊕ · · ·⊕Wm−2 ⊕Wm−1.

Finally, the c-coordinates are stored before the w-coordinates, again as required
by the order in the canonical basis. In this implementation, note that the first
levels require the most multiplications, since the latter levels leave an increasing
part of the coordinates unchanged. Note also that the change of coordinates
matrix is a very sparse matrix: At each level a coordinate can be computed
from only two of the other coordinates, so that this matrix has only two nonzero
elements in each row/column. The algorithm clearly shows that there is no need
to perform a full matrix multiplication to perform the change of coordinates.

The corresponding function for the IDWT, called IDWTHaarImpl, goes as
follows:

function x=IDWTHaarImpl(xnew,m)

x=xnew;

for mres=1:m

len=length(x)/2^(m-mres);

ev=(x(1:(len/2))+x((len/2+1):len))/sqrt(2);

od=(x(1:(len/2))-x((len/2+1):len))/sqrt(2);

x(1:2:(len-1))=ev;

x(2:2:len)=od;

end

Here the steps are simply performed in the reverse order, and by iterating equa-
tions (5.28)-(5.29).
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You may be puzzled by the names DWTHaarImpl and IDWTHaarImpl. In
the next sections we will consider other cases, where the underlying function φ

may be a different function, not necessarily piecewise constant. It will turn out
that much of the analysis we have done makes sense for other functions φ as
well, giving rise to other structures which we also will refer to as wavelets. The
wavelet resulting from piecewise constant functions is thus simply one example
out of many, and it is commonly referred to as the Haar wavelet.

Example 5.21. When you run a DWT you may be led to believe that coeffi-
cients from the lower order resolution spaces may correspond to lower frequen-
cies. This sounds reasonable, since the functions φ(2mt− n) ∈ Vm change more
quickly than φ(t − n) ∈ V0. However, the functions φm,n do not correspond
to pure tones in the setting of wavelets. But we can still listen to sound from
the different resolution spaces. In Exercise 9 you will be asked to implement
a function which runs an m-level DWT on the first samples of the sound file
castanets.wav, extracts the coefficients from the lower order resolution spaces,
transforms the values back to sound samples with the IDWT, and plays the
result. When you listen to the result the sound is clearly recognizable for lower
values of m, but is degraded for higher values of m. The explanation is that
too much of the detail is omitted when you use a higher m. To be more pre-
cise, when listening to the sound by throwing away wvereything from the detail
spaces W0,W1, . . . ,Wm−1, we are left with a 2−m share of the data. Note that
this procedure is mathematically not the same as setting some DFT coefficients
to zero, since the DWT does not operate on pure tones.

It is of interest to plot the samples of our test audio file castanets.wav, and
compare it with the first order DWT coefficients of the same samples. This is
shown in Figure 5.9. The first part half of the plot represents the low-resolution
approximation of the sound, the second part represents the detail/error. We see
that the detail is quite significant in this case. This means that the first order
wavelet approximation does not give a very good approximation to the sound.
In the exercises we will experiment more on this.

It is also interesting to plot only the detail/error in the sound, for different
resolutions. For this, we must perform a DWT so that we get a representation
in the basis V0⊕W0⊕W1⊕ · · ·⊕Wm−1, set the coefficicents from V0 to sero, and
transform back with the IDWT. In figure 5.10 the error is shown for the test
audio file castanets.wav for m = 1, m = 2. This clearly shows that the error
is larger when two levels of the DWT are performed, as one would suspect. It
is also seen that the error is larger in the part of the file where there are bigger
variations. This also sounds reasonable.

The previous example illustrates that wavelets as well may be used to per-
form operations on sound. As we will see later, however, our main application
for wavelets will be images, where they have found a more important role than
for sound. Images typically display variations which are less abrupt than the
ones found in sound. Just as the functions above had smaller errors in the corre-
sponding resolution spaces than the sound had, images are thus more suited for
for use with wavelets. The main idea behind why wavelets are so useful comes
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(b) The first order DWT coefficients

Figure 5.9: The sound samples and the DWT coefficients of the sound
castanets.wav.
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(a) m = 1
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(b) m = 2

Figure 5.10: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for different values of m.
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(a) A square wave
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(b) f(t) = 1− 2|1/2− t/N |
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(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 5.11: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · ·⊕Wm−1) for
N = 1024 for different functions f(t), for different values of m.

from the fact that the detail, i.e., wavelet coefficients corresponding to the spaces
Wk, are often very small. After a DWT one is therefore often left with a couple
of significant coefficients, while most of the coefficients are small. The approxi-
mation from V0 can be viewed as a good approximation, even though it contains
much less information. This gives another reason why wavelets are popular for
images: Detailed images can be very large, but when they are downloaded to
a web browser, the browser can very early show a low-resolution of the image,
while waiting for the rest of the details in the image to be downloaded. When
we later look at how wavelets are applied to images, we will need to handle one
final hurdle, namely that images are two-dimensional.

Example 5.22. Above we plotted the DWT coefficients of a sound, as well
as the detail/error. We can also experiment with samples generated from a
mathematical function. Figure 5.11 plots the error for different functions, with
N = 1024. In these cases, we see that we require large m before the detail/error
becomes significant. We see also that there is no error for the square wave. The
reason is that the square wave is a piecewise constant function, so that it can be
represented exactly by the φ-functions. For the other functions, however, this
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is not the case, so we here het an error.

Above we used the functions DWTHaarImpl, IDWTHaarImpl to plot the er-
ror. For the functions we plotted in the previous example it is also possible to
compute the wavelet coefficients, which we previously have denoted by wm,n,
exactly. You will be asked to do this in exercises 12 and 13. The following
example shows the general procedure which can be used for this:

Example 5.23. Let us compute the wavelet coefficients wm,n for the function
f(t) = 1− t/N . This function decreases linearly from 1 to 0 on [0, N ]. Since the
wm,n are coefficients in the basis {ψm,n}, it follows by the orthogonal decompo-
sition formula that wm,n = �f,ψm,n� =

�
N

0 f(t)ψm,n(t)dt. Using the definition
of ψm,n we get that

wm,n =

�
N

0
(1− t/N)ψm,n(t)dt = 2m/2

�
N

0
(1− t/N)ψ(2mt− n)dt.

Moreover ψm,n is nonzero only on [2−m
n, 2−m(n+1)), and is 1 on [2−m

n, 2−m(n+
1/2)), and −1 on [2−m(n+ 1/2), 2−m(n+ 1)). We can therefore write

wm,n = 2m/2

� 2−m(n+1/2)

2−mn

(1− t/N)dt− 2m/2

� 2−m(n+1)

2−m(n+1/2)
(1− t/N)dt

= 2m/2

�
t− t

2

2N

�2−m(n+1/2)

2−mn

− 2m/2

�
t− t

2

2N

�2−m(n+1)

2−m(n+1/2)

= 2m/2

�
2−m(n+ 1/2)− 2−2m(n+ 1/2)2

2N
− 2−m

n++
2−2m

n
2

2N

�

− 2m/2

�
2−m(n+ 1)− 2−2m(n+ 1)2

2N
− 2−m(n+ 1/2) +

2−2m(n+ 1/2)2

2N

�

= 2m/2

�
2−2m

n
2

2N
− 2−2m(n+ 1/2)2

N
+

2−2m(n+ 1)2

2N

�

=
2−3m/2

2N

�
n
2 − 2(n+ 1/2)2 + (n+ 1)2

�

=
1

N22+3m/2
.

We see in particular that wm,n → 0 when m → ∞. We see also that there were
a lot of computations even in this very simple example. For most functions we
therefore usually do not compute wm,n exactly. Instead we use implementations
like DWTHaarImpl, IDWTHaarImpl, and run them on a computer.

5.3.2 Matrix factorization of the DWT

In this section we will write down a matrix factorization of the DWT. This
factorization is not used much in mathematical statements, since one typically
hides this in implementations of the DWT. This is very similar to the case for the
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FFT, where the matrix factorizations grow increasingly complex when N = 2n

is large, but where the algorithms are still very compact. We need the concept
of a direct sum of matrices before we can write down the DWT factorization:

Definition 5.24 (Direct sum of matrices). Let T1, T2, . . . , Tn be square ma-
trices. By the direct sum of T1, . . . , Tn, denoted T1 ⊕ T2 ⊕ · · ·⊕ Tn, we mean
the block-diagonal matrix where the matrices T1, T2,. . . ,Tn are placed along
the diagonal, with zeros everywhere else.

We can now establish the matrix factorization of the DWT and IDWT in
terms of the direct sum of matrices:

Theorem 5.25 (Matrix of the m-level DWT). Define the (2mN) × (2mN)
change of coordinate matrices

Gm = (Pφm←Cm)T

Hm = PCm←φm

The m-level DWT and IDWT can be expressed as

Fm = (P21NH1 ⊕ I2mN−21N )(P22NH2 ⊕ I2mN−22N )

· · · (P2m−1NHm−1 ⊕ I2mN−2m−1N )P2mNHm,

(Fm)−1 = (P2mNGm)T ((P2m−1NGm−1)
T ⊕ I2mN−2m−1N )

· · · ((P22NG2)
T ⊕ I2mN−22N )((P21NG1)

T ⊕ I2mN−21N ).

where PN is the matrix we used to group a vector into its even- and odd
indexed samples in Section 4.1 (i.e. PNx = (x(e)

,x(o))).

Proof. The m level DWT performs m changes of coordinates in order. For k =
0, 1, . . . ,m−1, these steps are (in this order), the change of coordinates from the
canonical basis of Vm−k⊕m−1

r=m−k
Wr to the canonical basis of Vm−k−1⊕m−1

r=m−k−1
Wr. This change of coordinates only transforms the coordinates from Vm−k, and
there are 2m−k

N such coordinates. The remaining 2mN − 2m−k
N coordinates

are left unchanged, which corresponds to

0, 2mN − 2m−1
N, . . . , 2mN − 2m−(m−2)

N, ..., 2mN − 2m−(m−1)
N

coordinates for k = 0, 1, . . . ,m − 1, which explain the I0, I2mN−2m−1N ,. . . ,
I2mN−22N , I2mN−21N matrices above from right to left. The change of coor-
dinates from Vm−k to Vm−k−1 ⊕ Wm−k−1 is implemented with the change of
coordinates matrix Hm−k, followed by a reoredering of the coordinates so that
the even-indexed ones come first. It is clear that this can be implemented as
P2m−kNHm−k, where P2m−kN is defined as in Section 4.1. This explains the
matrices P2mNHm, P2m−1NHm−1,. . . , P22NH2, P21NH1 above, from right to
left.

150



The m-level IDWT is the product of the inverse matrices in the opposite
order. We have that

(P2m−kNHm−k ⊕ I2mN−2m−kN )−1 = (P2m−kNHm−k)
−1 ⊕ I2mN−2m−kN

= (Gm−k)
T (P2m−kN )T ⊕ I2mN−2m−kN

= (P2m−kNGm−k)
T ⊕ I2mN−2m−kN

where we used Exercise 5. The result now follows.

A good question is why we use the transpose of Gm in its definition. We
will discuss this later.

5.3.3 Summary

Let us finally summarize the properties of the spaces Vm. We showed that they
were nested, i.e.

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · .

We also showed that continuous functions could be approximated arbitrarily
well from Vm, as long as m was chosen large enough. Moreover it is clear that
the space V0 is closed under all translates, at least if we view the functions
in V0 as periodic with period N , defined as previously on the period [0, N)
(translating with N then means that we get the same function back). In the
following we will always identify a function with this periodic extension, just as
we did in Fourier analysis. When performing this identification, it is also clear
that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1. We have therefore shown
that the scaling funtion φ fits in with the following general framework.

Definition 5.26. A Multiresolution analysis, or MRA, is a nested sequence
of function spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · (5.32)

so that

1. Any continuous function can be approximated arbitrarily well from Vm,
as long as m is large enough,

2. f(t) ∈ V0 if and only if f(2mt) ∈ Vm,

3. f(t) ∈ V0 if and only if f(t− n) ∈ V0 for all n.

4. There is a function φ, called a scaling function, so that {φ(t−n)}0≤n<N

is a basis for V0. .

Note that, while the basis function we have seen up to now have been or-
thogonal, we state here that we allow them to be simply a basis as well. The
reason is that it will turn out that the assumption of orthogonality may be too
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strict, in that it makes it difficult to construct interesting wavelets. We will
return to this. The concept of Multiresolution Analysis is much used, and one
can find a wide variety of functions φ (not only piecewise constant functions),
which gives rise to a Multiresolution Analysis. With a multiresolution analysis
there is another important thing we also need: We need to be able to efficiently
compute the decomposition of gm ∈ Vm into the low resolution approximation
gm−1 ∈ Vm−1 and the detail em−1 ∈ Wm−1. This requires that we have a simple
expression for the corresponding projections. In particular, we need to find a
basis for Wm, which hopefully also is orthonormal. Once we have this, the or-
thogonal decomposition formula can be used to compute the projections, i.e. we
can compute the detail and low resolution approximations. Let us summarize
this in the following recipe for constructing wavelets:

Idea 5.27 (Recipe for constructing wavelets). In order to construct wavelets
which are useful for practical purposes, we need to do the following:

1. Find a function φ which gives rise to a multiresolution analysis, and so
that we easily can compute the projection from V1 onto V0.

2. Find a function ψ so that {ψ(t− n)}0≤n<N is an orthonormal basis for
W0, and so that we easily can compute the projection from V1 onto W0.

If we can achieve this, the m-level Discrete Wavelet Transform can be defined
and computed similarly as in the case when φ is a piecewise constant function,
with the obvious replacements.

In the next sections we will follow this recipe in order to contruct other
wavelets. Along the way we will run into other questions which are interesting.
One of them is, given the resolution spaces, is there a unique choice of φ, ψ? If
not, are any choices of φ, ψ better than others? How can we quantify how good
such a choice is?

Exercises for Section 5.3

Ex. 1 — Generalize exercise 5.2.4 to the projections from Vm+1 onto Vm amd
Wm.

Ex. 2 — Show that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1.

Ex. 3 — Let C1, C2 . . . , Cn be independent vector spaces, and let Ti : Ci → Ci

be linear transformations. The direct sum of T1, T2,. . . ,Tn which is written
T1 ⊕T2 ⊕ . . .⊕Tn denotes the linear transformation from C1 ⊕C2 ⊕ · · ·⊕Cn to
itself defined by

T1 ⊕ T2 ⊕ . . .⊕ Tn(c1 + c2 + · · ·+ cn) = T1(c1)⊕ T2(c2)⊕ · · ·⊕ Tn(cn)
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when c1 ∈ C1, c2 ∈ C2, . . . , cn ∈ Cn. Show that, if Bi is a basis for Ci then

[T1 ⊕ T2 ⊕ . . .⊕ Tn]B1⊕B2⊕...⊕Bn = [T1]B1 ⊕ [T2]B2 ⊕ · · ·⊕ [Tn]Bn ,

Here three new concepts are used: a direct sum of matrices, a direct sum of
bases, and a direct sum of linear transformations.

Ex. 4 — Assume that T1 and T2 are matrices, and that the eigenvalues of T1

are equal to those of T2. What are the eigenvalues of T1 ⊕T2? Can you express
the eigenvectors of T1 ⊕ T2 in terms of those of T1 and T2?

Ex. 5 — Assume that A and B are square matrices which are invertible. Show
that A⊕B is invertible, and that (A⊕B)−1 = A

−1 ⊕B
−1.

Ex. 6 — Let A,B,C,D be square matrices of the same dimensions. Show
that (A⊕B)(C ⊕D) = (AC)⊕ (BD).

Ex. 7 — Assume that you run an m-level DWT on a vector of length r. What
value of N does this correspond to? Note that an m-level DWT performs a
change of coordinates from Vm to V0 ⊕W0 ⊕W1 ⊕ · · ·⊕Wm−2 ⊕Wm−1.

Ex. 8 — Run a 2-level DWT on the first 217 sound samples of the audio file
castanets.wav, and plot the values of the resulting DWT-coefficients. Compare
the values of the coefficients from V0 with those from W0 and W1.

Ex. 9 — In this exercise we will experiment with applying an m-level DWT
to a sound file.

a. Write a function

function playDWTlower(m)

which
1. reads the audio file castanets.wav,
2. performs an m-level DWT to the first 217 sound samples of x using

the function DWTHaarImpl,
3. sets all wavelet coefficients representing detail to zero (i.e. keep only

wavelet coefficients from V0 in the decomposition V0 ⊕ W0 ⊕ W1 ⊕
· · ·⊕Wm−2 ⊕Wm−1),

4. performs an IDWT on the resulting coefficients using the function
IDWTHaarImpl,

5. plays the resulting sound.
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b. Run the function playDWTlower for different values of m. For which m

can you hear that the sound gets degraded? How does it get degraded?
Compare with what you heard through the function playDFTlower in
Example 3.15, where you performed a DFT on the sound sample instead,
and set some of the DFT coefficients to zero.

c. Do the sound samples returned by playDWTlower lie in [−1, 1]?

Ex. 10 — Attempt to construct a (nonzero) sound where the function playDWTlower

form the previous exercise does not change the sound for m = 1, 2.

Ex. 11 — Repeat Exercise 9, but this time instead keep only wavelet coeffi-
cients from the detail spaces W0,W1, . . .. Call the new function playDWTlowerdifference.
What kind of sound do you hear? Can you recognize the original sound in what
you hear?

Ex. 12 — Compute the wavelet detail coefficients analytically for the func-
tions in Example 5.22, i.e. compute the quantities wm,n =

�
N

0 f(t)ψm,n(t)dt
similarly to how this was done in Example 5.23.

Ex. 13 — Compute the wavelet detail coefficients analytically for the func-
tions f(t) =

�
t

N

�k, i.e. compute the quantities wm,n =
�
N

0

�
t

N

�k
ψm,n(t)dt

similarly to how this was done in Example 5.23. How do these compare with
the coefficients from the Exercise 12?

5.4 Wavelets constructed from piecewise linear

functions

In Section 5.3 we started with the simple space of functions that are constant on
each interval between two integers, which has a very simple orthonormal basis
given by translates of the characteristic function of the interval [0, 1). From
this we constructed a so-called multiresolution analysis of successively refined
spaces of piecewise constant functions that may be used to approximate any
continuous function arbitrarily well. We then saw how a given function in a fine
space could be projected orthogonally into the preceding coarser space. The
computations were all taken care of with the Discrete Wavelet Transform.

In many situations, piecewise constant functions are too simple, and in this
section we are going to extend the construction of wavelets to piecewise linear
functions. The advantage is that piecewise linear functions are better for ap-
proximating smooth functions and data than piecewise constants, which should
translate into smaller components (errors) in the detail spaces in many prac-
tical situations. As an example, this would be useful if we are interested in
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(a) A piecewise linear function.
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(b) The two functions φ(t) and φ(t− 3).

Figure 5.12: Some piecewise linear functions.

compression.

5.4.1 Multiresolution analysis

Our experience from deriving Haar wavelets will guide us in the construction
of piecewise linear wavelets. The first task is to define the underlying function
spaces.

Definition 5.28 (Resolution spaces of piecewise linear functions). The space
Vm is the subspace of continuous functions on R which are periodic with period
N , and linear on each subinterval of the form [n2−m

, (n+ 1)2−m).

Any f ∈ Vm is uniquely determined by its values on [0, N). Figure 5.12 (a)
shows an example of a piecewise linear function in V0 on the interval [0, 10]. We
note that a piecewise linear function in V0 is completely determined by its value
at the integers, so the functions that are 1 at one integer and 0 at all others are
particularly simple and therefore interesting, see Figure 5.12 (b). These simple
functions are all translates of each other and can therefore be built from one
scaling function, as is required for a multiresolution analysis.

Recall that the support of a function f defined on a subset I of R is given
by the closure of the set of points where the function is nonzero,

supp(f) = {t ∈ I | f(t) �= 0}.

Lemma 5.29. Let the function φ be defined by

φ(t) =






1 + t, if −1 ≤ t < 0;

1− t, if 0 ≤ t < 1;

0, otherwise;
(5.33)
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and for any m ≥ 0 set

φm,n(t) = φ(2mt− n) for n = 0, 1, . . . , 2mN − 1,

or in vector notation

φ
m

= (φm,0,φm,1, . . . ,φm,2mN−1).

The functions {φm,n}2
m
N−1

n=0 , restricted to the interval [0, N ], form a basis for
the space Vm for this interval. In other words, the function φ is a scaling
function for the spaces V0, V1, . . . . Moreover, the function φ0,n(t) is the
function in V0 with smallest support that is nonzero at t = n.

Proof. The proof is similar for all the resolution spaces, so it is sufficient to
consider the proof in the case of V0. The function φ is clearly linear between each
pair of neighbouring integers, and it is also easy to check that it is continuous.
Its restriction to [0, N ] therefore lies in V0. And as we noted above φ0,n(t) is 0
at all the integers except at t = n where its value is 1.

A general function f in V0 is completely determined by its values at the inte-
gers in the interval [0, N ] since all straight line segments between neighbouring
integers are then fixed. Note that we can also write f as

f(t) =
N−1�

n=0

f(n)φ0,n(t) (5.34)

since this function agrees with f at the integers in the interval [0, N ] and is
linear on each subinterval between two neighbouring integers. This means that
V0 is spanned by the functions {φ0,n}N−1

n=0 . On the other hand, if f is identically
0, all the coefficients in (5.34) are also 0, so {φ0,n}N−1

n=0 are linearly independent
and therefore a basis for V0.

Suppose that the function g ∈ V0 has smaller support than φ0,n, but is
nonzero at t = n. Then g must be identically zero either on [n − 1, n) or on
[n, n + 1], since a straight line segment cannot be zero on just a part of an
interval between integers. But then g cannot be continuous, which contradicts
the fact the it lies in V0.

The function φ and its translates and dilates are often referred to as hat
functions for obvious reasons.

A formula like (5.34) is also valid for functions in Vm.

Lemma 5.30. A function f ∈ Vm may be written as

f(t) =
2mN−1�

n=0

f(n/2m)φm,n(t). (5.35)
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An essential property of a multiresolution analysis is that the spaces should
be nested.

Lemma 5.31. The piecewise linear resolution spaces are nested,

V0 ⊂ V1 ⊂ · · · ⊂ Vm ⊂ · · · .

Proof. We only need to prove that V0 ⊂ V1 since the other inclusions are similar.
But this is immediate since any function in V0 is continuous, and linear on any
subinterval in the form [n/2, (n+ 1)/2).

In the piecewise constant case, we saw in Lemma 5.5 that the scaling func-
tions were automatically orthogonal since their supports did not overlap. This
is not the case in the linear case, but we could orthogonalise the basis φ

m
with

the Gram-Schmidt process from linear algebra. The disadvantage is that we lose
the nice local behaviour of the scaling functions and end up with basis functions
that are nonzero over all of [0, N ]. And for most applications, orthogonality is
not essential; we just need a basis.

Let us sum up our findings so far.

Observation 5.32. The spaces V0, V1, . . . , Vm, . . . form a multiresolution
analysis generated by the scaling function φ.

The next step in the derivation of wavelets is to find formulas that let us
express a function given in the basis φ0 for V0 in terms of the basis φ1 for V1.

Lemma 5.33. The function φ0,n satisfies the relation

φ0,n =
1

2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1. (5.36)

A general function g0 in V0 is also in V1, and if

g0 =
N−1�

n=0

c0,nφ0,n =
2N−1�

n=0

c1,nφ1,n

then

c1,2n = c0,n, for n = 0, 1, . . . , N − 1; (5.37)
c1,2n+1 = (c0,n + c0,(n+1) mod N )/2, for n = 0, 1, . . . , N − 1. (5.38)

Proof. Since φ0,n is in V0 it may be expressed in the basis φ1 with formula
(5.35),

φ0,n(t) =
2N−1�

k=0

φ0,n(k/2)φ1,k(t).
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The relation (5.36) now follows since

φ0,n

�
(2n− 1)/2

�
= φ0,n

�
(2n+ 1)/2

�
= 1/2, φ0,n(2n/2) = 1,

and φ0,n(k/2) = 0 for all other values of k.
To prove (5.37) and (5.38), we use (5.36),

g0 =
N−1�

n=0

c0,nφ0,n

=
N−1�

n=0

c0,n(φ1,2n−1/2 + φ1,2n + φ1,2n+1/2)

=
N−1�

n=0

c0,nφ1,2n +
N−1�

n=0

c0,(n+1) mod Nφ1,2n+1/2 +
N−1�

n=0

c0,nφ1,2n+1/2

=
N−1�

n=0

c0,nφ1,2n +
N−1�

n=0

(c0,n + c0,(n+1) mod N )φ1,2n+1/2,

where we have performed a substitution of the form n → n+1. The result now
follows by comparing with

�2N−1
n=0 c1,nφ1,n.

The relations in Lemma 5.33 can also be expressed in matrix form. If we set

c1 = (c1,n)
2N−1
n=0 , ce1 = (c1,2n)

N−1
n=0 , co1 = (c1,2n+1)

N−1
n=0 ,

we may write the equations (5.37) and (5.38) as
�
ce1
co1

�
=

�
I

A0

�
c0, (5.39)
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where I is the N × N identity matrix and A0 is the N × N circulant Toeplitz
matrix given by

A0 =
1

2





1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 1
1 0 0 · · · 0 1




. (5.40)

The formulas (5.37)–(5.38), or alternatively (5.39), show how a function in
V0 and can be represented in V1. Analogous formulas let us rewrite a function
in Vk in terms of the basis for Vk+1.

5.4.2 Detail spaces and wavelets

The next step in our derivation of wavelets for piecewise linear functions is the
definition of the detail spaces. In the case of V0 and V1, we need to determine
a space W0 so that V1 is the direct sum of V0 and W0. In the case of piecewise
constants we started with a function g1 in V1, computed the least squares ap-
proximation g0 in V0, and then defined the space W0 as the space of all possible
error functions. This is less appealing in the linear case since we do not have
an orthogonal basis for V0.

As in the case of piecewise constants we start with a function g1 in V1, but
we use an extremely simple approximation method, we simply drop every other
coefficient.

Definition 5.34. Let g1 be a function in V1 given by

g1 =
2N−1�

n=0

c1,n φ1,n. (5.41)

The approximation g0 = S(g1) in V0 interpolates g1 at the integers,

g0(n) = g1(n), n = 0, 1, . . . , N − 1. (5.42)

It is very easy to see that the coefficients of g0 actually can be obtained by
dropping every other coefficient:

Lemma 5.35. Let g1 be given by (5.41) and suppose that g0 =
�

N−1
n=0 c0,nφ0,n

in V0 interpolates g1 at the integers in 0, . . . , N − 1. Then the coefficients are
given by

c0,n = c1,2n, for n = 0, 1, . . . , N − 1, (5.43)
and

S(φ1,n) =

�
φ0,n/2, if n is an even integer;
0, otherwise.
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Once the method of approximation is determined, it is straightforward to
determine the detail space as the space of error functions. With the notation
from Definition 5.34, the error is given by e0 = g1 − g0. Since g0 interpolates g1
at the integers, the error is 0 there,

e0(n) = 0, for n = 0, 1, . . . , N − 1.

Conversely, any function in V1 which is 0 at the integers may be viewed as
an error function in the above sense. This provides the basis for a precise
description of the error functions.

Lemma 5.36. Suppose the function g0 in V0 interpolates a function g1 in V1

at the integers. Then the error e0 = g1 − g0 lies in the space W0 defined by

W0 = {f ∈ V1 | f(n) = 0, for n = 0, 1, . . . , N − 1.

A basis for W0 is given by the wavelets {ψ0,n}N−1
n=0 defined by

ψ0,n = φ1,2n+1, for n = 0, 1, . . . , N − 1.

If g1 =
�2N−1

n=0 c1,n φ1,n is approximated by g0 in V0 as in Lemma 5.35, the
error is given by e0 =

�
N−1
n=0 w0,nψ0,n where

w0,n = c1,2n+1 −
1

2
(c1,2n + c1,(2n+2) mod 2N ). (5.44)

Proof. We must show that any error function can be written in terms of the
wavelets. First of all we note that the wavelets are linearly independent since
their supports do not intersect. Let g1 ∈ V1 be as in (5.41) and let the g0 ∈ V0
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be the approximation described by Lemma 5.35. Then the error is given by

e0 = g1 − g0

=
2N−1�

n=0

c1,nφ1,n −
N−1�

n=0

c0,nφ0,n

=
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1 −
N−1�

n=0

c1,2nφ0,n

=
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

− 1

2

N−1�

n=0

c1,2nφ1,2n−1 −
N−1�

n=0

c1,2nφ1,2n − 1

2

N−1�

n=0

c1,2nφ1,2n+1

=
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

− 1

2

N−1�

n=0

c1,(2n+2) mod 2Nφ1,2n+1 −
N−1�

n=0

c1,2nφ1,2n − 1

2

N−1�

n=0

c1,2nφ1,2n+1

=
N−1�

n=0

�
c1,2n+1 −

1

2
(c1,2n + c1,(2n+2) mod 2N )

�
φ1,2n+1.

In the third equation we split the sum in g1 into even and odd terms and used
the definition of g0 in (5.43). In the next step we then rewrote g0 in V1 using
formula (5.37), and finally we rewrote φ0,n using formula (5.36).

We now have all the ingredients to formulate an analog of Theorem 5.18 that
describes how Vm can be expressed as a direct sum of Vm−1 and Wm−1. The
formulas for m = 1 generalise without change, except that the upper bound on
the summation indices must be adjusted.

Theorem 5.37. The space Vm can be decomposed as the direct sum Vm =
Vm−1 ⊕Wm−1 where Wm−1 is the space of all functions in Vm that are zero
at the points {n/2m−1}N2m−1−1

n=0 . The space Vm has the two bases

φ
m

= (φm,n)
2mN−1
n=0

and
(φ

m−1,ψm−1) =
�
(φm−1,n)

2m−1
N−1

n=0 , (ψm−1,n)
2m−1

N−1
n=0

�
.
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If gm ∈ Vm, gm−1 ∈ Vm−1, and em−1 ∈ Wm−1 are given by

gm =
2mN−1�

n=0

cm,nφm,n,

gm−1 =
2m−1

N−1�

n=0

cm−1,nφm−1,n,

em−1 =
2m−1

N−1�

n=0

wm−1,nψm−1,n,

and gm = gm−1 + em−1, then the change of coordinates from the basis φ
m

to
the basis (φ

m−1,ψm−1) is given by

cm−1,n = cm,2n,

wm−1,n = cm,2n+1 − (cm,2n + cm,(2n+2) mod 2N )/2.

Conversely, the change of coordinates from the basis (φ
m−1,ψm−1) to the

basis φ
m

is given by

cm,2n = cm−1,n, (5.45)
cm,2n+1 = wm−1,n + (cm−1,n + cm−1,n+1)/2. (5.46)

The matrix notation in (5.39) may be generalised to cover Theorem 5.37.
With the natural extension of the notation in (5.39) we see that IDWT given
by (5.45) and (5.46) can be expressed as

�
ce
m

co
m

�
=

�
I 0

Am−1 I

��
cm−1

wm−1

�
(5.47)

where both identity matrices have dimension N2m−1. The matrix Am−1 is a�
N2m−1) ×

�
N2m−1) matrix which is the natural generalisation of the matrix

A0 defined in (5.40). The DWT is simply the inverse of (5.39) and is given by
�
cm−1

wm−1

�
=

�
I 0

−Am−1 I

��
ce
m

co
m

�
. (5.48)

There is another simple expression for the DWT we will have use for. From
Equation (5.36) and from the definition of ψ we have

φ0,n =
1

2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1

ψ0,n = φ1,2n+1.

Again, it is custom to use the normalized functions φm,n(t) = 21/2φ(2mt − n).
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Using these instead, the two equations above take the form

φ0,n =
1

2
√
2
φ1,2n−1 +

1√
2
φ1,2n +

1

2
√
2
φ1,2n+1

ψ0,n =
1√
2
φ1,2n+1. (5.49)

These two relations together give all columns in the change of coordinate matrix
Pφ1←C1 , when the spaces φ

m
, Cm instead are defined in terms of the function

ψ, and the normalized φ. In particular, the first two columns in this matrix are

1√
2





1 0
1/2 1
0 0
...

...
0 0
1/2 0





. (5.50)

The remaining columns are obtained by shifting this, as in a circulant Toeplitz
matrix. Similarly we can compute the change of coordinate matrix the opposite
way, PC1←φ1

: Equations (5.49) can be written

1√
2
φ1,2n = φ0,n − 1

2
√
2
φ1,2n−1 −

1

2
√
2
φ1,2n+1

1√
2
φ1,2n+1 = ψ0,n,

from which it follows that

φ1,2n =
√
2φ0,n − 1

2
φ1,2n−1 −

1

2
φ1,2n+1

= −
√
2

2
ψ0,n−1 +

√
2φ0,n −

√
2

2
ψ0,n

φ1,2n+1 =
√
2ψ0,n,

which in the same way as above give the following two first columns in the
change of coordinate matrix PC1←φ1

:

√
2





1 0
−1/2 1
0 0
...

...
0 0

−1/2 0





. (5.51)

Also here, the remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix.
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Figure 5.13: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for different values of m.

Example 5.38. In Section 5.6 we will construct an algorithm which performs
DWT/IDWT, for a general wavelet. In particular, this algorithm can be used
for the wavelet we constructed in this section. Let us also for this wavelet plot
the detail/error in the test audio file castanets.wav for different resolutions, as
we did in Example 5.21. The result is shown in Figure 5.13. When comparing
with Figure 5.10 we see much of the same, but it seems here that the error is
bigger than before. In the next section we will try to explain why this is the
case, and construct another wavelet based on piecewise linear functions which
remedies this.

Example 5.39. Let us also repeat Exercise 5.22, where we plotted the de-
tail/error at different resolutions, for the samples of a mathematical function.
Figure 5.14 shows the new plot. With the square wave we see now that there
is an error. The reason is that a piecewise constant function can not be rep-
resented exactly by piecewise linear functions, due to discontinuity. For the
second function we see that there is no error. The reason is that this function
is piecewise constant, so there is no error when we represent the function from
the space V0. With the third function, hoewever, we see an error.

Exercises for Section 5.4

Ex. 1 — Show that, for f ∈ V0 we have that [f ]φ0
= (f(0), f(1), . . . , f(N−1)).

This generalizes the result for piecewise constant functions.
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(a) A square wave
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(b) f(t) = 1− 2|1/2− t/N |
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(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 5.14: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · ·⊕Wm−1) for
N = 1024 for different functions f(t), for different values of m.
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Ex. 2 — Show that

�φ0,n,φ0,n� =
2

3

�φ0,n,φ0,n±1� =
1

6
�φ0,n,φ0,n±k� = 0 for k > 1.

As a consequence, the {φ0,n}n are neither orthogonal, nor have norm 1.

Ex. 3 — The convolution of two functions defined on (−∞,∞) is defined by

(f ∗ g)(x) =
� ∞

−∞
f(t)g(x− t)dt.

Show that we can obtain the piecewise linear φ we have defined as φ = χ[−1/2,1/2)∗
χ[−1/2,1/2) (recall that χ[−1/2,1/2) is the function which is 1 on [−1/2, 1/2) and
0 elsewhere). This gives us a nice connection between the piecewise constant
scaling function (which is similar to χ[−1/2,1/2)) and the piecewise linear scaling
function in terms of convolution.

5.5 Alternative wavelets for piecewise linear func-

tions

The direct sum decomposition that we derived in Section 5.4 was very simple,
but also has its shortcomings. To see this, set N = 1 and consider the space
V10, which has dimension 210, which in most cases will mean that the function
g10 will be a very good representation of the underlying data. However, when
we compute gm−1 we just pick every other coefficient from gm. By the time we
get to g0 we are just left with the first and last coefficient from g10. In some
situations this may be adequate, but usually not.

To address this shortcoming, let us return to the piecewise constant wavelet,
and assume that f ∈ Vm. By the orthogonal decomposition theorem we have

f =
N−1�

n=0

�f,φ0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�f,ψr,n�ψr,n. (5.52)

If f is s times differentiable, it can be represented as f = Ps(x) +Qs(x), where
Ps is a polynomial of degree s, and Qs is a function which is very small (Ps

could for instance be a Taylor series expansion of f). If in addition �tk,ψ� = 0,
for k = 1, . . . , s, we have also that �tk,ψr,t� = 0 for r ≤ s, so that �Ps,ψr,t� = 0
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also. This means that (5.52) can be written

f =
N−1�

n=0

�Ps +Qs,φ0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Ps +Qs,ψr,n�ψr,n

=
N−1�

n=0

�Ps +Qs,φ0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Ps,ψr,n�ψr,n +
m−1�

r=0

2rN−1�

n=0

�Qs,ψr,n�ψr,n

=
N−1�

n=0

�f,φ0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Qs,ψr,n�ψr,n.

Here the first sum lies in V0. We see that the wavelet coefficients from Wr are
�Qs,ψr,n�, which are very small since Qs is small. This means that the detail in
the different spaces Wr is very small, which is exactly what we aimed for. Let
us summarize this as follows:

Theorem 5.40 (Vanishing moments). We say that ψ has k vanishing mo-
ments if the integrals

�∞
−∞ t

l
ψ(t)dt = 0 for all 0 ≤ l ≤ k − 1. If a function

f ∈ Vm is r times differentiable, and ψ has r vanishing moments, then f can
be approximated well from V0. Moreover, the quality of this approximation
improves when r increases.

It is also clear from the argument that if f is a polynomial of degree less
than or equal to k − 1 and ψ has k vanishing moments, then the wavelet detail
coefficients are exactly 0. This theorem at least says what we have to aim for
when the wavelet basis is orthonormal. The concept of vanishing moments also
makes sense when the wavelet is not orthonormal, however. One can show that
it is desirable to have many vanishing moments for other wavelets also. We
we will not go into this (the wavelets used in practice turn out to be “almost”
orthonormal, although they are not actually orthonormal. In such cases the
computations above serve as good approximations, so that it is desirable to
have many vanishing moments also here).

The Haar wavelet has one vanishing moment, since
�
N

0 ψ(t)dt = 0 as we
noted in Observation 5.15. It is an exercise to see that the Haar wavelet has
only one vanishing moment, i.e.

�
N

0 tψ(t)dt �= 0.
Now consider the wavelet we have used up to now for piecewise linear func-

tions, i.e. ψ(t) = φ1,1(t). Clearly this has no vanishing moments, since ψ(t) ≥ 0
for all t. This is thus not a very good choice of wavelet. Let us see if we can
construct an alternative function ψ̂, which has two vanishing moments, i.e. one
more than the Haar wavelet.

Idea 5.41. Adjust the wavelet construction in Theorem 5.37 so that the new
wavelets {ψ̂m−1,n}N2m−1

n=0 in Wm−1 satisfy
�

N

0
ψ̂m−1,n(t) dt =

�
N

0
tψ̂m−1,n(t) dt = 0, (5.53)
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for n = 0, 1, . . . , N2m − 1.

As usual, it is sufficient to consider what happens when V1 is written as a
direct sum of V0 and W0. From Idea 5.41 we see that we need to enforce two
conditions for each wavelet function. If we adjust the wavelets in Theorem 5.37
by adding multiples of the two neighbouring hat functions, we have two free
parameters,

ψ̂0,n = ψ0,n − αφ0,n − βφ0,n+1 (5.54)

that we may determine so that the two conditions in (5.53) are enforced. If we
do this, we get the following result:

Lemma 5.42. The function

ψ̂0,n(t) = ψ0,n(t)−
1

4

�
φ0,n(t) + φ0,n+1(t)

�
(5.55)

satisfies the conditions
�

N

0
ψ̂0,n(t) dt =

�
N

0
tψ̂0,n(t) dt = 0.

Using Equation (5.36), which stated that

φ0,n(t) =
1

2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1 (5.56)

we get

ψ̂0,n(t) = ψ0,n(t)−
1

4

�
φ0,n(t) + φ0,n+1(t)

�

= φ1,2n+1(t)−
1

4

�1
2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1 +

1

2
φ1,2n+1 + φ1,2n+2 +

1

2
φ1,2n+3

�

= −1

8
φ1,2n−1 −

1

4
φ1,2n +

3

4
φ1,2n+1 −

1

4
φ1,2n+2 −

1

8
φ1,2n+3. (5.57)

Note that what we did here is equivalent to finding the coordinates of ψ̂ in the
basis φ1: Equation (5.55) says that

[ψ̂]φ0⊕ψ0
= (−1/4,−1/4, 0, . . . , 0)⊕ (1, 0, . . . , 0). (5.58)

Since the IDWT is the change of coordinates from φ0⊕ψ0 to φ1, we could also
have computed [ψ̂]φ1

by taking the IDWT of (−1/4,−1/4, 0, . . . , 0)⊕(1, 0, . . . , 0).
In the next section we will consider more general implementations of the DWT
and the IDWT, which we thus can use instead of performing the computation
above.
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Figure 5.15: The function ψ we constructed as an alternative wavelet for piece-
wise linear functions.

Again, it is custom to use the normalized functions φm,n(t) = 21/2φ(2mt−n).
Using these instead, the two equations above take the form

φ0,n(t) =
1

2
√
2
φ1,2n−1 +

1√
2
φ1,2n +

1

2
√
2
φ1,2n+1

ψ̂0,n(t) = − 1

8
√
2
φ1,2n−1 −

1

4
√
2
φ1,2n +

3

4
√
2
φ1,2n+1 −

1

4
√
2
φ1,2n+2 −

1

8
√
2
φ1,2n+3.

These two relations together give all columns in the change of coordinate matrix
Pφ1←C1 , when the spaces φ

m
, Cm instead are defined in terms of the function

ψ̂, and the normalized φ. In particular, the first two columns in this matrix are

1√
2





1 −1/4
1/2 3/4
0 −1/4
0 −1/8
0 0
...

...
0 0
1/2 −1/8





. (5.59)

The first column is the same as before, since there was no change in the definition
of φ. The remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix. Similarly we could compute the change of coordinate matrix
the opposite way, PC1←φ1

. We will explain how this can be done in the next
section. The function ψ is plotted in Figure 5.15.

Example 5.43. Let us also plot the detail/error in the test audio file castanets.wav
for different resolutions for our alternative wavelet, as we did in Example 5.21.
The result is shown in Figure 5.16. Again, when comparing with Figure 5.10
we see much of the same. It is difficult to see an improvement from this fig-
ure. However, this figure also clearly shows a smaller error than the wavelet of
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Figure 5.16: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for different values of m.

the preceding section. A partial explanation is that the wavelet we now have
constructed has two vanishing moments.

Example 5.44. Let us also repeat Exercise 5.22 for our alternative wavelet,
where we plotted the detail/error at different resolutions, for the samples of a
mathematical function. Figure 5.17 shows the new plot. Again for the square
wave there is an error, which seems to be slightly lower than for the previous
wavelet. For the second function we see that there is no error, as before. The
reason is the same as before, since the function is piecewise constant. With the
third function there is an error. The error seems to be slightly lower than for
the previous wavelet, which fits well with the number of vanishing moments.

Exercises for Section 5.5

Ex. 1 — In this exercise we will show that there is a unique function on the
form (5.54) which has two vanishing moments.

a. Show that, when ψ̂ is defined by (5.54), we have that

ψ̂(t) =






−αt− α for − 1 ≤ t < 0

(2 + α− β)t− α for 0 ≤ t < 1/2

(α− β − 2)t− α+ 2 for 1/2 ≤ t < 1

βt− 2β for 1 ≤ t < 2

0 for all other t
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(a) A square wave
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(b) f(t) = 1− 2|1/2− t/N |
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(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 5.17: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · ·⊕Wm−1) for
N = 1024 for different functions f(t), for different values of m.
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b. Show that
�

N

0
ψ̂(t)dt =

1

2
− α− β

�
N

0
tψ̂(t)dt =

1

4
− β.

c. Explain why there is a unique function on the form (5.54) which has two
vanishing moments, and that this function is given by Equation (5.55).

Ex. 2 — In the previous exercise we ended up with a lot of calculations to
find α,β in Equation (5.54). Let us try to make a program which does this for
us, and which also makes us able to generalize the result.

a. Define

ak =

� 1

−1
t
k(1− |t|)dt

bk =

� 2

0
t
k(1− |t− 1|)dt

ek =

� 1

0
t
k(1− 2|t− 1/2|)dt,

for k ≥ 0. Explain why finding α,β so that we have two vanishing
moments in Equation 5.54 is equivalent to solving the following equation:

�
a0 b0

a1 b1

��
α

β

�
=

�
e0

e1

�

Write a program which sets up and solves this system of equations, and
use this program to verify the values for α,β we previously have found.
Hint: recall that you can integrate functions in Matlab with the function
quad. As an example, the function φ(t), which is nonzero only on [−1, 1],
can be integrated as follows:

quad(@(t)t.^k.*(1-abs(t)),-1,1)

b. The procedure where we set up a matrix equation in a. allows for gener-
alization to more vanishing moments. Define

ψ̂ = ψ0,0 − αφ0,0 − βφ0,1 − γφ0,−1 − δφ0,2. (5.60)

We would like to choose α,β, γ, δ so that we have 4 vanishing moments.
Define also

gk =

� 0

−2
t
k(1− |t+ 1|)dt

dk =

� 3

1
t
k(1− |t− 2|)dt
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for k ≥ 0. Show that α,β, γ, δ must solve the equation




a0 b0 g0 d0

a1 b1 g1 d1

a2 b2 g2 d2

a3 b3 g3 d3









α

β

γ

δ



 =





e0

e1

e2

e3



 ,

and solve this with Matlab.
c. Plot the function defined by (5.60), which you found in b.

Hint: If t is the vector of t-values, and you write
(t>=0).*(t<=1).*(1-2*abs(t-0.5)), you get the points φ1,1(t).

d. Explain why the coordinate vector of ψ̂ in the basis φ0 ⊕ψ0 is

[ψ̂]φ0⊕ψ0
= (−α,−β,−δ, 0, . . . , 0− γ)⊕ (1, 0, . . . , 0).

Hint: you can also compare with Equation (5.58) here. The placement of
−γ may seem a bit strange here, and has to with that φ0,−1 is not one of
the basis functions {φ0,n}N−1

n=0 . However, we have that φ0,−1 = φ0,N−1,
i.e. φ(t + 1) = φ(t −N + 1), since we always assume that the functions
we work with have period N .

e. Sketch a more general procedure than the one you found in b., which
can be used to find wavelet bases where we have even more vanishing
moments.

Ex. 3 — It is also possible to add more vanishing moments to the Haar
wavelet. Define

ψ̂ = ψ0,0 − a0φ0,0 − · · ·− ak−1φ0,k−1.

Define also cr,l =
�
l+1
l

t
r
dt, and er =

� 1
0 t

r
ψ(t)dt.

a. Show that ψ̂ has k vanishing moments if and only if a0, . . . , ak−1 solves
the equation





c0,0 c0,1 · · · c0,k−1

c1,0 c1,1 · · · c1,k−1
...

...
...

...
ck−1,0 ck−1,1 · · · ck−1,k−1









a0

a1
...

ak−1




=





e0

e1
...

ek−1




(5.61)

b. Write a function

function a=vanishingmomshaar(k)

which solves Equation 5.61, and returns a0, a1, . . . , ak−1 in the vector a.
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5.6 Wavelets and filters

Up to now we have seen three different examples of wavelet bases: One for
piecewise constant functions, and two for piecewise linear functions. In each
case it turned out that the change of coordinate matrices Pφm←Cm , PCm←φm

had a special structure: They were obtained by repeating the first two columns
in a circulant way, similarly to how we did in a circulant Toeplitz matrix. The
matrices were not exactly circulant Toeplitz matrices, however, since there are
two different columns repeating. The change of coordinate matrices occuring in
the stages in a DWT are thus not digital filters, but they seem to be related.
Let us start by giving these new matrices names:

Definition 5.45 (MRA-matrices). An N × N -matrix T , with N even, is
called an MRA-matrix if the columns are translates of the first two columns
in alternating order, in the same way as the columns of a circulant Toeplitz
matrix.

From our previous calculations it is clear that, once φ and ψ are given
through an MRA, the corresponding change of coordinate matrices will always
be MRA-matrices. The MRA-matrices is our connection between matrices and
wavelets. We would also like to state a similar connection with filters, i.e. show
how the DWT could be implemented in terms of filters. We start with the
following definition:

Definition 5.46. We denote by H0 the (unique) filter with the same first
row as PCm←φm

, and by H1 the (unique) filter with the same second row as
PCm←φm

.

Using this definition it is clear that

(PCm←φm
cm)k = (H0cm)k when k is even

(PCm←φm
cm)k = (H1cm)k when k is odd

since the left hand side depends only on row k in the matrix PCm←φm
, and this

is equal to row k in H0 (when k is even) or row k in H1 (when k is odd). This
means that PCm←φm

cm can be computed with the help of H0 and H1 as follows:

Theorem 5.47 (DWT expressed in terms of filters). Let cm be the coordi-
nates in φ

m
, and let H0, H1 be defined as above. Any stage in a DWT can

ble implemented in terms of filters as follows:

1. Compute H0cm. The even-indexed entries in the result are the cordinates
cm−1 in φ

m−1.

2. Compute H1cm. The odd-indexed entries in the result are the coordi-
nates wm−1 in ψ

m−1.
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Note that this corresponds to applying two filters, and throwing away half
of the results (since we only keep even-indexed and odd-indexed entries, respec-
tively). In practice we do not compute the full application of the filter due to
this. We can now complement Figure 5.3.1 by giving names to the arrows as
follows:

Vm

H0 ��

H1

��

Vm−1
H0 ��

H1

��

Vm−2
H0 ��

H1

��

· · · H0 ��

H1

��

V0

Wm−1 Wm−2 Wm−3 W0

Let us make a similar anlysis for the IDWT, and let us first make the following
definition:

Definition 5.48. We denote by G0 the (unique) filter with the same first
column as Pφm←Cm , and by G1 the (unique) filter with the same second column
as Pφm←Cm .

These filters are uniquely determined, since any filter is uniquely determined
from one of its columns. We can now write

Pφm←Cm





cm−1,0

wm−1,0

cm−1,1

wm−1,1

· · ·
cm−1,2m−1N−1

wm−1,2m−1N−1





= Pφm←Cm









cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0





+





0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1









= Pφm←Cm





cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0





+ Pφm←Cm





0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1





= G0





cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0





+G1





0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1





.

Here we have split a vector into its even-indexed and odd-indexed elements,
which correspond to the coefficients from φ

m−1 and ψ
m−1, respectively. In the

last equation, we replaced with G0, G1, since the multiplications with Pφm←Cm

depend only on the even and odd columns in that matrix (due to the zeros
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inserted), and these columns are equal in G0, G1. We can now state the following
characterization of the inverse Discrete Wavelet transform:

Theorem 5.49 (IDWT expressed in terms of filters). Let G0, G1 be defined
as above. Any stage in an IDWT can be implemented in terms of filters as
follows:

cm = G0





cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0





+G1





0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1





. (5.62)

We can now also complement Figure 5.3.1 for the IDWT with named arrows
as follows:

Vm Vm−1
G0

�� Vm−2
G0

�� · · ·
G0

�� V0
G0

��

Wm−1

G1

��

Wm−2

G1

��

Wm−3

G1

��

W0

G1

��

Note that the filters G0, G1 were defined in terms of the columns of Pφm←Cm ,
while the filters H0, H1 were defined in terms of the rows of PCm←φm

. This
difference is seen from the computations above to come from that the change
of coordinates one way splits the coordinates into two parts, while the inverse
change of coordinates performs the opposite.

There are two reasons why it is smart to express a wavelet transformation
in terms of filters. First of all, it enables us to reuse theoretical results from the
world of filters in the world of wavelets. Secondly, and perhaps most important,
it enables us to reuse efficient implementations of filters in order to compute
wavelet transformations. A lot of work has been done in order to establish
efficient implementations of filters, due to their importance.

In Example 5.21 we argued that the elements in Vm−1 correspond to fre-
quencies at lower frequencies than those in Vm, since V0 = Span(φ0,n) should be
interpreted as content of lower frequency than the φ1,n, with W0 = Span(ψ0,n

the remaining high frequency detail. To elaborate more on this, we have that
have that

φ(t) =
2N−1�

n=0

(G0)n,0φ1,n(t) (5.63)

ψ(t) =
2N−1�

n=0

(G1)n,1ψ1,n(t)., (5.64)
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where (Gk)i,j are the entries in the matrix Gk. Similar equations are true for
φ(t− k),ψ(t− k). Due to (5.63), the filter G0 should have lowpass filter charac-
teristics, since it extracts the information at lower frequencies. G1 should have
highpass filter characteristics du to (5.64). Let us verify this for the different
wavelets we have defined up to now.

5.6.1 Frequency response for the Haar Wavelet

For the Haar wavelet we saw that, in Pφm←Cm , the matrix
�

1√
2

1√
2

1√
2

− 1√
2

�

repeated along the diagonal. From this it is clear that

G0 = {1/
√
2, 1/

√
2}

G1 = {1/
√
2,−1/

√
2}.

We have seen these filters previously: G0 is a movinge average filter (of two ele-
ments), while G1 is a bass-reducing filter (up to multiplication with a constant).
We compute their frequency response as

λG0(ω) =
1√
2
+

1√
2
e
−iω =

√
2e−iω/2 cos(ω/2)

λG1(ω) =
1√
2
e
iω − 1√

2
=

√
2ieiω/2 sin(ω/2).

The magnitude of these are plotted in Figure 5.18, where the lowpass/highpass
characteristics are clearly seen. The two frequency responses seem also to be
the same, except for a shift by π in frequency. We will show later that this is
not coincidental. In this case we also have that

H0 = {1/
√
2, 1/

√
2}

H1 = {1/
√
2,−1/

√
2},

so that the frequency responses for the DWT have the same lowpass/highpass
characteristics.

5.6.2 Frequency responses for wavelets of piecewise linear

functions

For the first wavelet for piecewise linear functions we looked at in the previous
section, Equation (5.50) gives that

G0 =
1√
2
{1/2, 1, 1/2}

G1 =
1√
2
{1}. (5.65)
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Figure 5.18: The frequency responses for the MRA of piecewise constant func-
tions.

G0 is again a filter we have seen before: Up to multiplication with a constant,
it is the treble-reducing filter with values from row 2 of Pascal’s triangle. The
frequency responses are thus

λG0(ω) =
1

2
√
2
e
iω +

1√
2
+

1

2
√
2
e
−iω =

1√
2
(cosω + 1)

λG1(ω) =
1√
2
.

λG1(ω) thus has magnitude 1√
2

at all points. The magnitude of λG0(ω) is plotted
in Figure 5.19. Comparing with Figure 5.18 we see that here also the frequency
response has a zero at π. The frequency response seems also to be flatter around
π. For the DWT, Equation (5.51) gives us

H0 =
√
2{1}

H1 =
√
2{−1/2, 1,−1/2}. (5.66)

We see that, up to a constant, H1 is obtained from G0 by adding an alternating
sign. We know from before that this turns a lowpass filter into a highpass filter,
so that H1 is a highpass filter (it is a bass-reducing filter with values taken from
row 2 of Pascals triangle).

Let us compare with the alternative wavelet we used for piecewise linear
functions. In Equation (5.59) we wrote down the first two columns in Pφm←Cm .
This gives us that the two filters are

G0 =
1√
2
{1/2, 1, 1/2}

G1 =
1√
2
{−1/8,−1/4, 3/4,−1/4,−1/8}. (5.67)
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Figure 5.19: The frequency response λG0(ω) for the first choice of wavelet for
piecewise linear functions

Here G0 was as before since we use the same scaling function, but G1 was
changed. We also have to find the filters H0, H1. It can be shown that (although
we do not prove this), if g0,n, g1,n, h0,n, h1,n are the filter coefficients for the
filters, then

h0,n = α(−1)ng1,n

h1,n = α(−1)ng0,n, (5.68)

where α = 1�
n g0,ng1,n

. In other words, the filters are the same as G0, G1 up
to multiplication by a constant, and an alternating sign. This means, more
generally, that H1 is a highpass filter when G0 is a lowpass filter, and that H0

is a lowpass filter when G1 is a highpass filter. In this case, this means that

α =
1

1
2

�
− 1

2

�
− 1

4

�
+ 1 · 3

4 − 1
2

�
− 1

4

�� = 2,

so that

H0 =
√
2{−1/8, 1/4, 3/4, 1/4,−1/8}

H1 =
√
2{−1/2, 1,−1/2}. (5.69)

We now have that

λG1(ω) = −1/(8
√
2)e2iω − 1/(4

√
2)eiω + 3/(4

√
2)− 1/(4

√
2)e−iω − 1/(8

√
2)e−2iω

= − 1

4
√
2
cos(2ω)− 1

2
√
2
cosω +

3

4
√
2
.

The magnitude of λG1(ω) is plotted in Figure 5.20. Clearly, G1 now has highpass
characteristics, while the lowpass characteristic of G0 has been preserved. The
filters G0, G1, H0, H1 are particularly important in applications: Apart from the
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Figure 5.20: The frequency response λG1(ω) for the alternative wavelet for
piecewise linear functions.

scaling factors 1/
√
2,

√
2 in front, we see that the filter coefficients are all dyadic

fractions, i.e. they are on the form β/2j . Arithmetic operations with dyadic
fractions can be carried out exactly on a computer, due to representations as
binary numbers in computers. These filters are thus important in applications,
since they can be used as transformations for lossless coding. The same argu-
ment can be made for the Haar wavelet, but this wavelet had one less vanishing
moment.

5.6.3 Filter-based algorithm for the DWT and the IDWT

From the analysis in this section, we see that we can implement DWT/IDWT
based on expressions for the corresponding filters. This opens up for other op-
portunities also, in that we can start altogether by providing filters G0, G1,
H0, H1, and construct MRA-matrices with the same even/odd-indexed rows/-
columns as these filters (as in Theorem 5.47 and Theorem 5.49). If we can find
such filters so that the corresponding MRA-matrices invert each other, we can
use them in implementations of the DWT/IDWT, even though we have no idea
what the underlying functions φ,ψ may be, or if such functions exist at all.

This approach will be made in the following. To be more precise, we will
provide filters G0, G1, H0, H1 which are used in practice, and where it is known
that the corresponding MRA-matrices invert each other, and apply these in
the algorithms sketched in Theorem 5.47 and Theorem 5.49. We will restrict
ourself to the case where the filters G0, G1, H0, H1 all are symmetric. As can be
seen from the filter expressions, this was the case for all filters we have looked
at, except the Haar wavelet. We have already implemented the Haar wavelet,
however. Symmetric filters are also very common in practice. A reason for
this is that MRA-matrices based on symmetric filters also can be shown to
preserve symmetric vectors, so that they share some of the desirable properties
of symmetric filters (which lead us to the definition of the DCT).
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The algorithm for the DWT/IDWT is essentially a matrix/vector multipli-
cation, and this can be computed entry by entry once we have the rows of the
matrices. With the DWT we have these rows, since the rows in PCm←φm

are
given by the rows of H0, H1. In Exercise 3.4.3, we implemented a symmet-
ric filter, which took the filter coefficients as input. Another thing we need
is to extend this implementation so that it works for the case where the first
two rows, instead of only the first row, are given. In Exercise 3 we take you
through the steps in finding the formulas for this. This enables us to write
an algorithm for multiplying with an MRA matrix based on symmetric filters.
You will be spared writing this algorithm, and you can assume that the func-
tion y=rowsymmmratrans(a0,a1,x) performs this task. Here x represents the
vector we want to multiply with the MRA-matrix, and y represents the result.
The parameters a0,a1 require som explanation: They represent the filter coeffi-
cients for the filters which have the same first/second rows as the MRA-matrix,
respectively. This is most easily explained for the MRA-matrix for the DWT,
since here these filters are H0 and H1. Since H0, H1 are symmetric filters, they
can be written on the form

H0 = {h0,−k1 , . . . , h0,−1h0,0, h0,1, . . . , h0,k0}

H1 = {h1,−k1 , . . . , h1,−1h1,0, h1,1, . . . , h1,k1}

Since the negative-indexed filter coefficients are equal to the positive-indexed fil-
ter coefficients, there is no need to provide them to the function rowsymmmratrans.
It will therefore be assumed that the input to rowsymmmratrans is

a0 = (h0,0, h0,1, . . . , h0,k0)

a1 = (h1,0, h1,1, . . . , h1,k1),

i.e. only the filter coefficients with index ≥ 0 are included in a0 and a1. For the
IDWT the situation is different: here only the columns of Pφm←Cm are given
(and in terms of the columns of G0, G1). We therefore first need a step where
we translate the column representation of Pφm←Cm to a row representation of
the same matrix. This is a straightforward task, however a bit tedious. You
will be spared writing this code also, and can take for granted that the func-
tion [a0,a1]=changecolumnrows(g0,g1) performs this task. The parameters
g0,g1 are best explained in terms of the IDWT: If G0, G1 are the symmetric
filters in the IDWT, they are first written on the form

G0 = {g0,−l1 , . . . , g0,−1g0,0, g0,1, . . . , g0,l0}

G1 = {g1,−l1 , . . . , g1,−1g1,0, g1,1, . . . , g1,l1},

and we write as above

g0 = (g0,0, g0,1, . . . , g0,l0)

g1 = (g1,0, g1,1, . . . , g1,l1).
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The vectors a0,a1 returned by changecolumnrows are then the row represen-
tation which is accepted by the unction rowsymmmratrans.

Once we have the functions rowsymmmratrans and changecolumnrows, the
DWT and the IDWT can easily be computed. Exercises 4 and 5 will talk you
through the steps in this process. There is a very good reason for encapsulating
the filtering operations inside the function rowsymmmratrans: it can hide the
details of highly optimized implementations of different types of filters.

Example 5.50. In Exercise 8 you will be asked to implement a function
playDWTfilterslower which plays the low-resolution approximations to our
audio test file, for any type of wavelet, using the functions we have described.
With this function we can play the result for all the wavelets we have considered
up to now, in succession, and at a given resolution, with the following code:

function playDWTall(m)

disp(’Haar wavelet’);

playDWTlower(m);

disp(’Wavelet for piecewise linear functions’);

playDWTfilterslower(m,[sqrt(2)],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[1/sqrt(2)]);

disp(’Wavelet for piecewise linear functions, alternative version’);

playDWTfilterslower(m,[3/(2*sqrt(2)) 1/(2*sqrt(2)) -1/(4*sqrt(2))],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[3/(4*sqrt(2)) -1/(4*sqrt(2)) -1/(8*sqrt(2))]);

The call to playDWTlower first plays the result, using the Haar wavelet. The
code then moves on to the piecewise linear wavelet. From Equation (5.66) we
first see that

h0 = (h0,0, h0,1, . . . , h0,k0) = (
√
2) (5.70)

h1 = (h1,0, h1,1, . . . , h1,k1) = (
√
2,−

√
2/2), (5.71)

and from Equation (5.65) we see that

g0 = (g0,0, g0,1, . . . , g0,l0) = (1/
√
2, 1/(2

√
2)) (5.72)

g1 = (g1,0, g1,1, . . . , g1,l1) = (1/
√
2). (5.73)

These explain the parameters to the call to playDWTfilterslower for the piece-
wise linear wavelet. The code then moves to the alternative piecewise linear
wavelet. From Equation (5.69) we see that

h0 = (h0,0, h0,1, . . . , h0,k0) = (3
√
2/4,

√
2/4,−

√
2/8)

h1 = (h1,0, h1,1, . . . , h1,k1) = (
√
2,−

√
2/2),
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and from Equation (5.67) we see that

g0 = (g0,0, g0,1, . . . , g0,l0) = (1/
√
2, 1/(2

√
2))

g1 = (g1,0, g1,1, . . . , g1,l1) = (3/(4
√
2),−1/(4

√
2),−1/(8

√
2)).

These explain the parameters to the call to playDWTfilterslower for the al-
ternative piecewise linear wavelet.

Exercises for Section 5.6

Ex. 1 — Find two symmetric filters, so that the corresponding MRA-matrix,
constructed with alternating rows from these two filters, is not symmetric.

Ex. 2 — Assume that an MRA-matrix is symmetric. Show that the corre-
sponding filters are also symmetric.

Ex. 3 — Assume that G is an MRA-matrix where the rows repeated are a(0),
a(1) (symmetric around 0). Assume that their supports are [−E0, E0] and
[−E1, E1], respectively. Show that yn = (Gx)n can be computed as follows,
depending on n:

a. n even: The formulas (3.33)-(3.35) you derived in Exercise 3.4.3 can be
used, with T0,k replaced with a(0), E replaced by E0.

b. n odd: The formulas (3.33)-(3.35) you derived in Exercise 3.4.3 can be
used, with T0,k replaced with a(1), E replaced by E1.

Ex. 4 — Write a function

function xnew=DWTImpl(h0,h1,x,m)

which takes a signal x of length N , computes the transforms F1, ..., Fm−1, and
computes the coordinate of x in the basis V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wm−1. Your
function should call the function rowsymmmratrans to achieve this. Remember
that you have to sort the even and odd outputs after calling that function, before
you apply the next step. You can assume that the signal x has length 2m.

Ex. 5 — Write a function

function x=IDWTImpl(g0,g1,xnew,m)

which recovers the coordinates in the basis Vm from those in the basis V0⊕W0⊕
W1 ⊕ · · · ⊕Wm−1. Your function should call the function changecolumnrows,
and the function rowsymmmratrans.
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Ex. 6 — In this exercise we will practice setting up the parameters h0,h1,g0,g1
which are used in the calls to DWTImpl and IDWTImpl.

a. Assume that one stage in a DWT is given by the MRA-matrix

PC1←φ1
=





1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
−1/3 1/3 −1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0
0 0 −1/3 1/3 −1/3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...





Write down the compact form for the corresponding filters H0, H1, and
compute and plot the frequency responses. Are the filters symmetric? If
so, also write down the parameters h0,h1 you would use for this matrix
in a call to DWTImpl.

b. Assume that one stage in the IDWT is given by the MRA-matrix

Pφ1←C1 =





1/2 −1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·
0 −1/4 1/2 −1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 −1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·





Write down the compact form for the filters G0, G1, and compute and
plot the frequency responses. Are the filters symmetric? If so, also write
down the parameters g0,g1 you would use for this matrix in a call to
IDWTImpl.

Ex. 7 — Let us also practice on writing down the change of coordinate ma-
trices from the parameters h0,h1,g0,g1.

a. Assume that h0=[3/8 1/4 1/16] and h1=[1/2 -1/4]. Write down the
compact form for the filters H0, H1. Plot the frequency responses and
verify that H0 is a lowpass filter, and that H1 is a highpass filter. Also
write down the change of coordinate matrix PC1←φ1

for the wavelet cor-
responding to these filters.

b. Assume that g0=[1/3 1/3] and g1=[1/5 -1/5 1/5]. Write down the
compact form for the filters G0, G1. Plot the frequency responses and
verify that G0 is a lowpass filter, and that G1 is a highpass filter. Also
write down the change of coordinate matrix Pφ1←C1 for the wavelet cor-
responding to these filters.
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Ex. 8 — Write a function

function playDWTfilterslower(m,h0,h1,g0,g1)

which reimplements the function playDWTlower from Exercise 5.3.9 so that it
takes as input the positive parts of the four different filters as in Example 5.50.
Listen to the result using the different wavelets we have encountered and for
different m, using the code from Example 5.50. Can you hear any difference
from the Haar wavelet? If so, which wavelet gives the best sound quality?

Ex. 9 — In this exercise we will change the code in Example 5.50 so that it
instead only plays the contribution from the detail spaces (i.e. W0 ⊕W1 ⊕ · · ·⊕
Wm−1).

a. Reimplement the function you made in Exercise 8 so that it instead
plays the contribution from the detail spaces. Call the new function
playDWTfilterslowerdifference.

b. In Exercise 5.3.11 we implemented a function playDWTlowerdifference

for listening to the detail/error when the Haar wavelet is used. In the
function playDWTall from Example 5.50, replace playDWTlower and
playDWTfilterslower with playDWTlowerdifference and
playDWTfilterslowerdifference. Describe the sounds you hear for
different m. Try to explain why the sound seems to get louder when you
increase m.

Ex. 10 — Let us return to the piecewise linear wavelet from Exercise 5.5.2.
a. With ψ̂ as defined as in Exercise 5.5.2 b., compute the coordinates of ψ̂

in the basis φ1 (i.e. [ψ̂]φ1
) with N = 8, i.e. compute the IDWT of

[ψ̂]φ0⊕ψ0
= (−α,−β,−δ, 0, 0, 0, 0,−γ)⊕ (1, 0, 0, 0, 0, 0, 0, 0),

which is the coordinate vector you computed in Exercise 5.5.2 d.. For this,
you should use the function IDWTImpl from Exercise 5, with parameters
being the filters G0, G1, given as described by g0,g1 by equations (5.72)-
(5.73) in Example 5.50.

b. If we redefine the basis C1 from {φ0,0,ψ0,0,φ0,1,ψ0,1, . . .},
to {φ0,0, ψ̂0,0,φ0,1, ψ̂0,1, . . .}, the vector you obtained in a. gives us an
expression for the second column in Pφ1←C1 . After redefining the basis
like this, the corresponding filter G1 has changed from that of the piece-
wise linear wavelet we started with. Use Matlab to so state the new filter
G1 with our compact filter notation. Also, plot its frequency response.
Hint: Here you are asked to find the unique filter with the same second
column as Pφ1←C1 , i.e. the vector from a..

c. Write code which uses Equation (5.68) to find H0, H1 from G0, G1, and
state these filters with our compact filter notation. Also, state the forms
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h0,h1, which should be used in calls to DWTImpl for our new wavelet.
These replace the forms from equations (5.70)-(5.71) in Example 5.50,
which we found for the first piecewise linear wavelet.
Hint: Note that the filter G0 is unchanged from that of the first piecewise
linear wavelet (since φ is unchanged when compared to the other wavelets
for piecewise linear functions).

d. The filters you have found above should be symmetric, so that we can
follow the procedure from Example 5.50 to listen to sound which has
been wavelet-transformed by this wavelet. Write a program which plays
our audio test file as in Example 5.50 for m = 1, 2, 3, 4 (i.e. plays the
part in V0), as well as the difference as in Exercise 9 (i.e. play the part
from W0 ⊕W1 ⊕ · · ·⊕Wm−1), where the new filters you have found are
used. Listen to the sounds.

Ex. 11 — Repeat the previous exercise for the Haar wavelet as in exercise 3,
and plot the corresponding frequency responses for k = 2, 4, 6.

5.7 Summary

We started this chapter by motivating the theory of wavelets as a different func-
tion approximation scheme, which solved some of the shortcomings of Fourier se-
ries. While one approximates functions with trigonometric functions in Fourier
theory, with wavelets one instead approximates a function in several stages,
where one at each stage attempts to capture information at a given resolution,
using a function prototype. We first considered the Haar wavelet, which is a
function approximation scheme based on piecewise constant functions. We then
moved on to a scheme with piecewise linear functions, where we saw that we had
several degrees of freedom in constructing wavelets. Just as the DFT and the
DCT, we interpreted a wavelet transformation as a change of basis, and found
that the corresponding change of coordinate matrices had a particular form,
which we studied. We denoted the change of basis in a wavelet transformation
by the Discrete Wavelet Transform (DWT), and we showed how we could in-
terpret and implement the DWT in terms of filters in such a way that a wide
range of usable wavelets could be used as input to this implementation. We will
use this implementation in the coming sections, in order to analyze images.
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Chapter 6

Digital images

The theory on wavelets has been presented as a one-dimensional theory upto
now. Images, however, are two-dimensional by nature. This poses another chal-
lenge, contrary to the case for sound. In the next chapter we will establish the
mathematics to handle this, but first we will present some basics on images. Im-
ages are a very important type of digital media, and we will go through how they
can be represented and manipulated with simple mathematics. This is useful
general knowledge for anyone who has a digital camera and a computer, but for
many scientists, it is an essential tool. In astrophysics, data from both satellites
and distant stars and galaxies is collected in the form of images, and information
extracted from the images with advanced image processing techniques. Medical
imaging makes it possible to gather different kinds of information in the form
of images, even from the inside of the body. By analysing these images it is
possible to discover tumours and other disorders.

6.1 What is an image?

Before we do computations with images, it is helpful to be clear about what an
image really is. Images cannot be perceived unless there is some light present,
so we first review superficially what light is.

6.1.1 Light

Fact 6.1 (What is light?). Light is electromagnetic radiation with wavelengths
in the range 400–700 nm (1 nm is 10−9 m): Violet has wavelength 400 nm
and red has wavelength 700 nm. White light contains roughly equal amounts
of all wave lengths.

Other examples of electromagnetic radiation are gamma radiation, ultraviolet
and infrared radiation and radio waves, and all electromagnetic radiation travel
at the speed of light (3× 108 m/s). Electromagnetic radiation consists of waves
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and may be reflected and refracted, just like sound waves (but sound waves are
not electromagnetic waves).

We can only see objects that emit light, and there are two ways that this can
happen. The object can emit light itself, like a lamp or a computer monitor,
or it reflects light that falls on it. An object that reflects light usually absorbs
light as well. If we perceive the object as red it means that the object absorbs
all light except red, which is reflected. An object that emits light is different; if
it is to be perceived as being red it must emit only red light.

6.1.2 Digital output media

Our focus will be on objects that emit light, for example a computer display. A
computer monitor consists of a rectangular array of small dots which emit light.
In most technologies, each dot is really three smaller dots, and each of these
smaller dots emit red, green and blue light. If the amounts of red, green and
blue is varied, our brain merges the light from the three small light sources and
perceives light of different colours. In this way the colour at each set of three
dots can be controlled, and a colour image can be built from the total number
of dots.

It is important to realise that it is possible to generate most, but not all,
colours by mixing red, green and blue. In addition, different computer monitors
use slightly different red, green and blue colours, and unless this is taken into
consideration, colours will look different on the two monitors. This also means
that some colours that can be displayed on one monitor may not be displayable
on a different monitor.

Printers use the same principle of building an image from small dots. On
most printers however, the small dots do not consist of smaller dots of different
colours. Instead as many as 7–8 different inks (or similar substances) are mixed
to the right colour. This makes it possible to produce a wide range of colours,
but not all, and the problem of matching a colour from another device like
a monitor is at least as difficult as matching different colours across different
monitors.

Video projectors builds an image that is projected onto a wall. The final
image is therefore a reflected image and it is important that the surface is white
so that it reflects all colours equally.

The quality of a device is closely linked to the density of the dots.

Fact 6.2 (Resolution). The resolution of a medium is the number of dots per
inch (dpi). The number of dots per inch for monitors is usually in the range
70–120, while for printers it is in the range 150–4800 dpi. The horizontal and
vertical densities may be different. On a monitor the dots are usually referred
to as pixels (picture elements).
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6.1.3 Digital input media

The two most common ways to acquire digital images is with a digital camera
or a scanner. A scanner essentially takes a photo of a document in the form of
a rectangular array of (possibly coloured) dots. As for printers, an important
measure of quality is the number of dots per inch.

Fact 6.3. The resolution of a scanner usually varies in the range 75 dpi to
9600 dpi, and the colour is represented with up to 48 bits per dot.

For digital cameras it does not make sense to measure the resolution in dots
per inch, as this depends on how the image is printed (its size). Instead the
resolution is measured in the number of dots recorded.

Fact 6.4. The number of pixels recorded by a digital camera usually varies
in the range 320 × 240 to 6000 × 4000 with 24 bits of colour information per
pixel. The total number of pixels varies in the range 76 800 to 24 000 000
(0.077 megapixels to 24 megapixels).

For scanners and cameras it is easy to think that the more dots (pixels), the
better the quality. Although there is some truth to this, there are many other
factors that influence the quality. The main problem is that the measured colour
information is very easily polluted by noise. And of course high resolution also
means that the resulting files become very big; an uncompressed 6000 × 4000
image produces a 72 MB file. The advantage of high resolution is that you can
magnify the image considerably and still maintain reasonable quality.

6.1.4 Definition of digital image

We have already talked about digital images, but we have not yet been precise
about what it is. From a mathematical point of view, an image is quite simple.

Fact 6.5 (Digital image). A digital image P is a rectangular array of intensity

values {pi,j}m,n

i,j=1. For grey-level images, the value pi,j is a single number, while
for colour images each pi,j is a vector of three or more values. If the image is
recorded in the rgb-model, each pi,j is a vector of three values,

pi,j = (ri,j , gi,j , bi,j),

that denote the amount of red, green and blue at the point (i, j).

Note that, when refering to the coordinates (i, j) in an image, i will refer to
row index, j to column index, in the same was as for matrices. In particular,
the top row in the image have coordinates {(0, j)}N−1

j=0 , while the left column in
the image has coordinates {(i, 0)}M−1

i=0 . With this notation, the dimension of the
image is M ×N . The value pi,j gives the colour information at the point (i, j).
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(a) (b)

(c)

Figure 6.1: Different version of the same image; black and white (a), grey-level
(b), and colour (c).
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(a) (b)

Figure 6.2: Two excerpt of the colour image in figure 6.1. The dots indicate the
position of the points (i, j).

It is important to remember that there are many formats for this. The simplest
case is plain black and white images in which case pi,j is either 0 or 1. For grey-
level images the intensities are usually integers in the range 0–255. However,
we will assume that the intensities vary in the interval [0, 1], as this sometimes
simplifies the form of some mathematical functions. For colour images there are
many different formats, but we will just consider the rgb-format mentioned in
the fact box. Usually the three components are given as integers in the range
0–255, but as for grey-level images, we will assume that they are real numbers
in the interval [0, 1] (the conversion between the two ranges is straightforward,
see section 6.11 below). Figure 6.1 shows an image in different formats.

Fact 6.6. In these notes the intensity values pi,j are assumed to be real num-
bers in the interval [0, 1]. For colour images, each of the red, green, and blue
intensity values are assumed to be real numbers in [0, 1].

If we magnify a small part of the colour image in figure 6.1, we obtain the
image in figure 6.2 (the black lines and dots have been added). A we can see,
the pixels have been magnified to big squares. This is a standard representation
used by many programs — the actual shape of the pixels will depend on the
output medium. Nevertheless, we will consider the pixels to be square, with
integer coordinates at their centres, as indicated by the grids in figure 6.2.

Fact 6.7 (Shape of pixel). The pixels of an image are assumed to be square
with sides of length one, with the pixel with value pi,j centred at the point
(i, j).
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Figure 6.3: The grey-level image in figure 6.1 plotted as a surface. The height
above the (x, y)-plane is given by the intensity value.
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Figure 6.4: A colour image viewed as a parametric surface in space.

6.1.5 Images as surfaces

Recall from your previous calculus courses that a function f : R2 �→ R can be
visualised as a surface in space. A grey-level image is almost on this form. If
we define the set of integer pairs by

Zm,n =
�
(i, j) | 1 ≤ i ≤ m and 1 ≤ j ≤ n

�
,

we can consider a grey-level image as a function P : Zm,n �→ [0, 1]. In other
words, we may consider an image to be a sampled version of a surface with the
intensity value denoting the height above the (x, y)-plane, see figure 6.3.

Fact 6.8 (Grey-level image as a surface). Let P = (p)m,n

i,j=1 be a grey-level
image. Then P can be considered a sampled version of the piecewise constant
surface

FP : [1/2,m+ 1/2]× [1/2, n+ 1/2] �→ [0, 1]

which has the constant value pi,j in the square (pixel)

[i− 1/2, i+ 1/2]× [j − 1/2, j + 1/2]

for i = 1, . . . , m and j = 1, . . . , n.

What about a colour image P? Then each pi,j = (ri,j , gi,j , bi,j) is a triple of
numbers so we have a mapping

P : Zm,n �→ R3
.

If we examine this expression, we see that this corresponds to a sampled version
of a parametric surface if we consider the colour values (ri,j , gi,j , bi,j) to be x-,
y-, and z-coordinates. This may be useful for computations in certain settings,
but visually it does not make much sense, see figure 6.4
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6.2 Operations on images

Images are two-dimensional arrays of numbers, contrary to the sound signals we
considered in the previous section. In this respect it is quite obvious that we can
manipulate an image by performing mathematical operations on the numbers.
In this section we will consider some of the simpler operations. In later sections
we will go through more advanced operations, and explain how the theory for
these can be generalized from the corresponding theory for one-dimensional
(sound) signals (which we wil go through first).

In order to perform these operations, we need to be able to use images with
a programming environment such as MATLAB.

6.2.1 Images and MATLAB

An image can also be thought of as a matrix, by associating each pixel with
an element in a matrix. The matrix indices thus correspond to positions in the
pixel grid. Black and white images correspond to matrices where the elements
are natural numbers between 0 and 255. To store a colour image, we need 3
matrices, one for each colour component. This enables us to use linear algebra
packages, such as MATLAB, on order to work with images. After we now have
made the connection with matrices, we can create images from mathematical
formulas, just as we could with sound in the previuos sections. But what we also
need before we go through operations on images, is, as in the sections on sound,
means of reading an image from a file so that its contents are accessible as a
matrix, and write images represented by a matrix which we have constructed
ourself to file. Reading a function from file can be done with help of the function
imread. If we write

A = double(imread(’filename.fmt’,’fmt’));

the image with the given path and format is read, and stored in the matrix
A. ’fmt’ can be ’jpg’,’tif’, ’gif’, ’png’,... You should consult the MATLAB help
pages to see which formats are supported. After the call to imread, we have
a matrix where the entries represent the pixel values, and of integer data type
(more precisely, the data type uint8 in Matlab). To perform operations on the
image, we must first convert the entries to the data type double. This is done
with a call to the Matlab function double. Similarly, the function imwrite can
be used to write the image represented by a matrix to file. If we write

imwrite(uint8(A), ’filename.fmt’,’fmt’)

the image represented by the matrix A is written to the given path, in the given
format. Before the image is written to file, you see that we have converted the
matrix values back to the integer data type with the help of the function uint8.
In other words: imread and imwrite both assume integer matrix entries, while
operations on matrices assume double matrix entries. If you want to print im-
ages you have created yourself, you can use this function first to write the image
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to a file, and then send that file to the printer using another program. Finally,
we need an alternative to playing a sound, namely displaying an image. The
function imageview(A) displays the matrix A as an image in a separate window.
Unfortunately, you can’t print the image from the menus in this window.

The following examples go through some much used operations on images.

Example 6.9 (Normalising the intensities). We have assumed that the inten-
sities all lie in the interval [0, 1], but as we noted, many formats in fact use
integer values in the range 0–255. And as we perform computations with the
intensities, we quickly end up with intensities outside [0, 1] even if we start out
with intensities within this interval. We therefore need to be able to normalise

the intensities. This we can do with the simple linear function

g(x) =
x− a

b− a
, a < b,

which maps the interval [a, b] to [0, 1]. A simple case is mapping [0, 255] to
[0, 1] which we accomplish with the scaling g(x) = x/255. More generally, we
typically perform computations that result in intensities outside the interval
[0, 1]. We can then compute the minimum and maximum intensities pmin and
pmax and map the interval [pmin, pmax] back to [0, 1]. Below we have shown a
function mapto01 which achieves this task.

function newimg=mapto01(img)

minval = min(min(img));

maxval = max(max(img));

newimg = (img - minval)/(maxval-minval);

Several examples of using this function will be shown below.

Example 6.10 (Extracting the different colours). If we have a colour image P =
(ri,j , gi,j , bi,j)

m,n

i,j=1 it is often useful to manipulate the three colour components
separately as the three images

Pr = (ri,j)
m,n

i,j=1, Pr = (gi,j)
m,n

i,j=1, Pr = (bi,j)
m,n

i,j=1.

As an example, let us first see how we can produce three separate images,
showing the R,G, and B colour components, respectively. Let us take the image
bus-small-rgb.png used in Figure 6.1. When the image is read, three matrices
are returned, one for each colour component, and we can generate new files for
the different colour components with the following code:

img=double(imread(’bus-small-rgb.png’,’png’));

newimg=zeros(size(img));

newimg(:,:,1)=img(:,:,1);

imwrite(uint8(newimg),’gr.png’,’png’);

newimg=zeros(size(img));

newimg(:,:,2)=img(:,:,2);

imwrite(uint8(newimg),’ggg.png’,’png’);
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(a) (b) (c)

Figure 6.5: The red (a), green (b), and blue (c) components of the colour image
in Figure 6.1.

newimg=zeros(size(img));

newimg(:,:,3)=img(:,:,3);

imwrite(uint8(newimg),’gb.png’,’png’);

The resulting image files are shown in Figure 6.5.

Example 6.11 (Converting from colour to grey-level). If we have a colour
image we can convert it to a grey-level image. This means that at each point
in the image we have to replace the three colour values (r, g, b) by a single
value p that will represent the grey level. If we want the grey-level image to
be a reasonable representation of the colour image, the value p should somehow
reflect the intensity of the image at the point. There are several ways to do this.

It is not unreasonable to use the largest of the three colour components as
a measure of the intensity, i.e, to set p = max(r, g, b). The result of this can be
seen in Figure 6.6(a).

An alternative is to use the sum of the three values as a measure of the total
intensity at the point. This corresponds to setting p = r + g + b. Here we have
to be a bit careful with a subtle point. We have required each of the r, g and b

values to lie in the range [0, 1], but their sum may of course become as large as
3. We also require our grey-level values to lie in the range [0, 1] so after having
computed all the sums we must normalise as explained above. The result can
be seen in Figure 6.6(b).

A third possibility is to think of the intensity of (r, g, b) as the length of
the colour vector, in analogy with points in space, and set p =

�
r2 + g2 + b2.

Again, we may end up with values in the range [0,
√
3] so we have to normalise

like we did in the second case. The result is shown in Figure 6.6(c).
Let us sum this up as an algorithm.
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A colour image P = (ri,j , gi,j , bi,j)
m,n

i,j=1 can be converted to a grey level image
Q = (qi,j)

m,n

i,j=1 by one of the following three operations:

1. Set qi,j = max(ri,j , gi,j , bi,j) for all i and j.

2. (a) Compute q̂i,j = ri,j + gi,j + bi,j for all i and j.
(b) Transform all the values to the interval [0, 1] by setting

qi,j =
q̂i,j

maxk,l q̂k,l
.

3. (a) Compute q̂i,j =
�

r
2
i,j

+ g
2
i,j

+ b
2
i,j

for all i and j.

(b) Transform all the values to the interval [0, 1] by setting

qi,j =
q̂i,j

maxk,l q̂k,l
.

This can be implemented by using most of the code from the previous ex-
ample, and replacing with the lines

newimg1=max(img,[],3);

newvals=img(:,:,1)+img(:,:,2)+img(:,:,3);

newimg2=newvals/max(max(newvals))*255;

newvals=sqrt(img(:,:,1).^2+img(:,:,2).^2+img(:,:,3).^2);

newimg3=newvals/max(max(newvals))*255;

respectively. In practice one of the last two methods are usually preferred,
perhaps with a preference for the last method, but the actual choice depends
on the application. These resuliting images are visualised as grey-level images
in Figure 6.5.

Example 6.12 (Computing the negative image). In film-based photography a
negative image was obtained when the film was developed, and then a positive
image was created from the negative. We can easily simulate this and compute
a negative digital image.

Suppose we have a grey-level image P = (pi,j)
m,n

i,j=1 with intensity values in
the interval [0, 1]. Here intensity value 0 corresponds to black and 1 corresponds
to white. To obtain the negative image we just have to replace an intensity p

by its ’mirror value’ 1− p.

Fact 6.13 (Negative image). Suppose the grey-level image P = (pi,j)
m,n

i,j=1 is
given, with intensity values in the interval [0, 1]. The negative image Q =
(qi,j)

m,n

i,j=1 has intensity values given by qi,j = 1− pi,j for all i and j.
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(a) (b) (c)

Figure 6.6: Alternative ways to convert the colour image in Figure 6.1 to a grey
level image. In (a) each colour triple has been replaced by its maximum, in (b)
each colour triple has been replaced by its sum and the result mapped to [0, 1],
while in (c) each triple has been replaced by its length and the result mapped
to [0, 1].

This is also easily translated to code as above. The resulting image is shown
in Figure 6.7.

Example 6.14 (Increasing the contrast). A common problem with images is
that the contrast often is not good enough. This typically means that a large
proportion of the grey values are concentrated in a rather small subinterval of
[0, 1]. The obvious solution to this problem is to somehow spread out the values.
This can be accomplished by applying a function f to the intensity values, i.e.,
new intensity values are computed by the formula

p̂i,j = f(pi,j)

for all i and j. If we choose f so that its derivative is large in the area where
many intensity values are concentrated, we obtain the desired effect.

Figure 6.8 shows some examples. The functions in the left plot have quite
large derivatives near x = 0.5 and will therefore increase the contrast in images
with a concentration of intensities with value around 0.5. The functions are all
on the form

fn(x) =
arctan

�
n(x− 1/2)

�

2 arctan(n/2)
+

1

2
. (6.1)

For any n �= 0 these functions satisfy the conditions fn(0) = 0 and fn(1) = 1.
The three functions in figure 6.8a correspond to n = 4, 10, and 100.

Functions of the kind shown in figure 6.8b have a large derivative near x = 0
and will therefore increase the contrast in an image with a large proportion of
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(a) (b) (c)

Figure 6.7: The negative versions of the corresponding images in figure 6.6.

small intensity values, i.e., very dark images. The functions are given by

g�(x) =
ln(x+ �)− ln �

ln(1 + �)− ln �
, (6.2)

and the ones shown in the plot correspond to � = 0.1, 0.01, and 0.001.
In figure 6.8c the middle function in (a) has been applied to the image in

figure 6.6c. Since the image was quite well balanced, this has made the dark
areas too dark and the bright areas too bright. In figure 6.8d the function in
(b) has been applied to the same image. This has made the image as a whole
too bright, but has brought out the details of the road which was very dark in
the original.

Observation 6.15. Suppose a large proportion of the intensity values pi,j of
a grey-level image P lie in a subinterval I of [0, 1]. Then the contrast of the
image can be improved by computing new intensities p̂i,j = f(p,j) where f is
a function with a large derivative in the interval I.

Increasing the contrast is easy to implement. The following function has
been used to generate the image in Figure 6.8(d):

function newimg=contrastadjust(img)

epsilon = 0.001; % Try also 0.1, 0.01, 0.001

newimg = img/255; % Maps the pixel values to [0,1]

newimg = (log(newimg+epsilon) - log(epsilon))/...

(log(1+epsilon)-log(epsilon));

newimg = newimg*255; % Maps the values back to [0,255]

We will see more examples of how the contrast in an image can be enhanced
when we try to detect edges below.
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Figure 6.8: The plots in (a) and (b) show some functions that can be used to
improve the contrast of an image. In (c) the middle function in (a) has been
applied to the intensity values of the image in figure 6.6c, while in (d) the middle
function in (b) has been applied to the same image.
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(a) (b) (c)

Figure 6.9: The images in (b) and (c) show the effect of smoothing the image
in (a).

Example 6.16 (Smoothing an image). When we considered filtering of digital
sound, we observed that replacing each sample of a sound by an average of the
sample and its neighbours dampened the high frequencies of the sound. We can
do a similar operation on images.

Consider the array of numbers given by

1

16




1 2 1
2 4 2
1 2 1



 . (6.3)

We can smooth an image with this array by placing the centre of the array on
a pixel, multiplying the pixel and its neighbours by the corresponding weights,
summing up and dividing by the total sum of the weights. More precisely, we
would compute the new pixels by

p̂i,j =
1

16

�
4pi,j + 2(pi,j−1 + pi−1,j + pi+1,j + pi,j+1)

+ pi−1,j−1 + pi+1,j−1 + pi−1,j+1 + pi+1,j+1

�
.

Since the weights sum to one, the new intensity value p̂i,j is a weighted average
of the intensity values on the right. The array of numbers in (6.3) is in fact an
example of a computational molecule. As in the section on sound, we could have
used equal weights for all pixels, but it seems reasonable that the weight of a
pixel should be larger the closer it is to the centre pixel. For the onedimensional
case on sound, we used the values of Pascal’s triangle here, since these weights
are known to give a very good smoothing effect. We will return to how we can
generalize the use of Pascal’s triangle to obtain computational molecules for use
in images.
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A larger filter is given by the array

1

4096





1 6 15 20 15 6 1
6 36 90 120 90 36 6
15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1





. (6.4)

These numbers are taken from row six of Pascal’s triangle. More precisely, the
value in row k and column l is given by the product

�6
k

��6
l

�
. The scaling 1/4096

comes from the fact that the sum of all the numbers in the table is 26+6 = 4096.
The result of applying the two filters in (6.3) and (6.4) to our greyscale-image

is shown in Figure 6.9(b) and -(c) respectively. The smoothing effect is clearly
visible.

Observation 6.17. An image P can be smoothed out by replacing the inten-
sity value at each pixel by a weighted average of the intensity at the pixel and
the intensity of its neighbours.

It is straightforward to write a function which performs smoothing. Assume
that the image is stored as the matrix img, and the computational molecule
is stored as the matrix compmolecule. The following function will return the
smoothed image:

function newimg=smooth(img,compmolecule)

[m,n]=size(img);

[k,k1] = size(compmolecule); % We need k==k1, and odd

sc = (k+1)/2;

for m1=1:m

for n1=1:n

slidingwdw = zeros(k,k);

% slidingwdw is the part of the picture which

% compmolecule is applied to pixel (m1,n1)

slidingwdw(max(sc+1-m1,1):min(sc+m-m1,2*sc-1) , ...

max(sc+1-n1,1):min(sc+n-n1,2*sc-1)) = ...

img(max(1,m1-(sc-1)):min(m,m1+(sc-1)) , ...

max(1,n1-(sc-1)):min(n,n1+(sc-1)));

newimg(m1,n1) = sum(sum(compmolecule .* slidingwdw));

end

end

What makes this code difficult to write is the fact that the computational
molecule may extend outside the borders of the image, when we are close to
these borders. With this function, the first smoothing above can be performed
by writing
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smooth(img,(1/16)*[ 1 2 1; 2 4 2; 1 2 1]);

Example 6.18 (Detecting edges). The final operation on images we are going to
consider is edge detection. An edge in an image is characterised by a large change
in intensity values over a small distance in the image. For a continuous function
this corresponds to a large derivative. An image is only defined at isolated
points, so we cannot compute derivatives, but we have a perfect situation for
applying numerical differentiation. Since a grey-level image is a scalar function
of two variables, numerical differentiation techniques can be applied.

Partial derivative in x-direction. Let us first consider computation of the
partial derivative ∂P/∂x at all points in the image. Note first that it is the
second coordinate in an image which refers to the x-direction we are used to
from plotting functions. This means that the familiar approximation for the
partial derivative takes the form

∂P

∂x
(i, j) =

pi,j+1 − pi,j−1

2
, (6.5)

where we have used the convention h = 1 which means that the derivative is
measured in terms of ’intensity per pixel’. We can run through all the pixels in
the image and compute this partial derivative, but have to be careful for j = 1
and j = m where the formula refers to non-existing pixels. We will adapt the
simple convention of assuming that all pixels outside the image have intensity
0. The result is shown in figure 6.10a.

This image is not very helpful since it is almost completely black. The
reason for this is that many of the intensities are in fact negative, and these
are just displayed as black. More specifically, the intensities turn out to vary
in the interval [−0.424, 0.418]. We therefore normalise and map all intensities
to [0, 1]. The result of this is shown in (b). The predominant colour of this
image is an average grey, i.e, an intensity of about 0.5. To get more detail in the
image we therefore try to increase the contrast by applying the function f50 in
equation 6.1 to each intensity value. The result is shown in figure 6.10c which
does indeed show more detail.

It is important to understand the colours in these images. We have computed
the derivative in the x-direction, and we recall that the computed values varied
in the interval [−0.424, 0.418]. The negative value corresponds to the largest
average decrease in intensity from a pixel pi−1,j to a pixel pi+1,j . The positive
value on the other hand corresponds to the largest average increase in intensity.
A value of 0 in figure 6.10a corresponds to no change in intensity between the
two pixels.

When the values are mapped to the interval [0, 1] in figure 6.10b, the small
values are mapped to something close to 0 (almost black), the maximal values
are mapped to something close to 1 (almost white), and the values near 0 are
mapped to something close to 0.5 (grey). In figure 6.10c these values have just
been emphasised even more.

203



(a) (b) (c)

Figure 6.10: The image in (a) shows the partial derivative in the x-direction for
the image in 6.6. In (b) the intensities in (a) have been normalised to [0, 1] and
in (c) the contrast as been enhanced with the function f50, equation 6.1.

Figure 6.10c tells us that in large parts of the image there is very little vari-
ation in the intensity. However, there are some small areas where the intensity
changes quite abruptly, and if you look carefully you will notice that in these
areas there is typically both black and white pixels close together, like down the
vertical front corner of the bus. This will happen when there is a stripe of bright
or dark pixels that cut through an area of otherwise quite uniform intensity.

Since we display the derivative as a new image, the denominator is actually
not so important as it just corresponds to a constant scaling of all the pixels;
when we normalise the intensities to the interval [0, 1] this factor cancels out.

We sum up the computation of the partial derivative by giving its computa-
tional molecule.

Observation 6.19. Let P = (pi,j)
m,n

i,j=1 be a given image. The partial deriva-
tive ∂P/∂x of the image can be computed with the computational molecule

1

2




0 0 0
−1 0 1
0 0 0



 . (6.6)

As we remarked above, the factor 1/2 can usually be ignored. We have
included the two rows of 0s just to make it clear how the computational molecule
is to be interpreted; it is obviously not necessary to multiply by 0.

Partial derivative in y-direction. The partial derivative ∂P/∂y can be
computed analogously to ∂P/∂x. Note that the positive direction of this axis
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in an image is opposite to the direction of the y-axis we use when plotting
functions.

Observation 6.20. Let P = (pi,j)
m,n

i,j=1 be a given image. The partial deriva-
tive ∂P/∂y of the image can be computed with the computational molecule

1

2




0 −1 0
0 0 0
0 1 0



 . (6.7)

The result is shown in figure 6.12b. The intensities have been normalised
and the contrast enhanced by the function f50 in (6.1).

The gradient. The gradient of a scalar function is often used as a measure
of the size of the first derivative. The gradient is defined by the vector

∇P =

�
∂P

∂x
,
∂P

∂y

�
,

so its length is given by

|∇P | =

����
�
∂P

∂x

�2

+

�
∂P

∂y

�2

.

When the two first derivatives have been computed it is a simple matter to
compute the gradient vector and its length; the resulting is shown as an image
in figure 6.11c.

The image of the gradient looks quite different from the images of the two
partial derivatives. The reason is that the numbers that represent the length of
the gradient are (square roots of) sums of squares of numbers. This means that
the parts of the image that have virtually constant intensity (partial derivatives
close to 0) are coloured black. In the images of the partial derivatives these
values ended up in the middle of the range of intensity values, with a final
colour of grey, since there were both positive and negative values.

Figure 6.11a shows the computed values of the gradient. Although it is pos-
sible that the length of the gradient could become larger than 1, the maximum
value in this case is about 0.876. By normalising the intensities we therefore
increase the contrast slightly and obtain the image in figure 6.11b.

To enhance the contrast further we have to do something different from what
was done in the other images since we now have a large number of intensities
near 0. The solution is to apply a function like the ones shown in figure 6.8b to
the intensities. If we use the function g0.01 defined in equation(6.2) we obtain
the image in figure 6.11c.
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(a) (b) (c)

Figure 6.11: Computing the gradient. The image obtained from the computed
gradient is shown in (a) and in (b) the numbers have been normalised. In (c)
the contrast has been enhanced with a logarithmic function.

(a) (b) (c)

Figure 6.12: The first-order partial derivatives in the x-direction (a) and y-
direction (b), and the length of the gradient (c). In all images, the computed
numbers have been normalised and the contrast enhanced.
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6.2.2 Comparing the first derivatives

Figure 6.12 shows the two first-order partial derivatives and the gradient. If
we compare the two partial derivatives we see that the x-derivative seems to
emphasise vertical edges while the y-derivative seems to emphasise horizontal
edges. This is precisely what we must expect. The x-derivative is large when
the difference between neighbouring pixels in the x-direction is large, which is
the case across a vertical edge. The y-derivative enhances horizontal edges for
a similar reason.

The gradient contains information about both derivatives and therefore em-
phasises edges in all directions. It also gives a simpler image since the sign of
the derivatives has been removed.

6.2.3 Second-order derivatives

To compute the three second order derivatives we apply the corresponding com-
putational molecules which we already have described.

Observation 6.21 (Second order derivatives of an image). The second order
derivatives of an image P can be computed by applying the computational
molecules

∂
2
P

∂x2
:




0 0 0
1 −2 1
0 0 0



 , (6.8)

∂
2
P

∂y∂x
:

1

4




1 0 −1
0 0 0
−1 0 1



 , (6.9)

∂
2
P

∂y2
:




0 1 0
0 −2 0
0 1 0



 . (6.10)

With the information in observation 6.21 it is quite easy to compute the
second-order derivatives, and the results are shown in figure 6.13. The com-
puted derivatives were first normalised and then the contrast enhanced with the
function f100 in each image, see equation 6.1.

As for the first derivatives, the xx-derivative seems to emphasise vertical
edges and the yy-derivative horizontal edges. However, we also see that the
second derivatives are more sensitive to noise in the image (the areas of grey
are less uniform). The mixed derivative behaves a bit differently from the other
two, and not surprisingly it seems to pick up both horizontal and vertical edges.
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(a) (b) (c)

Figure 6.13: The second-order partial derivatives in the x-direction (a) and xy-
direction (b), and the y-direction (c). In all images, the computed numbers have
been normalised and the contrast enhanced.

Exercises for section 6.2

Ex. 1 — Black and white images can be generated from greyscale images
(with values between 0 and 255) by replacing each pixel value with the one
of 0 and 255 which is closest. Use this strategy to generate the black and white
image shown in Figure 6.1(a).

Ex. 2 — Generate the image in Figure 6.8(d) on your own by writing code
which uses the function contrastadjust.

Ex. 3 — Let us also consider the second way we mentioned for increasing the
contrast.

a. Write a function contrastadjust2 which instead uses the function 6.1
to increase the contrast.

b. Generate the image in Figure 6.8(c) on your own by using your code from
Exercise 2, and instead calling the function contrastadjust2.

Ex. 4 — In this exercise we will look at another function for increasing the
contrast of a picture.

a. Show that the function f : R → R given by

fn(x) = x
n
,

for all n maps the interval [0, 1] → [0, 1], and that f �(1) → ∞ as n → ∞.
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Figure 6.14: Secret message

b. The color image secret.jpg,shown in Figure 6.14, contains some in-
formation that is nearly invisible to the naked eye on most computer
monitors. Use the function f(x), to reveal the secret message.
Hint: You will first need to convert the image to a greyscale image. You
can then use the function contrastadjust as a starting point for your
own program.

Ex. 5 — Generate the image in Figure 6.9(b) and -(c) by writing code which
calls the function smooth with the appropriate computational molecules.

Ex. 6 — Generate the image in Figure 6.10 by writing code in the same way.
Also generate the images in figures 6.11, 6.12, and 6.13.

6.3 Adaptations to image processing

There are two particular image standards we will consider in these notes. The
first is teh JPEG standard. JPEG is short for Joint Photographic Experts Group,
and is an image format that was approved as an international standard in 1994.
JPEG is usually lossy, but may also be lossless and has become a popular for-
mat for image representation on the Internet. The standard defines both the
algorithms for encoding and decoding and the storage format. JPEG performs
a DCT on the image, and neglects DCT-coefficients which are below a given
threshold. We will describe this in the next chapter. JPEG codes the remaining
DCT-coefficients by a variation of Huffman coding, but it may also use arith-
metic coding. The compression level in JPEG images is selected by the user and
may result in conspicuous artefacts if set too high. JPEG is especially prone to
artefacts in areas where the intensity changes quickly from pixel to pixel. The
extension of a JPEG-file is .jpg or .jpeg.
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The second standard we will consider is JPEG2000. It was developed to
address some of the shortcomings of JPEG, and is based on wavelets.

There are several extensions, additions and modifications to the theory we
will present in the later chapters, which are needed in order for us to have a
full image compression system: the wavelet transform, the DCT, and the DFT
were addressed because these are linked to relevant mathematics, and because
they are important ingredients in many standards for sound and images. In this
section we will mention many other extensions which also are important.

6.3.1 Lossless coding

Somewhere in the image processing or sound processing pipeline we need a
step which actually achieves compression of the data. We have not mentioned
anything about this step, since the output from the wavelet transform or the
DCT is simply another set of data of the same size, called the transformed data.
What we need to do is to apply a coding algorithm to this data to achieve
compression. This may be Huffman coding, arithmetic coding, or any other
algorithm. These methods are applied to the transformed data, since the effect
of the wavelet transform is that it exploits the data so that it can be represented
with data with lower entropy, so that it can be compressed more efficiently with
these techniques.

6.3.2 Quantization

Coding as we have learnt previously is a lossless operation. As we saw, for cer-
tain wavelets the transform can also be performed in a lossless manner. These
wavelets are, however, quite restrictive, which is why there is some loss involved
with most wavelets used in practical applications. When there is some loss
inherent in the transform, a quantization of the transformed data is also per-
formed before the coding takes place. This quantization is typically done with
a fixed number of bits, but may also be more advanced.

6.3.3 Preprocessing

Image compression as performed for certain image standards also often prepro-
cess the pixel values before any transform is applied. The preprocessing may
be centering the pixel values around a certain value, or extracting the different
image components before they are processed separately.

6.3.4 Tiles, blocks, and error resilience

We have presented the wavelet transform as something which transforms the
entire image. In practice this is not the case. The image is very often split into
smaller parts, often called tiles. The tiles in an image are processed indepen-
dently, so that errors whih occur within one tile do not affect the appearance of
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parts in the image which correspond to other tiles. This makes the image com-
pression what we call error-resilient, to errors such as transmission errors. The
second reason for splitting into tiles has to do with that it may be more efficient
to perform many transforms on smaller parts, rather than one big transform
for the entire image. Performing one big transform would force us to have a
big part of the image in memory during each computation, as well as remove
possibilities for parallel computing. Often the algorithm itself also requires more
computations when the size is bigger. For some standards, tiles are split into
even smaller parts, called blocks, where parts of the processing within each
block also is performed independently. This makes the possibilities for parallel
computing even bigger. As an example, we mentioned that the JPEG standard
performs the two-dimensional DCT on blocks as small as size 8× 8.

6.3.5 Metadata

An image standard also defines how to store metadata about an image, and what
metadata is accepted, like resolution, time when the image was taken, or where
the image was taken (GPS coordinates) and similar information. Metadata can
also tell us how the colour in the image are represented. As we have already
seen, in most colour images the colour of a pixel is represented in terms of the
amount of red, green and blue or (r, g, b). But there are other possibilities as
well: Instead of storing all 24 bits of colour information in cases where each of
the three colour components needs 8 bits, it is common to create a table of 256
colours with which a given image could be represented quite well. Instead of
storing the 24 bits, one then just stores a colour table in the metadata, and at
each pixel, the eight bits corresponding to the correct entry in the table. This
is usually referred to as eight-bit colour and the table is called a look-up table
or palette. For large photographs, however, 256 colours is far from sufficient to
obtain reasonable colour reproduction.

Metadata is usually stored in the beginning of the file, formatted in a very
specific way.

6.4 Summary

We first discussed the basic question what an image is, and took a closer look
at digital images. We went through several operations which give meaning for
digital images, and showed how to implement these.
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Chapter 7

Definition and properties of
tensor products

The DFT, the DCT, and the wavelet transform were all defined as changes of
basis for vectors or functions of one variable and therefore cannot be directly
applied to higher dimensional data like images. In this chapter we will introduce
a simple recipe for extending such one-dimensional schemes to two (and higher)
dimensions. The basic ingredient is the tensor product construction. This is
a general tool for constructing two-dimensional functions and filters from one-
dimensional counterparts. This will allow us to generalise the filtering and
compression techniques for audio to images, and we will also recognise some
of the basic operations for images introduced in Chapter 6 as tensor product
constructions.

A two-dimensional discrete function on a rectangular domain, like for exam-
ple an image, is conveniently represented in terms of a matrix X with elements
Xi,j , and with indices in the ranges 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ N − 1. One
way to apply filters to X would be to rearrange the matrix into a long vector,
column by column. We could then apply a one-dimensional filter to this vector
and then split the resulting vector into columns that can be reassembled back
into a matrix again. This approach may have some undesirable effects near the
boundaries between columns. In addition, the resulting computations may be
rather ineffective. Consider for example the case where X is an N ×N matrix
so that the long vector has length N

2. Then a linear transformation applied to
X involves multiplication with an N

2 ×N
2-matrix. Each such matrix multipli-

cation may require as many as N
4 multiplications which is substantial when N

is large.
The concept of tensor products can be used to address these problems. Us-

ing tensor products, one can construct operations on two-dimensional functions
which inherit properties of one-dimensional operations. Tensor products also
turn out to be computationally efficient.
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(a) Original. (b) Horizontal smoothing.

(c) Vertical smoothing. (d) Horizontal and vertical smoothing.

Figure 7.1: The results of smoothing an image with the filter {1/4, 1/2, 1/4}
horizontally, vertically, and both. The pixels are shown as disks with intensity
corresponding to the pixel values.

7.1 The tensor product of vectors

In Chapter 6 we saw examples of several filters applied to images. The filters of
special interest to us now are those that determined a new image by combining
neighbouring pixels, like the smoothing filter in Example 6.16 and the edge
detection filter in Example 6.18. Our aim now is to try and apply filters like
these as a repeated application of one-dimensional filters rather than using a
computational molecule like in Chapter 6. It will be instructive to do this
with an example before we describe the general construction, so let us revisit
Example 6.16.

Figure 7.1 (a) shows an example of a simple image. We want to smooth this
image X with the one-dimensional filter T given by yn = (T (x))n = (xn−1 +
2xn + xn+1)/4, or equivalently T = {1/4, 1/2, 1/4}. There are two obvious
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one-dimensional operations we can do:

1. Apply the filter to each row in the image.

2. Apply the filter to each column in the image.

The problem is of course that these two operations will only smooth the image
either horizontally or vertically as can be seen in the image in (b) and (c) of
Figure 7.1.

So what else can we do? We can of course first smooth all the rows of
the image and then smooth the columns of the resulting image. The result
of this is shown in Figure 7.1 (d). Note that we could have performed the
operations in the opposite order: first vertical smoothing and then horizontal
smoothing, and currently we do not know if this is the same. We will show
that these things actually are the same, and that computational molecules,
as we saw in Chapter 6, naturally describe operations which are performed
both vertically and horizontally. The main ingredient in this will be the tensor
product construction. We start by defining the tensor product of two vectors.

Definition 7.1 (Tensor product of vectors). If x,y are vectors of length M

and N , respectively, their tensor product x⊗y is defined as the M×N -matrix
defined by (x⊗ y)ij = xiyj . In other words, x⊗ y = xyT .

In particular x ⊗ y is a matrix of rank 1, which means that most matrices
cannot be written as tensor products. The special case ei ⊗ ej is the matrix
which is 1 at (i, j) and 0 elsewhere, and the set of all such matrices forms a
basis for the set of M ×N -matrices.

Observation 7.2 (Interpretation of tensor products for vectors). Let

EM = {ei}M−1
i=0 and EN = {ei}N−1

i=0

be the standard bases for RM and RN . Then

EM,N = {ei ⊗ ej}(M−1,N−1)
(i,j)=(0,0)

is a basis for LM,N (R), the set of M ×N -matrices. This basis is often referred
to as the standard basis for LM,N (R).

An image can simply be thought of as a matrix in LM,N (R). With this
definition of tensor products, we can define operations on images by extending
the one-dimensional filtering operations defined earlier.

Definition 7.3 (Tensor product of matrices). If S : RM → RM and T : RN →
RN are matrices, we define the linear mapping S ⊗ T : LM,N (R) → LM,N (R)
by linear extension of (S ⊗ T )(ei ⊗ ej) = (Sei)⊗ (Tej). The linear mapping
S ⊗ T is called the tensor product of the matrices S and T .
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A couple of remarks are in order. First, from linear algebra we know that,
when T is linear mapping from V and T (vi) is known for a basis {vi}i of V ,
T is uniquely determined. In particular, since the {ei ⊗ ej}i,j form a basis,
there exists a unique linear transformation S ⊗ T so that (S ⊗ T )(ei ⊗ ej) =
(Sei) ⊗ (Tej). This unique linear transformation is what we call the linear
extension from the values in the given basis.

Secondly S ⊗ T also satisfies (S ⊗ T )(x ⊗ y) = (Sx) ⊗ (Ty). This follows
from

(S ⊗ T )(x⊗ y) = (S ⊗ T )((
�

i

xiei)⊗ (
�

j

yjej)) = (S ⊗ T )(
�

i,j

xiyj(ei ⊗ ej))

=
�

i,j

xiyj(S ⊗ T )(ei ⊗ ej) =
�

i,j

xiyj(Sei)⊗ (Tej)

=
�

i,j

xiyjSei((Tej))
T = S(

�

i

xiei)(T (
�

j

yjej))
T

= Sx(Ty)T = (Sx)⊗ (Ty).

Here we used the result from Exercise 5. Linear extension is necessary anyway,
since only rank 1 matrices have the form x⊗ y.

Example 7.4 (Smoothing an image). Assume that S and T are both filters,
and that S = T = {1/4, 1/2, 1/4}. Let us set M = 5 and N = 7, and let us
compute (S ⊗ T )(e2 ⊗ e3). We have that

(S ⊗ T )(e2 ⊗ e3) = (Se2)(Te3)
T = (col2S)(col3T )T .

Since

S =
1

4





2 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 2




T =

1

4





2 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 2 1 0 0 0
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1
1 0 0 0 0 1 2





,

we find that

1

4





0
1
2
1
0




1

4

�
0 0 1 2 1 0 0

�
=

1

16





0 0 0 0 0 0 0
0 0 1 2 1 0 0
0 0 2 4 2 0 0
0 0 1 2 1 0 0
0 0 0 0 0 0 0





We recognize here the computational molecule from Example 6.16 for smoothing
an image. More generally it is not hard to see that (S ⊗ T )(ei ⊗ ej) is the
matrix where the same computational molecule is placed with its centre at (i, j).
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Clearly then, the linear extension S⊗T is obtained by placing the computational
molecule over all indices, multiplying by the value at that index, and summing
everything together. This is equivalent to the procedure for smoothing we learnt
in Example 6.16. One can also write down component formulas for this as well.
To achieve this, one starts with writing out the operation for tensor products
of vectors:

((T ⊗ T )(x⊗ y))i,j

= ((Tx)⊗ (Ty))i,j = (Tx)(Ty)T )i,j = (Tx)i(Ty)j

=
1

4
(xi−1 + 2xi + xi+1)

1

4
(yj−1 + 2yj + yj+1)

=
1

16
(xi−1yj−1 + 2xi−1yj + xi−1yj+1

+ 2xiyj−1 + 4xiyj + 2xiyj+1 + xi+1yj−1 + 2xi+1yj + xi+1yj+1)

=
1

16
((x⊗ y)i−1,j−1 + 2(x⊗ y)i−1,j + (x⊗ y)i−1,j+1

2(x⊗ y)i,j−1 + 4(x⊗ y)i,j + 2(x⊗ y)i,j+1

(x⊗ y)i+1,j−1 + 2(x⊗ y)i+1,j + (x⊗ y)i+1,j+1).

Since this formula is valid when applied to any tensor product of two vectors,
it is also valid when applied to any matrix:

((T ⊗ T )X)i,j

=
1

16
(Xi−1,j−1 + 2Xi,j−1 + 2Xi−1,j + 4Xi,j + 2Xi,j+1

+ 2Xi+1,j +Xi+1,j+1)

This again confirms that the computational molecule given by Equation 6.3 in
Example 6.16 is the tensor product of the filter {1/4, 1/2, 1/4} with itself.

While we have seen that the computational molecules from Chapter 1 can
be written as tensor products, not all computational molecules can be written
as tensor products: we need of course that the molecule is a rank 1 matrix, since
matrices which can be written as a tensor product always have rank 1.

The tensor product can be expressed explicitly in terms of matrix products.

Theorem 7.5. If S : RM → RM and T : RN → RN are matrices, the action
of their tensor product on a matrix X is given by (S ⊗ T )X = SXT

T for any
X ∈ LM,N (R).

Proof. We have that

(S ⊗ T )(ei ⊗ ej) = (Sei)⊗ (Tej)

= (coli(S))⊗ (colj(T )) = coli(S)(colj(T ))T

= coli(S)rowj(T
T ) = S(ei ⊗ ej)T

T
.
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This means that (S⊗T )X = SXT
T for any X ∈ LM,N (R), since equality holds

on the basis vectors ei ⊗ ej .

This leads to the following implementation for the tensor product of matrices:

Theorem 7.6 (Implementation of a tensor product of matrices). If S : RM →
RM , T : RN → RN are matrices, and X ∈ LM,N (R), we have that (S ⊗ T )X
can be computed as follows:

1. Apply S to every column of X.

2. Transpose the resulting matrix.

3. Apply T to every column in the resulting matrix.

4. Transpose the resulting matrix.

This recipe for computing (S ⊗ T )X is perhaps best seen if we write

(S ⊗ T )X = SXT
T = (T (SX)T )T . (7.1)

In the first step above we compute SX, in the second step (SX)T , in the third
step T (SX)T , in the fourth step (T (SX)T )T . The reason for writing the tensor
product this way, as an operation column by column, has to do with with that
S and T are mostly filters for our purposes, and that we want to reuse efficient
implementations instead of performing full matrix multiplications, just as we
decided to express a wavelet transformation in terms of filters. The reason for
using columns instead of rows has to do with that we have expressed filtering
as a matrix by column multiplication. Note that this choice of using columns
instead of rows should be influenced by how the computer actually stores values
in a matrix. If these values are stored column by column, performing operations
columnwise may be a good idea, since then the values from the matrix are read
in the same order as they are stored. If matrix values are stored row by row,
it may be a good idea to rewrite the procedure above so that operations are
performed row by row also (see Exercise 7).

Theorem 7.6 leads to the following algorithm for computing the tensor prod-
uct of matrices:

[M,N]=size(X);

for col=1:N

X(:,col)=S*X(:,col);

end

X=X’

for col=1:M

X(:,col)=T*X(:,col);

end

X=X’;
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This algorithm replaces the rows and columns in X at each step. In the fol-
lowing, S = T in most cases. In this case we can replace with the following
algorithm, which is even simpler:

for k=1:2

for col=1:size(X,2)

X(:,col)=S*X(:,col);

end

X=X’;

end

In an efficient algorithm, we would of course replace the matrix multiplications
with S and T with efficient implementations.

If we want to apply a sequence of tensor products of filters to a matrix, the
order of the operations does not matter. This will follow from the next result:

Corollary 7.7. If S1 ⊗T1 and S2 ⊗T2 are two tensor products of one dimen-
sional filters, then (S1 ⊗ T1)(S2 ⊗ T2) = (S1S2)⊗ (T1T2).

Proof. By Theorem 7.5 we have that

(S1⊗T1)(S2⊗T2)X = S1(S2XT
T

2 )TT

1 = (S1S2)X(T1T2)
T = ((S1S2)⊗(T1T2))X.

for any X ∈ LM,N (R). This proves the result.

Suppose that we want to apply the operation S ⊗ T to an image. We can
write

S ⊗ T = (S ⊗ I)(I ⊗ T ) = (I ⊗ T )(S ⊗ I). (7.2)

Moreover, from Theorem 7.5 it follows that

(S ⊗ I)X = SX

(I ⊗ T )X = XT
T = (TXT )T .

This means that S⊗I corresponds to applying S to each column in X, and I⊗T

corresponds to applying T to each row in X. When S and T are smoothing fil-
ters, this is what we refered to as vertical smoothing and horizontal smoothing,
respectively. The relations in Equation (7.2) thus have the following interpre-
tation (alternatively note that the order of left or right multiplication does not
matter).

Observation 7.8. The order of vertical and horizontal smoothing does not
matter, and any tensor product of filters S ⊗ T can be written as a horizontal
filtering operation I ⊗ T followed by a vertical filtering operation S ⊗ I.
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In fact, the order of any vertical operation S ⊗ I and horizontal operation
I ⊗ T does not matter: it is not required that the operations are filters. For
filters we have a stronger result: If S1, T1, S2, T2 all are filters, we have from
Corollary 7.7 that (S1 ⊗ T1)(S2 ⊗ T2) = (S2 ⊗ T2)(S1 ⊗ T1), since all filters
commute. This does not hold in general since general matrices do not commute.

Example 7.9 (Detecting edges). Consider the bass reducing filter T = {1/2, 0,−1/2},
i.e. (T (x))n = 1

2 (xn+1−xn−1). We compute the vertical filtering operation T⊗I

as

((T ⊗ I)(x⊗ y))i,j ] = (Tx)iyj

=
1

2
(xi+1 − xi−1)yj =

1

2
xi+1yj −

1

2
xi−1yj =

1

2
(x⊗ y)i+1,j −

1

2
(x⊗ y)i−1,j .

This shows as above that T ⊗ I is the transformation where the computational
molecule given by Equation 6.7 in Example 6.18 is placed over the image sam-
ples. This tensor product can thus be used for detecting vertical edges in images.

Exercises for Section 7.1

Ex. 1 — With T = {1/2, 0,−1/2}, show that I ⊗ T is the transformation
where the computational molecule is given by Equation 6.6 in Example 6.18.
This tensor product can thus be used for detecting horizontal edges in images.

Ex. 2 — With T = {1/2, 0,−1/2}, show that T ⊗ T corresponds to the com-
putational molecule given by Equation 6.9 in Example 6.18.

Ex. 3 — Let T be the moving average filter of length 2L + 1, i.e. T =
1
L
{1, · · · , 1, 1, 1, · · · , 1� �� �

2L+1 times

}. As in Example 7.4, find the computational molecule

of T ⊗ T .

Ex. 4 — Verify that the computational molecule given by Equation 6.4 in
Example 6.18 is the same as that of T ⊗T , where T = { 1

64 ,
6
64 ,

15
64 ,

20
64 ,

15
64 ,

6
64 ,

1
64}

(the coefficients come from row 6 of Pascals triangle).

Ex. 5 — Show that the mapping F (x,y) = x ⊗ y is bi-linear, i.e. that
F (αx1+βx2,y) = αF (x1,y)+βF (x2,y), and F (x,αy1+βy2) = αF (x,y1)+
βF (x,y2).

Ex. 6 — Attempt to find matrices S : RM → RM and T : RN → RN so that
the following mappings from LM,N (R) to LM,N (R) can be written on the form
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X → SXT
T = (S ⊗ T )X. In all the cases, it may be that no such S, T can be

found. If this is the case, prove it.
a. The mapping which reverses the order of the rows in a matrix.
b. The mapping which reverses the order of the columns in a matrix.
c. The mapping which transposes a matrix.

Ex. 7 — Find an alternative form for Equation (7.1) and an accompanying
reimplementation of Theorem 7.6 which is adapted to the case when we want
all operations to be performed row by row, instead of column by column.

7.2 Change of bases in tensor products

In this section we will prove a specialization of our previous result to the case
where S and T are change of coordinate matrices. We start by proving the
following:

Theorem 7.10. If B1 = {vi}M−1
i=0 is a basis for RM , and B2 = {wj}N−1

j=0 is
a basis for RN , then {vi ⊗wj}(M−1,N−1)

(i,j)=(0,0) is a basis for LM,N (R). We denote
this basis by B1 ⊗ B2.

Proof. Suppose that
�(M−1,N−1)

(i,j)=(0,0) αi,j(vi⊗wj) = 0. Setting hi =
�

N−1
j=0 αi,jwj

we get
N−1�

j=0

αi,j(vi ⊗wj) = vi ⊗ (
N−1�

j=0

αi,jwj) = vi ⊗ hi.

where we have used the bi-linearity of the tensor product mapping (x,y) → x⊗y
(Exercise 7.1.5). This means that

0 =

(M−1,N−1)�

(i,j)=(0,0)

αi,j(vi ⊗wj) =
M−1�

i=0

vi ⊗ hi =
M−1�

i=0

vih
T

i
.

Column k in this matrix equation says 0 =
�

M−1
i=0 hi,kvi, where hi,k are the

components in hi. By linear independence of the vi we must have that h0,k =
h1,k = · · · = hM−1,k = 0. Since this applies for all k, we must have that all
hi = 0. This means that

�
N−1
j=0 αi,jwj = 0 for all i, from which it follows by

linear independence of the wj that αi,j = 0 for all j, and for all i. This means
that B1 ⊗ B2 is a basis.

In particular, as we have already seen, the standard basis for LM,N (R) can be
written EM,N = EM ⊗EN . This is the basis for a useful convention: For a tensor
product the bases are most naturally indexed in two dimensions, rather than
the usual sequential indexing. This difference translates also to the meaning
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of coordinate vectors, which now are more naturally thought of as coordinate
matrices:

Definition 7.11 (Coordinate matrix). Let {vi}M−1
i=0 , {wj}N−1

j=0 be bases for
RM and RN . By the coordinate matrix of

�
k,l

αk,l(vk⊗wl) we will mean the
M ×N -matrix X with entries Xkl = αk,l.

We will have use for the following theorem, which shows how change of
coordinates in RM and RN translate to a change of coordinates in the tensor
product:

Theorem 7.12 (Change of coordinates in tensor products). Assume that
B1, C1 are bases for RM , and B2, C2 are bases for RN , and that S is the change
of coordinates matrix from C1 to B1, and that T is the change of coordinates
matrix from C2 to B2. Both B1⊗B2 and C1⊗C2 are bases for LM,N (R), and if
X is the coordinate matrix in C1⊗C2, and Y the coordinate matrix in B1⊗B2,
then

Y = SXT
T
. (7.3)

Proof. Let cki be the i’th basis vector in Ck, bki the i’th basis vector in Bk,
k = 1, 2. Since any change of coordinates is linear, it is enough to show that it
coincides with X → SXT

T on the basis C1 ⊗ C2. The basis vector c1i ⊗ c2j has
coordinate vector X = ei ⊗ ej in C1 ⊗ C2. With the mapping X → SXT

T this
is sent to

SXT
T = S(ei ⊗ ej)T

T = coli(S)rowj(T
T ).

On the other hand, since column i in S is the coordinates of c1i in the basis B1,
and column j in T is the coordinates of c2j in the basis B2, we can write

c1i ⊗ c2j =

�
�

k

Sk,ib1k

�
⊗

�
�

l

Tl,jb2l

�
=

�

k,l

Sk,iTl,j(b1k ⊗ b2l)

=
�

k,l

Sk,i(T
T )j,l(b1k ⊗ b2l) =

�

k,l

(coli(S)rowj(T
T ))k,l(b1k ⊗ b2l)

we see that the coordinate vector of c1i⊗c2j in the basis B1⊗B2 is coli(S)rowj(TT ).
In other words, change of coordinates coincides with X → SXT

T , and the proof
is done.

In both cases of tensor products of matrices and change of coordinates in
tensor products, we see that we need to compute the mapping X → SXT

T . This
means that we can restate Theorem 7.6 for change of coordinates as follows:
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Theorem 7.13 (Implementation of change of coordinates in tensor products).
The change of coordinates from C1 ⊗ C2 to B1 ⊗ B2 can be implemented as
follows:

1. For every column in the coordinate matrix in C1 ⊗ C2, perform a change
of coordinates from C1 to B1.

2. Transpose the resulting matrix.

3. For every column in the resulting matrix, perform a change of coordinates
from C2 to B2.

4. Transpose the resulting matrix.

We can reuse the algorithm from the previous section to implement this. In
the following operations on images, we will visualize the pixel values in an image
as coordinates in the standard basis, and perform a change of coordinates.

Example 7.14 (Change of coordinates with the DFT). The DFT is one partic-
ular change of coordinates which we have considered. The DFT was the change
of coordinates from the standard basis to the Fourier basis. The corresponding
change of coordinates in a tensor product is obtained by substituting with the
DFT as the function implementing change of coordinates in Theorem 7.13. The
change of coordinates in the opposite direction is obtained by using the IDFT
instead of the DFT.

Modern image standards do typically not apply a change of coordinates to
the entire image. Rather one splits the image into smaller squares of appropriate
size, called blocks, and perform change of coordinates independently for each
block. With the JPEG standard, the blocks are always 8× 8. It is of course not
a coincidence that a power of 2 is chosen here, since the DFT takes a simplified
form in case of powers of 2.

The DFT values express frequency components. The same applies for the
two-dimensional DFT and thus for images, but frequencies are now represented
in two different directions. The thing which actually provides compression in
many image standards is that frequency components which are small are set to
0. This corresponds to neglecting frequencies in the image which have small
contributions. This type of lossy compression has little effect on the human
perception of the image, if we use a suitable neglection threshold.

In Figure 7.3 we have applied the two-dimensional DFT to our test image.
We have then neglected DFT coefficients which are below certain thresholds,
and transformed the samples back to reconstruct the image. When increasing
the threshold, the image becomes more and more unclear, but the image is quite
clear in the first case, where as much as more than 90% of the samples have
been neglected. The blocking effect at the block boundaries is clearly visible.

Example 7.15 (Change of coordinates with the DCT). Similarly to the DFT,
the DCT was the change of coordinates from the standard basis to what we
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(a) Threshold 30. 91.3%
of the DFT-values were ne-
glected

(b) Threshold 50. 94.9%
of the DFT-values were ne-
glected

(c) Threshold 100. 97.4%
of the DFT-values were ne-
glected

Figure 7.2: The effect on an image when it is transformed with the DFT, and
the DFT-coefficients below a certain threshold were neglected.

called the DCT basis. The DCT is used more than the DFT in image pro-
cessing. Change of coordinates in tensor products between the standard basis
and the DCT basis is obtained by substituting with the DCT and the IDCT in
Theorem 7.13. The JPEG standard actually applies a two-dimensional DCT to
the blocks of size 8× 8, it does not apply the two-dimensional DFT.

If we follow the same strategy for the DCT as for the DFT, so that we
neglect DCT-coefficients which are below a given threshold, we get the images
shown in Figure 7.3. We see similar effects as with the DFT, but it seems that
the latter images are a bit clearer, verifying that the DCT is a better choice
than the DFT. It is also interesting to compare with what happens when we
drop splitting the image into blocks. Of course, when we neglect many of the
DCT-coefficients, we should see some artifacts, but there is no reason to believe
that these should be at the old block boundaries. The new artifacts can be seen
in Figure 7.4, where the same thresholds as before have been used. Clearly, the
new artifacts take a completely different shape.

In the exercises you will be asked to implement functions which generate the
images shown in these examples.

Exercises for Section 7.2

Ex. 1 — Implement functions

function newx=FFT2Impl(x)

function x=IFF2Impl(newx)

function newx=DCT2Impl(x)

function x=IDCT2Impl(newx)
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(a) Threshold 30. 93.9%
of the DCT-values were ne-
glected

(b) Threshold 50. 96.0%
of the DCT-values were ne-
glected

(c) Threshold 100. 97.6%
of the DCT-values were ne-
glected

Figure 7.3: The effect on an image when it is transformed with the DCT, and
the DCT-coefficients below a certain threshold were neglected.

(a) Threshold 30. 93.7%
of the DCT-values were ne-
glected

(b) Threshold 50. 96.7%
of the DCT-values were ne-
glected

(c) Threshold 100. 98.5%
of the DCT-values were ne-
glected

Figure 7.4: The effect on an image when it is transformed with the DCT, and
the DCT-coefficients below a certain threshold were neglected. The image has
not been split into blocks here.
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which implement the two-dimensional DCT, FFT, and their inverses as de-
scribed in this section. Base your code on the algorithm at the end of Sec-
tion 7.1.

Ex. 2 — Implement functions

function samples=transform2jpeg(x)

function samples=transform2invjpeg(x)

which splits the image into blocks of size 8×8, and performs the DCT2/IDCT2
on each block. Finally run the code

function showDCThigher(threshold)

img = double(imread(’mm.gif’,’gif’));

newimg=transform2jpeg(img);

thresholdmatr=(abs(newimg)>=threshold);

zeroedout=size(img,1)*size(img,2)-sum(sum(thresholdmatr));

newimg=transform2invjpeg(newimg.*thresholdmatr);

imageview(abs(newimg));

fprintf(’%i percent of samples zeroed out\n’,...

100*zeroedout/(size(img,1)*size(img,2)));

for different threshold parameters, and check that this reproduces the test im-
ages of this section, and prints the correct numbers of values which have been
neglected (i.e. which are below the threshold) on screen.

7.3 Summary

We defined the tensor product, and saw how this could be used to define op-
erations on images in a similar way to how we defined operations on sound.
It turned out that the tensor product construction could be used to construct
some of the operations on images we looked at in the previous chapter, which
now could be factorized into first filtering the columns in the image, and then
filtering the rows in the image. We went through an algorithm for computing
the tensor product, and established how we could perform change of coordi-
nates in tensor products. This enables us to define two-dimensional extensions
of the DCT and the DFT and their inverses, and we used these extensions to
experiment on images.

225



Chapter 8

Tensor products in a wavelet
setting

In Chapter 7 we defined tensor products in terms of vectors, and we saw that
the tensor product of two vectors is in fact a matrix. The same construction
can be applied to other vector spaces, in particular to vector spaces that are
function spaces. As we will see, the tensor product of two univariate function
spaces will be a space of functions in two variables. Recall that wavelets are
defined in terms of function spaces, so this construction will allow us to define
tensor products of wavelets. Through this we will be able to define wavelet
transforms that can be applied to images.

Definition 8.1 (Tensor product of function spaces). Let V and W be two
vector spaces of functions defined on the intervals [0,M) and [0, N), respec-
tively, and suppose that f1 ∈ V and f2 ∈ W . The tensor product of f1 and f2,
denoted f1⊗f2, denotes the function in two variables defined on [0,M)×[0, N)
given by f1(t1)f2(t2). The function f1 ⊗ f2 is also referred to as the separable
extension of f1 and f2 to two variables. The tensor product of the two spaces
V ⊗W denotes the set of all functions in two variables defined on [0,M)×[0, N)
and on the form f1(t1)f2(t2), where f1 ∈ V and f2 ∈ W .

We will always assume that the spaces V and W consist of functions which
are at least integrable. In this case V ⊗W is also an inner product space, with
the inner product given by a double integral,

�f, g� =
�

N

0

�
M

0
f(t1, t2)g(t1, t2)dt1dt2. (8.1)
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In particular, this says that

�f1 ⊗ f2, g1 ⊗ g2� =
�

N

0

�
M

0
f1(t1)f2(t2)g1(t1)g2(t2)dt1dt2

=

�
M

0
f1(t1)g1(t1)dt1

�
N

0
f2(t2)g2(t2)dt2 = �f1, g1��f2, g2�.

(8.2)

This means that for tensor products, a double integral can be computed as the
product of two one-dimensional integrals.

The tensor product space defined in Definition 8.1 is useful for approximation
of functions of two variables if each of the two spaces of univariate functions
have good approximation properties.

Idea 8.2. If the spaces V and W can be used to approximate functions in one
variable, then V ⊗W can be used to approximate functions in two variables.

We will not state this precisely, but just consider some important examples.

Example 8.3. Let V = W be the space of all polynomials of finite degree. We
know that V can be used for approximating many kinds of functions, such as
continuous functions, for example by Taylor series. The tensor product V ⊗ V

consists of all functions on the form
�

i,j
αi,jt

i

1t
j

2. It turns out that polynomi-
als in several variables have approximation properties analogous to univariate
polynomials.

Example 8.4. Let V = W = VN,T be the Nth order Fourier space which is
spanned by the functions

e
−2πiNt/T

, . . . , e
−2πit/T

, 1, e2πit/T , . . . , e2πiNt/T

The tensor product space V ⊗ V now consists of all functions on the form�
N

k,l=0 αk,le
2πikt1/T e2πilt2/T . One can show that this space has approximation

properties similar to VN,T . This is the basis for the theory of Fourier series in
two variables.

In the following we think of V ⊗ W as a space which can be used for ap-
proximating a general class of functions. By associating a function with the
vector of coordinates relative to some basis, and a matrix with a function in two
variables, we have the following parallel to Theorem 7.10:

Theorem 8.5. If {fi}M−1
i=0 is a basis for V and {gj}N−1

j=0 is a basis for W , then
{fi⊗gj}(M−1,N−1)

(i,j)=(0,0) is a basis for V ⊗W . Moreover, if the bases for V and W are
orthogonal/orthonormal, then the basis for V ⊗W is orthogonal/orthonormal.
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Proof. The proof is similar to that of Theorem 7.10: if

(M−1,N−1)�

(i,j)=(0,0)

αi,j(fi ⊗ gj) = 0,

we define hi(t2) =
�

N−1
j=0 αi,jgj(t2). It follows as before that

�
M−1
i=0 hi(t2)fi = 0

for any t2, so that hi(t2) = 0 for any t2 due to linear independence of the fi.
But then αi,j = 0 also, due to linear independene of the gj . The statement
about orthogonality follows from Equation 8.2.

We can now define the tensor product of two bases of functions as before: if
B = {fi}M−1

i=0 and C = {gj}N−1
j=0 , we set B⊗C = {fi⊗gj}(M−1,N−1)

(i,j)=(0,0) . Coordinate
matrices can also be defined as before: if f(t1, t2) =

�
Xi,j(fi ⊗ gj)(t1, t2), the

coordinate matrix of f is the matrix X with elements Xi,j . Theorem 7.12 can
also be proved in the same way in the context of function spaces. We state this
as follows:

Theorem 8.6 (Change of coordinates in tensor products of function spaces).
Assume that B1, C1 are bases for V , and B2, C2 are bases for W , and that S

is the change of coordinates matrix from C1 to B1, and that T is the change
of coordinates matrix from C2 to B2. Both B1 ⊗ B2 and C1 ⊗ C2 are bases for
V ⊗ W , and if X is the coordinate matrix in C1 ⊗ C2, and Y the coordinate
matrix in B1 ⊗ B2, then

Y = SXT
T
. (8.3)

8.1 Adopting the tensor product terminology to

wavelets

In the remaining part of this chapter we will apply the tensor product construc-
tion to wavelets. In particular the spaces V , W from Definition 8.1 are defined
from function spaces Vm, Wm, constructed from a given wavelet. We can in
particular form the tensor products φ0,n1 ⊗ φ0,n2

. We will assume that

1. the first component φ0,n1 has period M (so that {φ0,n1}M−1
n1=0 is a basis for

the first component space),

2. the second component φ0,n2 has period N (so that {φ0,n2}N−1
n2=0 is a basis

for the second component space).

When we speak of V0 ⊗ V0 we thus mean an MN -dimensional space with basis
{φ0,n1 ⊗ φ0,n2

}(M−1,N−1)
(n1,n2)=(0,0), where the coordinate matrices are M × N . This

difference in the dimension of the two components is done to allow for images
where the number of rows and columns may be different. In the following we
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will implicitly assume that the component spaces have dimension M and N , to
ease notation. If we use that φ

m−1 ⊕ ψ
m−1 also is a basis for Vm, we get the

following corollary to Theorem 8.5:

Corollary 8.7. Let φ,ψ be a scaling function and a mother wavelet. Then
the two sets of tensor products given by

φ
m
⊗ φ

m
= {φm,n1 ⊗ φm,n2}n1,n2

and

(φ
m−1 ⊕ψ

m−1)⊗ (φ
m−1 ⊕ψ

m−1)

= {φm−1,n1 ⊗ φm−1,n2 ,

φm−1,n1 ⊗ ψm−1,n2 ,

ψm−1,n1 ⊗ φm−1,n2 ,

ψm−1,n1 ⊗ ψm−1,n2}n1,n2

are both bases for Vm ⊗ Vm. This second basis is orthogonal/orthonormal
whenever the first basis is.

From this we observe that while the one-dimensional wavelet decomposition
splits Vm into a direct sum of the two vector spaces Vm−1 and Wm−1, the
corresponding two-dimensional decomposition splits Vm ⊗ Vm into a direct sum
of four tensor product vector spaces which deserve individual names.

Definition 8.8. We define the following tensor product spaces:

1. The space W
(0,1)
m spanned by {φm,n1 ⊗ ψm,n2}n1,n2 . This is also called

the 01-subband, or the LH-subband,

2. The space W
(1,0)
m spanned by {ψm,n1 ⊗ φm,n2}n1,n2 . This is also called

the 10-subband, or the HL-subband,

3. The space W
(1,1)
m spanned by {ψm,n1 ⊗ ψm,n2}n1,n2 . This is also called

the 11-subband, or the HH-subband.

The names L and H stand for Low-pass filters and High-pass filters, reflecting
the interpretation of the corresponding filters G0, G1, H0, H1 as lowpass/high-
pass filters. The use of the term subbands comes from the interpretation of
these filters as being selective on a certain frequency band. The splitting of
Vm ⊗ Vm into a direct sum of vector spaces can now be summed up as

Vm ⊗ Vm = (Vm−1 ⊗ Vm−1)⊕W
(0,1)
m−1 ⊕W

(1,0)
m−1 ⊕W

(1,1)
m−1 . (8.4)

Also in the setting of tensor products we refer to Vm−1 ⊗ Vm−1 as the space of
low-resolution approximations. The remaining parts, W (0,1)

m−1 ⊕W
(1,0)
m−1 ⊕W

(1,1)
m−1 ,
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is refered to as the detail space. Note that the coordinate matrix of

2m−1
N�

n1,n2=0

(cm−1,n1,n2(φm−1,n1 ⊗ φm−1,n2) + w
(0,1)
m−1,n1,n2

(φm−1,n1 ⊗ ψm−1,n2)+

w
(1,0)
m−1,n1,n2

(ψm−1,n1 ⊗ φm−1,n2) + w
(1,1)
m−1,n1,n2

(ψm−1,n1 ⊗ ψm−1,n2))

(8.5)

in the basis (φ
m−1 ⊕ψ

m−1)⊗ (φ
m−1 ⊕ψ

m−1) is




cm−1,0,0 · · · w
(0,1)
m−1,0,0 · · ·

...
...

...
...

w
(1,0)
m−1,0,0 · · · w

(1,1)
m−1,0,0 · · ·

...
...

...
...




. (8.6)

We see that the coordinate matrix is split into four submatrices:

• The cm−1-values, i.e. the coordinates for Vm−1 ⊕Vm−1. This is the upper
left corner in (8.6), and is also called the 00-subband, or the LL-subband.

• The w
(0,1)
m−1-values, i.e. the coordinates for W

(0,1)
m−1 . This is the upper right

corner in (8.6), and corresponds to the LH-subband.

• The w
(1,0)
m−1-values, i.e. the coordinates for W

(1,0)
m−1 . This is the lower left

corner in (8.6), and corresponds to the HL-subband.

• The w
(1,1)
m−1-values, i.e. the coordinates for W

(1,1)
m−1 . This is the lower right

corner in (8.6), and corresponds to the HH-subband.

The w
(i,j)
m−1-values are as in the one-dimensional situation often refered to as

wavelet coefficients. Let us consider the Haar wavelet as an example.

Example 8.9. If Vm is the vector space of piecewise constant functions on any
interval of the form [k2−m

, (k + 1)2−m) (as in the piecewise constant wavelet),
Vm ⊗Vm is the vector space of functions in two variables which are constant on
any square of the form [k12−m

, (k1 + 1)2−m) × [k22−m
, (k2 + 1)2−m). Clearly

φm,k1 ⊗φm,k2 is constant on such a square and 0 elsewhere, and these functions
are a basis for Vm ⊗ Vm.

Let us compute the orthogonal projection of φ1,k1 ⊗φ1,k2 onto V0⊗V0. Since
the Haar wavelet is orthonormal, the basis functions in (8.4) are orthonor-
mal, and we can thus use the orthogonal decomposition formula to find this
projection. Clearly φ1,k1 ⊗ φ1,k2 has different support from all except one of
φ0,n1 ⊗ φ0,n2 . Since

�φ1,k1 ⊗ φ1,k2 ,φ0,n1 ⊗ φ0,n2� = 1/2
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when the supports intersect, we obtain

proj
V0⊗V0

φ1,k1⊗φ1,k2 =






1
2 (φ0,k1/2 ⊗ φ0,k2/2) when k1, k2 are even
1
2 (φ0,k1/2 ⊗ φ0,(k2−1)/2) when k1 is even, k2 is odd
1
2 (φ0,(k1−1)/2 ⊗ φ0,k2/2) when k1 is odd, k2 is even
1
2 (φ0,(k1−1)/2 ⊗ φ0,(k2−1)/2) when k1, k2 are odd

So, in this case there were 4 different formulas, since there were 4 different
combinations of even/odd. Let us also compute the projection onto the orthog-
onal complement of V0 ⊗ V0 in V1 ⊗ V1, and let us express this in terms of the
φ0,n,ψ0,n, like we did in the one-variable case. Also here there are 4 different
formulas. When k1, k2 are both even we obtain

φ1,k1 ⊗ φ1,k2 − proj
V0⊗V0

(φ1,k1 ⊗ φ1,k2)

= φ1,k1 ⊗ φ1,k2 −
1

2
(φ0,k1/2 ⊗ φ0,k2/2)

=

�
1√
2
(φ0,k1/2 + ψ0,k1/2)

�
⊗
�

1√
2
(φ0,k2/2 + ψ0,k2/2)

�
− 1

2
(φ0,k1/2 ⊗ φ0,k2/2)

=
1

2
(φ0,k1/2 ⊗ φ0,k2/2) +

1

2
(φ0,k1/2 ⊗ ψ0,k2/2)

+
1

2
(ψ0,k1/2 ⊗ φ0,k2/2) +

1

2
(ψ0,k1/2 ⊗ ψ0,k2/2)−

1

2
(φ0,k1/2 ⊗ φ0,k2/2)

=
1

2
(φ0,k1/2 ⊗ ψ0,k2/2) +

1

2
(ψ0,k1/2 ⊗ φ0,k2/2) +

1

2
(ψ0,k1/2 ⊗ ψ0,k2/2).

Here we have used the relation φ1,ki =
1√
2
(φ0,ki/2+ψ0,ki/2), which we have from

our first analysis of the Haar wavelet. Checking the other possibilities we find
similar formulas for the projection onto the orthogonal complement of V0 ⊗ V0

in V1 ⊗ V1 when either k1 or k2 is odd. In all cases, the formulas use the basis
functions for W

(0,1)
0 , W (1,0)

0 , W (1,1)
0 . These functions are shown in Figure 8.1,

together with the function φ⊗ φ ∈ V0 ⊗ V0.

Example 8.10. If we instead use any of the wavelets for piecewise linear func-
tions, the wavelet basis functions are not orthogonal anymore, just as in the
one-dimensional case. The new basis functions are shown in Figure 8.2 for the
alternative piecewise linear wavelet.

An immediate corollary of Theorem 8.6 is the following:

Corollary 8.11. Let

Am = P(φm−1⊕ψm−1)←φm

Bm = Pφm←(φm−1⊕ψm−1)

be the stages in the DWT and the IDWT, and let

X = (cm,i,j)i,j Y =

�
(cm−1,i,j)i,j (w(0,1)

m−1,i,j)i,j
(w(1,0)

m−1,i,j)i,j (w(1,1)
m−1,i,j)i,j

�
(8.7)
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(a) The function φ⊗ φ
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(d) The function ψ ⊗ ψ

Figure 8.1: The basis functions for (V0 ⊗ V0)⊕W
(0,1)
0 ⊕W

(1,0)
0 ⊕W

(1,1)
0 for the

Haar wavelet.
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(d) The function ψ ⊗ ψ

Figure 8.2: The basis functions for (V0 ⊗ V0)⊕W
(0,1)
0 ⊕W

(1,0)
0 ⊕W

(1,1)
0 for the

alternative piecewise linear wavelet.
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Figure 8.3: Graphical representation of neglecting the wavelet coefficients at the
first level. In the first figure, all coefficients are present. Then we remove the
ones from W

(1,1)
1 , W (1,0)

1 , and W
(0,1)
1 , respectively.

be the coordinate matrices in φ
m
⊗φ

m
, and (φ

m−1⊕ψ
m−1)⊗(φ

m−1⊕ψ
m−1),

respectively. Then

Y = AmXA
T

m
(8.8)

X = BmY B
T

m
(8.9)

By the m-level two-dimensional DWT/IDWT (or DWT2/IDWT2) we mean
the change of coordinates where this is repeated m times as in a DWT/IDWT.

Each stage in DWT2 and IDWT2 can now be implemented by substituting
the matrices Am, Bm above into Theorem 7.13. This implementation can reuse
an efficient implementation of the one-dimensional DWT/IDWT. When using
many levels of the DWT2, the next stage is applied only to the upper left corner
of the matrix, just as the DWT at the next stage only is applied to the first part
of the coordinates. At each stage, the upper left corner of the coordinate matrix
(which gets smaller at each iteration), is split into four equally big parts. To
illustrate this, assume that we have a coordinate matrix, and that we perform
the change of basis at two levels, i.e. we start with a coordinate matrix in the
basis φ2 ⊗ φ2. Figure 8.3 illustrates first the collection of all coordinates, and
then the resulting collection of coordinates after removing subbands at the first
level successively. The subbands which have been removed are indicated with a
black colour. Figure 8.4 illustrates in the same way incremental removal of the
subbands at the second level.
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Figure 8.4: Graphical representation of neglecting the wavelet coefficients at the
second level. We remove the ones from W

(1,1)
2 , W (1,0)

2 , and W
(0,1)
2 , respectively.

Figure 8.5: Image of Marilyn Monroe, used in our experiments.

Let us round off this section with some experiments with images using the
wavelets we have considered1. Our theory is applied to images in the following
way: We visualize the pixels in the image as coordinates in the basis φ

m
⊗ φ

m

(so that the image has size (2mM)×(2mN)), and perform change of coordinates
with the DWT2. We can then, just as we did for sound, and for the DCT/DFT-
values in images, either set the the part from the W

(i,j)
k

-spaces (the detail) to
zero, or the part from V0 ⊗ V0 (the M × N -low-resolution approximation) to
zero, depending on whether we want to inspect the detail or the low-resolution
approximation in the image. Finally we apply the IDWT2 to end up with
coordinates in φ

m
⊗ φ

m
again, and display the image with pixel values being

these coordinates.

Example 8.12 (Creating thumbnail images). Let us take the sample image
of Marilyn Monroe, shown in Figure 8.5, and first use the Haar wavelet. In
Exercise 1 you will be asked to implement a function which compute DWT2 for
the Haar wavelet. After the DWT2, the upper left submatrices represent the
low-resolution approximations from Vm−1⊗Vm−1, Vm−2⊗Vm−2, and so on. We
can now use the following code to store the low-resolution approximation for
m = 1:

1Note also that Matlab has a wavelet toolbox which could be used for these purposes, but
we will not go into the usage of this.
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(a) (b) (c) (d)

Figure 8.6: The corresponding thumbnail images for the Image of Marilyn Mon-
roe, obtained with a DWT of 1, 2, 3, and 4 levels.

img = double(imread(’mm.gif’,’gif’));

[l1,l2]=size(img);

x=DWT2HaarImpl(img,1);

x=x(1:(l1/2),1:(l2/2));

imwrite(uint8(x),’mm1thumbnail.jpg’,’jpg’);

In Figure 8.6 the results are shown up to 4 resolutions.

Example 8.13 (Detail and low-resolution approximations with the Haar wavelet).
In Exercise 2 you will be asked to implement a function showDWTlower which
displays the low-resolution approximations to our image test file mm.gif, for the
Haar wavelet, using functions we implement in the exercises. Let us take a closer
look at the images generated. Above we viewed the low-resolution approxima-
tion as a smaller image. Let us compare with the image resulting from setting
the wavelet detail coefficients to zero, and viewing the result as an image of the
same size. In particular, let us neglect the wavelet coefficients as pictured in
Figure 8.3 and Figure 8.4. Since the Haar wavelet has few vanishing moments,
we should expect that the lower order resolution approximations from V0 are
worse when m increase. Figure 8.7 confirms this for the lower order resolu-
tion approximations. Alternatively, we should see that the higher order detail
spaces contain more information. In Exercise 3 you will be asked to implement
a function showDWTlowerdifference which displays the detail components in
the image for a given resolution m for the Haar wavelet. The new images when
this function is used are shown in Figure 8.8. The black colour indicates values
which are close to 0. In other words, most of the coefficients are close to 0,
which reflects one of the properties of the wavelet.

Example 8.14 (The alternative piecewise linear wavelet, and neglecting bands
in the detail spaces). In Exercise 5 you will be asked to implement a function
showDWTfilterslower which displays the low-resolution approximations to our
image test file mm.gif, for any type of wavelet, using functions we implement in
the exercises. With this function we can display the result for all the wavelets
we have considered up to now, in succession, and at a given resolution, with the
following code:
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(a) 1 level neglected (b) 2 levels neglected

(c) 3 levels neglected (d) 4 levels neglected

Figure 8.7: Image of Marilyn Monroe, with higher levels of detail neglected for
the Haar wavelet.
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(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 8.8: The corresponding detail for the images in Figure 8.7, with the Haar
wavelet.
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function showDWTall(m)

disp(’Haar wavelet’);

showDWTlower(m);

disp(’Wavelet for piecewise linear functions’);

showDWTfilterslower(m,[sqrt(2)],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[1/sqrt(2)]);

disp(’Wavelet for piecewise linear functions, alternative version’);

showDWTfilterslower(m,[3/(2*sqrt(2)) 1/(2*sqrt(2)) -1/(4*sqrt(2))],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[3/(4*sqrt(2)) -1/(4*sqrt(2)) -1/(8*sqrt(2))]);

The call to showDWTlower first displays the result, using the Haar wavelet.
The code then moves on to the piecewise linear wavelet and the alternative
piecewise linear wavelet. In Example 5.50 we found the parameters h0,h1,g0,g1
to use for these wavelets. These are then sent as parameters to the function
showDWTfilterslower, which displays the corresponding image when a wavelet
with a given set of filter coefficients are used.

Let us use some other filter than the Haar wavelet. Once the filters are
known, and the image has been read from file, the functions DWT2Impl and
IDWT2Impl from Exercise 4, a new image with detail at m levels neglected can
be produced with the following code:

x=DWT2Impl(h0,h1,img,m);

newx=zeros(size(x));

newx(1:(l1/2^m),1:(l2/2^m))=x(1:(l1/2^m),1:(l2/2^m));

x=IDWT2Impl(g0,g1,newx,m);

We can repeat this for various number of levels, and compare the different im-
ages. We can also neglect only parts of the detail, since it at each level is grouped
into three bands (W (1,1)

m , W (1,0)
m , W (0,1)

m ), contrary to the one-dimensional case.
Let us use the alternative piecewise linear wavelet. This is used in the JPEG2000
standard for lossless compression, since the filter coefficients here turned out to
be dyadic fractions, which are suitable for lossless operations. The resulting
images when the bands on the first level indicated in Figure 8.3 are removed are
shown in Figure 8.9. The resulting images when the bands on the second level
indicated in Figure 8.4 are removed are shown in Figure 8.10. The image is seen
still to resemble the original one, even after two levels of wavelets coefficients
have been neglected. This in itself is good for compression purposes, since we
may achieve compression simply by dropping the given coefficients. However, if
we continue to neglect more levels of coefficients, the result will look poorer. In
Figure 8.11 we have also shown the resulting image after the third and fourth
level of detail have been neglected. Although we still can see details in the
image, the quality in the image is definitely poorer. Although the quality is
poorer when we neglect levels of wavelet coefficients, all information is kept if
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(a) The image unaltered

(b) Resulting image af-
ter neglecting detail in
W (1,1)

1 , as illustrated in
Figure 8.3(b)

(c) Resulting image after
neglecting also detail in
W (1,0)

1 , as illustrated in Fig-
ure 8.3(c).

(d) Resulting image after
neglecting also detail in
W (0,1)

1 , as illustrated in Fig-
ure 8.3(d).

Figure 8.9: Image of Marilyn Monroe, with various bands of detail at the first
level neglected. The alternative piecewise linear wavelet was used.

(a) Resulting image after
also neglecting detail in
W (1,1)

2 , as illustrated in Fig-
ure 8.10(a).

(b) Resulting image after
also neglecting detail in
W (1,0)

2 , as illustrated in Fig-
ure 8.10(b).

(c) Resulting image after
also neglecting detail in
W (0,1)

2 , as illustrated in Fig-
ure 8.10(c).

Figure 8.10: Image of Marilyn Monroe, with various bands of detail at the
second level neglected. The alternative piecewise linear wavelet was used.
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(a) 3 levels neglected (b) 4 levels neglected

Figure 8.11: Image of Marilyn Monroe, with higher levels of detail neglected.
The alternative piecewise linear wavelet was used.

we additionally include the detail/bands. In Figure 8.12, we have shown the
corresponding detail for Figure 8.9(d), Figure 8.10(c), and Figure 8.11. Clearly,
more detail can be seen in the image when more of the detail is included.

Example 8.15. The JPEG2000 standard uses a more advanced wavelet for
lossy compression than the piecewise linear wavelet used for lossless compression.
This uses a more advanced scaling function φ than the ones we have used, and
adds more vanishing momemnts to it, similarly, to how we did for the alternative
piecewise linear wavelet. We will not deduce the expression for this wavelet2,
only state that it is determined by the filters

H0 = {0.1562,−0.0985,−0.4569, 1.5589, 3.5221, 1.5589,−0.4569,−0.0985, 0.1562}
H1 = {0.0156,−0.0099,−0.1012, 0.1909,−0.1012,−0.0099, 0.0156}.

for the DWT, and the filters

G0 = {−0.0156,−0.0099, 0.1012, 0.1909, 0.1012,−0.0099,−0.0156}
G1 = {0.1562, 0.0985,−0.4569,−1.5589, 3.5221,−1.5589,−0.4569, 0.0985, 0.1562}

for the IDWT. The length of the filters are 9 and 7 in this case, so that this
wavelet is called the CDF 9/7 wavelet (CDF represents the first letters in the
names of the inventors of the wavelet). The corresponding frequency responses
are

λG0(ω) = −0.0312 cos(3ω),−0.0198 cos(2ω), 0.2024 cosω + 0.1909

λH0(ω) = 0.3124 cos(4ω)− 0.1970 cos(3ω)− 0.9138 cos(2ω), 3.1178 cosω + 3.5221.

In Figure 8.13 we have plotted these. It is seen that both filters are lowpass
2it can be obtained by hand, but is more easily automated on a computer
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(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 8.12: The corresponding detail for the image of Marilyn Monroe. The
alternative piecewise linear wavelet was used.

(a) λG0 (ω) (b) λH0 (ω)

Figure 8.13: The frequency responses for the filters used in lossy compression
with JPEG2000.
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(a) 1 level neglected (b) 2 levels neglected

(c) 3 levels neglected (d) 4 levels neglected

Figure 8.14: Image of Marilyn Monroe, with higher levels of detail neglected.
The CDF 9/7 wavelet was used.

filters also here, and that they are closer to an ideal bandpass filter. Although
there exist wavelets with better properties when it comes to compression, it
can be shown that this wavelet has a good tradeoff between complexity and
compression, and is therefore much used. With the CDF 9/7 wavelet, we should
see improved images when we discared the detail in the images. Figure 8.14
confirms this for the lower resolution spaces, while Figure 8.15 confirms this for
the higher order detail spaces.

As mentioned, the procedure developed in this section for applying a wavelet
transform to an image with the help of the tensor product construction, is
adopted in the JPEG2000 standard. This lossy (can also be used as lossless)
image format was developed by the Joint Photographic Experts Group and
published in 2000. After significant processing of the wavelet coefficients, the
final coding with JPEG2000 uses an advanced version of arithmetic coding.
At the cost of increased encoding and decoding times, JPEG2000 leads to as
much as 20 % improvement in compression ratios for medium compression rates,
possibly more for high or low compression rates. The artefacts are less visible
than in JPEG and appear at higher compression rates. Although a number of
components in JPEG2000 are patented, the patent holders have agreed that the
core software should be available free of charge, and JPEG2000 is part of most
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(a) Detail from 1 level (b) Detail from 2 levels

(c) Detail from 3 levels (d) Detail from 4 levels

Figure 8.15: The corresponding detail for the image of Marilyn Monroe. The
CDF 9/7 wavelet was used.
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Linux distributions. However, there appear to be some further, rather obscure,
patents that have not been licensed, and this may be the reason why JPEG2000
is not used more. The extension of JPEG2000 files is .jp2.

Exercises for Section 8.1

Ex. 1 — Implement functions

function xnew=DWT2HaarImpl(x,m)

function x=IDWT2HaarImpl(xnew,m)

which implements DWT2 and IDWT2 for the Haar-wavelet.

Ex. 2 — In this exercise we will experiment with applying an m-level DWT
to a sound file.

a. Write a function

function showDWTlower(m)

which
1. reads the image file mm.gif,
2. performs an m-level DWT2 to the image samples using the function

DWT2HaarImpl,
3. sets all wavelet coefficients representing detail to zero (i.e. keep only

wavelet coefficients from V0 ⊗ V0),
4. performs an IDWT2 on the resulting coefficients using the function

IDWT2HaarImpl,
5. displays the resuting image.

b. Run the function showDWTlower for different values of m. Describe what
you see for different m. degraded? Compare with what you saw with
the function showDCThigher in Exercise 2, where you performed a DCT
on the image samples instead, and set DCT coefficients below a given
threshold to zero.

c. Do the image samples returned by showDWTlower lie in [0, 255]?

Ex. 3 — Repeat Exercise 2, but this time instead keep only wavelet coeffi-
cients from the detail spaces. Call the new function showDWTlowerdifference.
What kind of image do you see? Can you recognize the original image in what
you see?

Ex. 4 — Implement functions

function xnew=DWT2Impl(h0,h1,x,m)

function x=IDWT2Impl(g0,g1,xnew,m)
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where DWT2Impl performs the m-level DWT2 on the image given by x, and
IDWT2Impl performs the m-level IDWT2. The functions should at each stage
call DWTImpl and IDWTImpl with m = 1, which you implemented in exercises 4
and 5, and each call to these functions should alter the appropriate upper left
submatrix in the coordinate matrix. You can assume that the number of rows
and columns both are powers of 2 in this matrix (but they may not be equal).

Ex. 5 — Write a function

function showDWTfilterslower(m,h0,h1,g0,g1)

which reimplements the function showDWTlower from Exercise 2 so that it takes
as input the positive parts of the four different filters as in Section 5.6. Look at
the result using the different wavelets we have encountered and for different m,
using the code from Example 8.13. Can you see any difference from the Haar
wavelet? If so, which wavelet gives the best image quality?

Ex. 6 — In this exercise we will change the code in Example 8.13 so that it
instead only shows the contribution from the detail spaces.

a. Reimplement the function you made in Exercise 5 so that it instead
shows the contribution from the detail spaces. Call the new function
showDWTfilterslowerdifference.

b. In Exercise 3 we implemented a function showDWTlowerdifference for
looking at the detail/error when the Haar wavelet is used. In the function
showDWTall from Example 8.13, replace showDWTlower and showDWTfilterslower

with showDWTlowerdifference and
showDWTfilterslowerdifference. Describe the images you see for dif-
ferent m. Try to explain why the images seem to get clearer when you
increase m.

8.2 Summary

We extended the tensor product construction to functions by defining the tensor
product of functions as a function in two variables. We explained with some
examples that this made the tensor product formalism useful for approximation
of functions in several variables. We extended the wavelet transform to the
tensor product setting, so that it too could be applied to images. We also
performed several experiments on our test image, such as creating low-resolution
images and neglecting wavelet coefficients. We also used different wavelets, such
as the Haar wavelet, the alternative piecewise linear wavelet, and a new wavelet
which is much used in lossy ompression of images. The experiments confirmed
what we previously have proved, that wavelets with many vanishing moments
are better suited for compression purposes.
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