
Chapter 1

Sound

A major part of the information we receive and perceive every day is in the
form of audio. Most of these sounds are transferred directly from the source
to our ears, like when we have a face to face conversation with someone or
listen to the sounds in a forest or a street. However, a considerable part of the
sounds are generated by loudspeakers in various kinds of audio machines like cell
phones, digital audio players, home cinemas, radios, television sets and so on.
The sounds produced by these machines are either generated from information
stored inside, or electromagnetic waves are picked up by an antenna, processed,
and then converted to sound. It is this kind of sound we are going to study in
this chapter. The sound that is stored inside the machines or picked up by the
antennas is usually represented as digital sound. This has certain limitations,
but at the same time makes it very easy to manipulate and process the sound
on a computer.

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Larger variations mean louder sounds,
while faster variations correspond to sounds with a higher pitch. The air pres-
sure varies continuously with time, but at a given point in time it has a precise
value. This means that sound can be considered to be a mathematical function.

Observation 1.1. A sound can be represented by a mathematical function,
with time as the free variable. When a function represents a sound, it is often
referred to as a continuous signal.

In the following we will briefly discuss the basic properties of sound: first the
significance of the size of the variations, and then how many variations there
are per second, the frequency of the sound. We also consider the important
fact that any reasonable sound may be considered to be built from very simple
basis sounds. Since a sound may be viewed as a function, the mathematical
equivalent of this is that any decent function may be constructed from very
simple basis functions. Fourier-analysis is the theoretical study of this, and in
the next chapters we are going to study this from a practical and computational

9



0.2 0.4 0.6 0.8 1.0

101324

101325

101326

101326

(a) A sound shown in terms of air pressure

0.5 1.0 1.5 2.0

�1.0

�0.5

0.5

1.0

(b) A sound shown in terms of the differ-
ence from the ambient air pressure

Figure 1.1: Two examples of audio signals.

perspective. Towards the end of this chapter we also consider the basics of
digital audio, and illustrate its power by performing some simple operations on
digital sounds.

1.1 Loudness: Sound pressure and decibels

An example of a simple sound is shown in Figure 1.1(a) where the oscillations
in air pressure are plotted agains time. We observe that the initial air pressure
has the value 101 325 (we will shortly return to what unit is used here), and
then the pressure starts to vary more and more until it oscillates regularly
between the values 101 323 and 101 327. In the area where the air pressure
is constant, no sound will be heard, but as the variations increase in size, the
sound becomes louder and louder until about time t = 0.6 where the size of
the oscillations becomes constant. The following summarises some basic facts
about air pressure.

Fact 1.2 (Air pressure). Air pressure is measured by the SI-unit Pa (Pascal)
which is equivalent to N/m2 (force / area). In other words, 1 Pa corresponds
to the force exerted on an area of 1 m2 by the air column above this area. The
normal air pressure at sea level is 101 325 Pa.

Fact 1.2 explains the values on the vertical axis in Figure 1.1(a): The sound
was recorded at the normal air pressure of 101 325 Pa. Once the sound started,
the pressure started to vary both below and above this value, and after a short
transient phase the pressure varied steadily between 101 324 Pa and 101 326 Pa,
which corresponds to variations of size 1 Pa about the fixed value. Everyday
sounds typically correspond to variations in air pressure of about 0.00002–2 Pa,
while a jet engine may cause variations as large as 200 Pa. Short exposure
to variations of about 20 Pa may in fact lead to hearing damage. The volcanic
eruption at Krakatoa, Indonesia, in 1883, produced a sound wave with variations
as large as almost 100 000 Pa, and the explosion could be heard 5000 km away.

10



When discussing sound, one is usually only interested in the variations in
air pressure, so the ambient air pressure is subtracted from the measurement.
This corresponds to subtracting 101 325 from the values on the vertical axis in
Figure 1.1(a). In Figure 1.1(b) the subtraction has been performed for another
sound, and we see that the sound has a slow, cos-like, variation in air pressure,
with some smaller and faster variations imposed on this. This combination
of several kinds of systematic oscillations in air pressure is typical for general
sounds. The size of the oscillations is directly related to the loudness of the
sound. We have seen that for audible sounds the variations may range from
0.00002 Pa all the way up to 100 000 Pa. This is such a wide range that it is
common to measure the loudness of a sound on a logarithmic scale. Often air
pressure is normalized so that it lies between −1 and 1: The value 0 then repre-
sents the ambient air pressure, while −1 and 1 represent the lowest and highest
representable air pressure, respectively. The following fact box summarises the
previous discussion of what a sound is, and introduces the logarithmic decibel
scale.

Fact 1.3 (Sound pressure and decibels). The physical origin of sound is vari-
ations in air pressure near the ear. The sound pressure of a sound is obtained
by subtracting the average air pressure over a suitable time interval from the
measured air pressure within the time interval. A square of this difference
is then averaged over time, and the sound pressure is the square root of this
average.

It is common to relate a given sound pressure to the smallest sound pressure
that can be perceived, as a level on a decibel scale,

Lp = 10 log10

�
p2

p2ref

�
= 20 log10

�
p

pref

�
.

Here p is the measured sound pressure while pref is the sound pressure of a
just perceivable sound, usually considered to be 0.00002 Pa.

The square of the sound pressure appears in the definition of Lp since this
represents the power of the sound which is relevant for what we perceive as
loudness.

The sounds in Figure 1.1 are synthetic in that they were constructed from
mathematical formulas (see Exercises 1.4.2 and 1.4.3). The sounds in Figure 1.2
on the other hand show the variation in air pressure when there is no math-
ematical formula involved, such as is the case for a song. In (a) there are so
many oscillations that it is impossible to see the details, but if we zoom in as
in (c) we can see that there is a continuous function behind all the ink. It is
important to realise that in reality the air pressure varies more than this, even
over the short time period in (c). However, the measuring equipment was not
able to pick up those variations, and it is also doubtful whether we would be
able to perceive such rapid variations.

11



0.1 0.2 0.3 0.4 0.5

�0.2

�0.1

0.0

0.1

0.2

0.3

(a) 0.5 seconds of the song

0.005 0.010 0.015

�0.2

�0.1

0.0

0.1

0.2

(b) the first 0.015 seconds

0.0005 0.0010 0.0015

�0.2

�0.1

0.0

0.1

(c) the first 0.002 seconds

Figure 1.2: Variations in air pressure during parts of a song.

12



1.2 The pitch of a sound

Besides the size of the variations in air pressure, a sound has another impor-
tant characteristic, namely the frequency (speed) of the variations. For most
sounds the frequency of the variations varies with time, but if we are to perceive
variations in air pressure as sound, they must fall within a certain range.

Fact 1.4. For a human with good hearing to perceive variations in air pressure
as sound, the number of variations per second must be in the range 20–20 000.

To make these concepts more precise, we first recall what it means for a
function to be periodic.

Definition 1.5. A real function f is said to be periodic with period τ if

f(t+ τ) = f(t)

for all real numbers t.

Note that all the values of a periodic function f with period τ are known if
f(t) is known for all t in the interval [0, τ). The prototypes of periodic functions
are the trigonometric ones, and particularly sin t and cos t are of interest to us.
Since sin(t + 2π) = sin t, we see that the period of sin t is 2π and the same is
true for cos t.

There is a simple way to change the period of a periodic function, namely
by multiplying the argument by a constant.

Observation 1.6 (Frequency). If ν is an integer, the function f(t) =
sin(2πνt) is periodic with period τ = 1/ν. When t varies in the interval
[0, 1], this function covers a total of ν periods. This is expressed by saying
that f has frequency ν.

Figure 1.3 illustrates observation 1.6. The function in (a) is the plain sin t
which covers one period when t varies in the interval [0, 2π]. By multiplying the
argument by 2π, the period is squeezed into the interval [0, 1] so the function
sin(2πt) has frequency ν = 1. Then, by also multiplying the argument by 2,
we push two whole periods into the interval [0, 1], so the function sin(2π2t) has
frequency ν = 2. In (d) the argument has been multiplied by 5 — hence the
frequency is 5 and there are five whole periods in the interval [0, 1]. Note that
any function on the form sin(2πνt+ a) has frequency ν, regardless of the value
of a.

Since sound can be modelled by functions, it is reasonable to say that a
sound with frequency ν is a trigonometric function with frequency ν.

13



1 2 3 4 5 6

�1.0

�0.5

0.5

1.0

(a) sin t

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(b) sin(2πt)

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(c) sin(2π2t)

0.2 0.4 0.6 0.8 1.0

�1.0

�0.5

0.5

1.0

(d) sin(2π5t)

Figure 1.3: Versions of sin with different frequencies.

14



Definition 1.7. The function sin(2πνt) represents what we will call a pure
tone with frequency ν. Frequency is measured in Hz (Herz) which is the same
as s−1 (the time t is measured in seconds).

A pure tone with frequency 440 Hz sounds like this, and a pure tone with
frequency 1500 Hz sounds like this.

Any sound may be considered to be a function. In the next chapter we are
going to see that any reasonable function may be written as a sum of simple
sin- and cos- functions with integer frequencies. When this is translated into
properties of sound, we obtain an important principle.

Observation 1.8 (Decomposition of sound into pure tones). Any sound f is
a sum of pure tones at different frequencies. The amount of each frequency re-
quired to form f is the frequency content of f . Any sound can be reconstructed
from its frequency content.

The most basic consequence of observation 1.8 is that it gives us an un-
derstanding of how any sound can be built from the simple building blocks of
pure tones. This means that we can store a sound f by storing its frequency
content, as an alternative to storing f itself. This also gives us a possibility for
lossy compression of digital sound: It turns out that in a typical audio signal
there will be most information in the lower frequencies, and some frequencies
will be almost completely absent. This can be exploited for compression if we
change the frequencies with small contribution a little bit and set them to 0, and
then store the signal by only storing the nonzero part of the frequency content.
When the sound is to be played back, we first convert the adjusted values to
the adjusted frequency content back to a normal function representation with
an inverse mapping.

Fact 1.9 (Basic idea behind audio compression). Suppose an audio signal f
is given. To compress f , perform the following steps:

1. Rewrite the signal f in a new format where frequency information be-
comes accessible.

2. Remove those frequencies that only contribute marginally to human per-
ception of the sound.

3. Store the resulting sound by coding the adjusted frequency content with
some lossless coding method.

This lossy compression strategy is essentially what is used in practice by
commercial audio formats. The difference is that commercial software does
everything in a more sophisticated way and thereby gets better compression
rates. We will return to this in later chapters.

15



We will see later that Observation 1.8 also is the basis for many operations on
sounds. The same observation also makes it possible to explain more precisely
what it means that we only perceive sounds with a frequency in the range 20–
20000 Hz:

Fact 1.10. Humans can only perceive variations in air pressure as sound if
the Fourier series of the sound signal contains at least one sufficiently large
term with frequency in the range 20–20 000 Hz.

With appropriate software it is easy to generate a sound from a mathematical
function; we can ’play’ the function. If we play a function like sin(2π440t),
we hear a pleasant sound with a very distinct pitch, as expected. There are,
however, many other ways in which a function can oscillate regularly. The
function in Figure 1.1(b) for example, definitely oscillates 2 times every second,
but it does not have frequency 2 Hz since it is not a pure tone. This sound is also
not that pleasant to listen to. We will consider two more important examples
of this, which are very different from smooth, trigonometric functions.

Example 1.11. We define the square wave of period T as the function which
repeats with period T , and is 1 on the first half of each period, and −1 on the
second half. This means that we can define it as the function

f(t) =

�
1, if 0 ≤ t < T/2;

−1, if T/2 ≤ t < T .
(1.1)

In Figure 1.4(a) we have plotted the square wave when T = 1/440. This period
is chosen so that it corresponds to the pure tone we already have listened to,
and you can listen to this square wave here (in Exercise 5 you will learn how
to generate this sound). We hear a sound with the same pitch as sin(2π440t),
but note that the square wave is less pleasant to listen to: There seems to be
some sharp corners in the sound, translating into a rather shrieking, piercing
sound. We will later explain this by the fact that the square wave can be viewed
as a sum of many frequencies, and that all the different frequencies pollute the
sound so that it is not pleasant to listen to.

Example 1.12. We define the triangle wave of period T as the function which
repeats with period T , and increases linearly from −1 to 1 on the first half of
each period, and decreases linearly from 1 to −1 on the second half of each
period. This means that we can define it as the function

f(t) =

�
4t/T − 1, if 0 ≤ t < T/2;

3− 4t/T, if T/2 ≤ t < T .
(1.2)

In Figure 1.4(b) we have plotted the triangle wave when T = 1/440. Again,
this same choice of period gives us an audible sound, and you can listen to the
triangle wave here (in Exercise 5 you will learn how to generate this sound).
Again you will note that the triangle wave has the same pitch as sin(2π440t),

16



0 0.002 0.004 0.006 0.008 0.01

−1

−0.5

0

0.5

1

(a) The first five periods of the square wave
0 0.002 0.004 0.006 0.008 0.01

−1

−0.5

0

0.5

1

(b) The first five periods of the triangle wave

Figure 1.4: The square wave and the triangle wave, two functions with regular
oscillations, but which are not simple, trigonometric functions.

and is less pleasant to listen to than this pure tone. However, one can argue
that it is somewhat more pleasant to listen to than a square wave. This will
also be explained in terms of pollution with other frequencies later.

In Section 2.1 we will begin to peek behind the curtains as to why these
waves sound so different, even though we recognize them as having the exact
same pitch.

1.3 Digital sound

In the previous section we considered some basic properties of sound, but it
was all in terms of functions defined for all time instances in some interval. On
computers and various kinds of media players the sound is usually digital which
means that the sound is represented by a large number of function values, and
not by a function defined for all times in some interval.

Definition 1.13 (Digital sound). A digital sound is a sequence x = {xi}Ni=0

that corresponds to measurements of the air pressure of a sound f , recorded
at a fixed rate of fs (the sampling frequency or sampling rate) measurements
per second, i.e.,

xi = f(i/fs), for i = 0, 1; . . . , N.

The measurements are often referred to as samples. The time between succes-
sive measurements is called the sampling period and is usually denoted Ts. If
the sound is in stereo there will be two arrays x1 and x2, one for each channel.
Measuring the sound is also referred to as sampling the sound, or analog to
digital (AD) conversion.

17



In most cases, a digital sound is sampled from an analog (continuous) audio
signal. This is usually done with a technique called Pulse Code Modulation
(PCM). The audio signal is sampled at regular intervals and the sampled val-
ues stored in a suitable number format. Both the sampling frequency, and the
accuracy and number format used for storing the samples, may vary for differ-
ent kinds of audio, and both influence the quality of the resulting sound. For
simplicity the quality is often measured by the number of bits per second, i.e.,
the product of the sampling rate and the number of bits (binary digits) used to
store each sample. This is also referred to as the bit rate. For the computer to
be able to play a digital sound, samples must be stored in a file or in memory
on a computer. To do this efficiently, digital sound formats are used. A couple
of them are described in the examples below.

In Exercise 4 you will be asked to implement a Matlab-function which plays
a pure sound with a given frequency on your computer. For this you will need
to know that for a pure tone with frequency f , you can obtain its samples over
a period of 3 seconds with sampling rate fs from the code

t=0:(1/fs):3;

sd=sin(2*pi*f*t);

Here the code is in MATLAB. MATLAB code will be displayed in this way
throughout these notes.

Example 1.14. In the classical CD-format the audio signal is sampled 44 100
times per second and the samples stored as 16-bit integers. This works well for
music with a reasonably uniform dynamic range, but is problematic when the
range varies. Suppose for example that a piece of music has a very loud passage.
In this passage the samples will typically make use of almost the full range of
integer values, from −215 − 1 to 215. When the music enters a more quiet
passage the sample values will necessarily become much smaller and perhaps
only vary in the range −1000 to 1000, say. Since 210 = 1024 this means that
in the quiet passage the music would only be represented with 10-bit samples.
This problem can be avoided by using a floating-point format instead, but very
few audio formats appear to do this.

The bit rate for CD-quality stereo sound is 44100 × 2 × 16 bits/s = 1411.2
kb/s. This quality measure is particularly popular for lossy audio formats where
the uncompressed audio usually is the same (CD-quality). However, it should
be remembered that even two audio files in the same file format and with the
same bit rate may be of very different quality because the encoding programs
may be of different quality.

Example 1.15. For telephony it is common to sample the sound 8000 times per
second and represent each sample value as a 13-bit integer. These integers are
then converted to a kind of 8-bit floating-point format with a 4-bit significand.
Telephony therefore generates a bit rate of 64 000 bits per second, i.e. 64 kb/s.

Newer formats with higher quality are available. Music is distributed in vari-
ous formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with sampling

18



rates up to 192 000 and up to 24 bits per sample. These formats also support
surround sound (up to seven channels in contrast to the two stereo channels on
a CD). In the following we will assume all sound to be digital. Later we will
return to how we reconstruct audible sound from digital sound.

1.4 Simple operations on digital sound

Simple operations and computations with digital sound can be done in any
programming environment. Let us take a look at how this can be done. From
Definition 1.13, digital sound is just an array of sample values x = (xi)

N−1
i=0 ,

together with the sample rate fs. Performing operations on the sound therefore
amounts to doing the appropriate computations with the sample values and the
sample rate. The most basic operation we can perform on a sound is simply
playing it, and if we are working with sound we need a mechanism for doing
this.

1.4.1 Playing a sound

You may already have listened to pure tones, square waves and triangle waves
in the last section. The corresponding sound files were generated in a way we
will describe shortly, placed in a directory available on the internet, and linked
to from these notes. A program on your computer was able to play these files
when you clicked on them. We will now describe how to use Matlab to play the
same sounds. There we have the two functions

playblocking(playerobj)

playblocking(playerobj,[start stop])

These simply play an audio segment encapsulated by the object playerobj (we
will shortly see how we can construct such an object from given audio samples
and sampling rate). playblocking means that the method playing the sound
will block until it has finished playing. We will have use for this functionality
later on, since we may play sounds in successive order. With the first function
the entire audio segment is played. With the second function the playback starts
at sample start, and ends at sample stop. These functions are just software
interfaces to the sound card in your computer. It basically sends the array of
sound samples and sample rate to the sound card, which uses some method for
reconstructing the sound to an analog sound signal. This analog signal is then
sent to the loudspeakers and we hear the sound.

Fact 1.16. The basic command in a programming environment that handles
sound takes as input an array of sound samples x and a sample rate s, and
plays the corresponding sound through the computer’s loudspeakers.

The mysterious playerobj object above can be obtained from the sound
samples (represented by a vector S) and the sampling rate (fs) by the function:

19



playerobj=audioplayer(S,fs)

The sound samples can have different data types. We will always assume that
they are of type double. MATLAB requires that they have values between −1
and 1 (i.e. these represent the range of numbers which can be played through
the sound card of the computer). Also, S can actually be a matrix: Each
column in the matrix represents a sound channel. Sounds we generate from a
mathematical function on our own will typically have one only one channel, so
that S has only one column. If S originates from a stereo sound file, it will have
two columns.

You can create S on your own, and set the sampling rate to whatever value
you like. However, we can also fill in the sound samples from a sound file. To
do this from a file in the wav-format named filename, simply write

[S,fs]=wavread(filename)

The wav-format format was developed by Microsoft and IBM, and is one of
the most common file formats for CD-quality audio. It uses a 32-bit integer to
specify the file size at the beginning of the file which means that a WAV-file
cannot be larger than 4 GB. In addition to filling in the sound samples in the
vector S, this function also returns the sampling rate fs used in the file. The
function

wavwrite(S,fs,filename)

can similarly be used to write the data stored in the vector S to the wav-file by
the name filename. In the following we will both fill in the vector S on our
own by using values from mathematical functions, as well as from a file. As
an example of the first, we can listen to and write to a file the pure tone of
frequency 440Hz considered above with the help of the following code:

antsec=3;

fs=40000;

t=linspace(0,antsec,fs*antsec);

S=sin(2*pi*440*t);

playerobj=audioplayer(S,fs);

playblocking(playerobj);

wavwrite(S,fs,’puretone440.wav’);

The code creates a pure tone which lasts for three seconds (if you want the
tone to last longer, you can change the value of the variable antsec). We also
tell the computer that there are 40000 samples per second. This value is not
coincidental, and we will return to this. In fact, the sound file for the pure tone
embedded into this document was created in this way! In the same way we can
listen to the square wave with the help of the following code:

antsec=3;

fs=44100;

20



samplesperperiod=round(fs/440);

oneperiod=[ones(1,round(samplesperperiod/2)) ...

-ones(1,round(samplesperperiod/2))];

allsamples=zeros(1,antsec*440*length(oneperiod));

for k=1:(antsec*440)

allsamples(((k-1)*length(oneperiod)+1):k*length(oneperiod))=oneperiod;

end

playerobj=audioplayer(allsamples,fs);

playblocking(playerobj);

The code creates 440 copies of the square wave per second by first computing
the number of samples needed for one period when it is known that we should
have a total of 40000 samples per second, and then constructing the samples
needed for one period. In the same fashion we can listen to the triangle wave
simply by replacing the code for generating the samples for one period with the
following:

oneperiod=[linspace(-1,1,round(samplesperperiod/2)) ...

linspace(1,-1,round(samplesperperiod/2))];

Instead of using the formula for the triangle wave, directly, we have used the
function linspace.

As an example of how to fill in the sound samples from a file, the code

[S fs] = wavread(’castanets.wav’);

reads the file castanets.wav, and stores the sound samples in the matrix S. In
this case there are two sound channels, so there are two columns in S. To work
with sound from only one channel, we extract the second channel as follows:

x=S(:,2);

wavread returns sound samples with floating point precision. If we have made
any changes to the sound samples, we need to secure that they are between −1
and 1 before we play them. If the sound samples are stored in x, this can be
achieved as follows:

x = x / max(abs(x));

x can now be played just as the signals we constructed from mathematical
formulas above.

It may be that some other environment than Matlab gives you the play

functionality on your computer. Even if no environment on your computer
supports such play-functionality at all, you may still be able to play the result
of your computations if there is support for saving the sound in some standard
format like mp3. The resulting file can then be played by the standard audio
player on your computer.

21



Example 1.17 (Changing the sample rate). We can easily play back a sound
with a different sample rate than the standard one. If we in the code above
instead wrote fs=80000, the sound card will assume that the time distance
between neighbouring samples is half the time distance in the original. The
result is that the sound takes half as long, and the frequency of all tones is
doubled. For voices the result is a characteristic Donald Duck-like sound.

Conversely, the sound can be played with half the sample rate by setting
fs=20000. Then the length of the sound is doubled and all frequencies are
halved. This results in low pitch, roaring voices.

Fact 1.18. A digital sound can be played back with a double or half sample
rate by replacing

playerobj=audioplayer(S,fs);

with

playerobj=audioplayer(S,2*fs);

and

playerobj=audioplayer(S,fs/2);

respectively.

The sample file castanets.wav played at double sampling rate sounds like this,
while it sounds like this when it is played with half the sampling rate.

Example 1.19 (Playing the sound backwards). At times a popular game has
been to play music backwards to try and find secret messages. In the old days
of analog music on vinyl this was not so easy, but with digital sound it is quite
simple; we just need to reverse the samples. To do this we just loop through
the array and put the last samples first.

Fact 1.20. Let x = (xi)
N−1
i=0 be the samples of a digital sound. Then the

samples y = (yi)
N−1
i=0 of the reverse sound are given by

yi = xN−i−1, for i = 0, 1, . . . N − 1.

When we reverse the sound samples with Matlab, we have to reverse the ele-
ments in both sound channels. This can be performed as follows

sz=size(S,1);

newS=[S(sz:(-1):1,1) S(sz:(-1):1,2)];

Performing this on our sample file you generate a sound which sounds like this.

Example 1.21 (Adding noise). To remove noise from recorded sound can be
very challenging, but adding noise is simple. There are many kinds of noise,

22



but one kind is easily obtained by adding random numbers to the samples of a
sound.

Fact 1.22. Let x be the samples of a digital sound of length N . A new
sound y with noise added can be obtained by adding a random number to
each sample,

y=x+c*(2*rand(1,N)-1);

where rand is a MATLAB function that returns random numbers in the inter-
val [0, 1], and c is a constant (usually smaller than 1) that dampens the noise.
The effect of writing (2*rand(1,N)-1) is that random numbers between −1
and 1 are returned instead of random numbers between 0 and 1.

Adding noise in this way will produce a general hissing noise similar to the noise
you hear on the radio when the reception is bad. As before you should add noise
to both channels. Note alse that the sound samples may be outside [−1, 1] after
adding noise, so that you should scale the samples before writing them to file.
The factor c is important, if it is too large, the noise will simply drown the
signal y: castanets.wav with noise added with c = 0.4 sounds like this, while
with c = 0.1 it sounds like this.

1.4.2 Filtering operations

Later on we will focus on particular operations on sound, where the output
is constructed by combining several input elements in a particular way. We
say that we filter the sound, and we call such operations filtering operations,
or simply filters. Filters are important since they can change the frequency
content in a signal in many ways. We will defer the precise definition of filters to
Section 3.3, where we also will give the filters listed below a closer mathematical
analysis.

Example 1.23 (Adding echo). An echo is a copy of the sound that is delayed
and softer than the original sound. We observe that the sample that comes m
seconds before sample i has index i−ms where s is the sample rate. This also
makes sense even if m is not an integer so we can use this to produce delays that
are less than one second. The one complication with this is that the number ms
may not be an integer. We can get round this by rounding ms to the nearest
integer which corresponds to adjusting the echo slightly.

Fact 1.24. Let (x, s) be a digital sound. Then the sound y with samples
given by

y=x((d+1):N)-c*x(1:(N-d));

will include an echo of the original sound. Here d=round(ms) is the integer
closest to ms, and c is a constant which is usually smaller than 1.

23



This is an example of a filtering operation where each output element is con-
structed from two input elements. As in the case of noise it is important to
dampen the part that is added to the original sound, otherwise the echo will be
too loud. Note also that the formula that creates the echo does not work at the
beginning of the signal, and that the echo is unaudible if d is too small. You
can listen to the sample file with echo added with d = 10000 and c = 0.5 here.

Example 1.25 (Reducing the treble). The treble in a sound is generated by
the fast oscillations (high frequencies) in the signal. If we want to reduce the
treble we have to adjust the sample values in a way that reduces those fast
oscillations. A general way of reducing variations in a sequence of numbers is to
replace one number by the average of itself and its neighbours, and this is easily
done with a digital sound signal. If we let the new sound signal be y = (yi)

N−1
i=0

we can compute it as

y(1)=x(1);

for t=2:(N-1)

y(t)=(x(t-1)+x(t)+x(t+1))/3;

end

y(N)=x(N);

This is another example of a filtering operation, but this time three input ele-
ments are needed in order to produce an output element. Note that the vector
{1/3, 1/3, 1/3} uniquely describe how the input elements should be combined
to produce the otuput. The elements in this vector are also referred to as the
filter coefficients. Since this filter is based on forming averages it is also called
a moving average filter.

It is reasonable to let the middle sample xi count more than the neighbours
in the average, so an alternative is to compute the average by instead writing

y(t)=(x(t-1)+2*x(t)+x(t+1))/4;

The coefficients 1, 2, 1 here have been taken from row 2 in Pascal’s triangle. It
will turn out that this is a good choice of coefficients. We have not developed
the tools needed to analyse the quality of filters yet, so this will be discussed
later. We can also take averages of more numbers, where it will also turn out
that row k of Pascals triangle also is a very good choice. The values in Pascals
triangle can be computed as the coefficients of x in the expression (1 + x)k,
which also equal the binomial coefficients

�
k

r

�
for 0 ≤ r ≤ k. As an example, if

we pick coefficients from row 4 of Pascals triangle instead, we would write

y(1)=x(1); y(2)=x(2);

for t=3:(N-2)

y(t)=(x(t-2)+4*x(t-1)+6*x(t)+4*x(t+1)+x(t+2))/16;

end

y(N-1)=x(N-1); y(N)=x(N);

It will turn out that picking coefficients from a row in Pascal’s triangle works
better the longer the filter is:

24



20 40 60 80 100 120 140

�0.10

�0.05

0.05

0.10

0.15

(a) The original sound signal

20 40 60 80 100 120 140

�0.10

�0.05

0.05

0.10

(b) The result of applying the filter from row
4 of Pascal’s triangle

Figure 1.5: Reducing the treble.

Observation 1.26. Let x be the samples of a digital sound, and let {ci}2k+1
i=1

be the numbers in row 2k of Pascal’s triangle. Then the sound with samples
y given by

y=zeros(length(x));

y(1:k)=x(1:k);

for t=(k+1):(N-k)

for j=1:(2*k+1)

y(t)=y(t)+c(j)*x(t+k+1-j))/2^k;

end

end

y((N-k+1):N)=x((N-k+1):N);

has reduced treble compared with the sound given by the samples x.

An example of the result of averaging is shown in Figure 1.5. (a) shows a real
sound sampled at CD-quality (44 100 samples per second). (b) shows the result
of applying the averaging process by using row 4 of Pascals triangle. We see that
the oscillations have been reduced, and if we play the sound it has considerably
less treble. In Exercise 9 you will be asked to implement reducing the treble
in the file castanets.wav. If you do this you should hear that the sound gets
softer when you increase k: For k = 32 the sound will be like this, for k = 256

25



20 40 60 80 100 120 140

�0.10

�0.05

0.05

0.10

0.15

(a) The original sound signal

20 40 60 80 100 120 140

�0.015

�0.010

�0.005

0.005

0.010

(b) The result of applying the filter deduced
from row 4 in Pascals triangle

Figure 1.6: Reducing the bass.

it will be like this.

Example 1.27 (Reducing the bass). Another common option in an audio sys-
tem is reducing the bass. This corresponds to reducing the low frequencies in
the sound, or equivalently, the slow variations in the sample values. It turns out
that this can be accomplished by simply changing the sign of the coefficients
used for reducing the treble. We can for instance change the filter described for
the fourth row in Pascals triangle to

y(t)=(x(t-2)-4*x(t-1)+6*x(t)-4*x(t+1)+x(t+2))/16;

An example is shown in Figure 1.6. The original signal is shown in (a) and the
result in (b). We observe that the samples in (b) oscillate much more than the
samples in (a). If we play the sound in (b), it is quite obvious that the bass has
disappeared almost completely.

Observation 1.28. Let x be the samples of a digital sound, and let {ci}2k+1
i=1

be the numbers in row 2k of Pascal’s triangle. Then the sound with samples
y given by

y=zeros(length(x));

y(1:k)=x(1:k);

for t=(k+1):(N-k)

26



for j=1:(2*k+1)

y(t)=x(t)+(-1)^(k+1-j)*c(j)*x(t+j-k-1))/2^k;

end

end

y((N-k+1):N)=x((N-k+1):N);

has reduced bass compared to the sound given by the samples y.

In Exercise 9 you will be asked to implement reducing the bass in the file
castanets.wav. The new sound will be difficult to hear for large k, and we
will explain why later. For k = 1 the sound will be like this, for k = 2 it will be
like this. Even if the sound is quite low, you can hear that more of the bass has
disappeared for k = 2.

There are also other operations we would like to perform for digital sound.
For instance, it would be nice to adjust a specific set of frequencies only, so
that we end up with a sound where unpleasant components of the sound have
been removed. Later on we will establish mathematics which will enable us to
contruct filters which have the properties that they work in desirable ways on
any frequencies. It will also turn out that the filters listed above can be given
a frequency interpretation: When the input sound has a given frequncy, the
output sound has the same frequency.

Exercises for Section 1.4

Ex. 1 — Compute the loudness of the Krakatoa explosion on the decibel scale,
assuming that the variation in air pressure peaked at 100 000 Pa.

Ex. 2 — Define the following sound signal

f(t) =






0 0 ≤ t ≤ 0.2
t−0.2
0.4 sin(2π440t) 0.2 ≤ t ≤ 0.6
sin(2π440t) 0.6 ≤ t ≤ 1

This corresponds to the sound plotted in Figure 1.1(a), where the sound is
unaudible in the beginning, and increases linearly in loudness over time with a
given frequency until maximum loudness is avchieved. Write a Matlab program
which generates this sound, and listen to it.

Ex. 3 — Find two constant a and b so that the function f(t) = a sin(2π440t)+
b sin(2π4400t) resembles the plot from Figure 1.1(b) as closely as possible. Gen-
erate the samples of this sound, and listen to it with Matlab.

27



Ex. 4 — Let us write some code so that we can experiment with different pure
sounds

a. Write a function

function playpuresound(f)

which generates the samples over a period of 3 seconds for a pure tone
with frequency f , with sampling frequency fs = 2.5f (we will explain
this value later).

b. Use the function playpuresound to listen to pure sounds of frequency
440Hz and 1500Hz, and verify that they are the same as the sounds you
already have listened to in this section.

c. How high frequencies are you able to hear with the function playpuresound?
How low frequencies are you able to hear?

Ex. 5 — Write functions

function playsquare(T)

function playtriangle(T)

which plays the square wave of Example 1.11 and the triangle wave of Exam-
ple 1.12, respectively, where T is given by the parameter. In your code, let
the samples of the waves be taken at a frequency of 40000 samples per second.
Verify that you generate the same sounds as you played in these examples when
you set T = 1

440 .

Ex. 6 — In this exercise we will experiment as in the first examples of this
section.

a. Write a function

function playdifferentfs()

which plays the sound samples of castanets.wav with the same sample
rate as the original file, then with twice the sample rate, and then half
the sample rate. You should start with reading the file into a matrix (as
explained in this section). Are the sounds the same as those you heard
in Example 1.17?

b. Write a function

function playreverse()

which plays the sound samples of castanets.wav backwards. Is the
sound the same as the one you heard in Example 1.19?

c. Write the new sound samples from b. to a new wav-file, as described
above, and listen to it with your favourite mediaplayer.

28



Ex. 7 — In this exercise, we will experiment with adding noise to a signal.
a. Write a function

function playnoise(c)

which plays the sound samples of castanets.wav with noise added for
the damping constant c as described above. Your code should add noise
to both channels of the sound, and scale the sound samples so that they
are between −1 and 1.

b. With your program, generate the two sounds played in Example 1.21,
and verify that they are the same as those you heard.

c. Listen to the sound samples with noise added for different values of c.
For which range of c is the noise audible?

Ex. 8 — In this exercise, we will experiment with adding echo to a signal.
a. Write a function

function playwithecho(c,d)

which plays the sound samples of castanets.wav with echo added for
damping constant c and delay d as described in Example 1.23.

b. Generate the sound from Example 1.23, and verify that it is the same as
the one you heard there.

c. Listen to the sound samples for different values of d and c. For which
range of d is the echo distinguisible from the sound itself? How low can
you choose c in order to still hear the echo?

Ex. 9 — In this exercise, we will experiment with increasing and reducing the
treble and bass in a signal as in examples 1.25 and 1.27.

a. Write functions

function reducetreble(k)

function reducebass(k)

which reduces bass and treble in the ways described above for the sound
from the file castanets.wav, and plays the result, when row number 2k
in Pascal’ triangle is used to construct the filters. Look into the Matlab
function conv to help you to find the values in Pascal’s triangle.

b. Generate the sounds you heard in examples 1.25 and 1.27, and verify
that they are the same.

c. In your code, it will not be necessary to scale the values after reducing
the treble, i.e. the values are already between −1 and 1. Explain why
this is the case.

29



d. How high must k be in order for you to hear difference from the actual
sound? How high can you choose k and still recognize the sound at all?

1.5 Compression of sound and the MP3 standard

Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data, in ways such as in the previous section. However,
audio was represented by a large amount of data and an obvious challenge was
how to reduce the storage requirements. Lossless coding techniques like Huffman
and Lempel-Ziv coding were known and with these kinds of techniques the file
size could be reduced to about half of that required by the CD format. However,
by allowing the data to be altered a little bit it turned out that it was possible
to reduce the file size down to about ten percent of the CD format, without
much loss in quality. The MP3 audio format takes advantage of this.

MP3, or more precisely MPEG-1 Audio Layer 3, is part of an audio-visual
standard called MPEG. MPEG has evolved over the years, from MPEG-1 to
MPEG-2, and then to MPEG-4. The data on a DVD disc can be stored with
either MPEG-1 or MPEG-2, while the data on a bluray-disc can be stored with
either MPEG-2 or MPEG-4. MP3 was developed by Philips, CCETT (Centre
commun d’études de télévision et télécommunications), IRT (Institut für Rund-
funktechnik) and Fraunhofer Society, and became an international standard in
1991. Virtually all audio software and music players support this format. MP3
is just a sound format and does not specify the details of how the encoding
should be done. As a consequence there are many different MP3 encoders avail-
able, of varying quality. In particular, an encoder which works well for higher
bit rates (high quality sound) may not work so well for lower bit rates.

With MP3, the sound samples are transformed using methods we will go
through in the next section. A frequency analysis of the sound is the basis
for this transformation. Based on this frequency analysis, the sound is split
into frequency bands, each band corresponding to a particular frequency range.
With MP3, 32 frequency bands are used. Based on the frequency analysis, the
encoder uses what is called a psycho-acoustic model to compute the significance
of each band for the human perception of the sound. When we hear a sound,
there is a mechanical stimulation of the ear drum, and the amount of stimulus
is directly related to the size of the sample values of the digital sound. The
movement of the ear drum is then converted to electric impulses that travel
to the brain where they are perceived as sound. The perception process uses
a transformation of the sound so that a steady oscillation in air pressure is
perceived as a sound with a fixed frequency. In this process certain kinds of
perturbations of the sound are hardly noticed by the brain, and this is exploited
in lossy audio compression.

More precisely, when the psycho-acoustic model is applied to the frequency
content resulting from our frequency analysis, scale factors and masking thresh-

30



olds are assigned for each band. The computed masking thresholds have to do
with a phenomenon called masking effects. A simple example of this is that a
loud sound will make a simultaneous low sound inaudible. For compression this
means that if certain frequencies of a signal are very prominent, most of the
other frequencies can be removed, even when they are quite large. If the sounds
are below the masking threshold, it is simply ommited by the encoder, since the
model says that the sound should be inaudible.

Masking effect is just one example of what is called a psycho-acoustic effect.
Another obvious such effect regards computing the scale factors: the human
auditory system can only perceive frequencies in the range 20 Hz – 20 000 Hz.
An obvious way to do compression is therefore to remove frequencies outside this
range, although there are indications that these frequencies may influence the
listening experience inaudibly. The computed scaling factors tell the encoder
about the precision to be used for each frequency band: If the model decides
that one band is very important for our perception of the sound, it assigns a
big scale factor to it, so that more effort is put into encoding it by the encoder
(i.e. it uses more bits to encode this band).

Using appropriate scale factors and masking thresholds provide compression,
since bits used to encode the sound are spent on parts important for our percep-
tion. Developing a useful psycho-acoustic model requires detailed knowledge of
human perception of sound. Different MP3 encoders use different such models,
so that may produce very different results, worse or better.

The information remaining after frequency analysis and using a psycho-
acoustic model is coded efficiently with (a variant of) Huffman coding. MP3
supports bit rates from 32 to 320 kb/s and the sampling rates 32, 44.1, and 48
kHz. The format also supports variable bit rates (the bit rate varies in different
parts of the file). An MP3 encoder also stores metadata about the sound, such
as the title of the audio piece, album and artist name and other relevant data.

MP3 too has evolved in the same way as MPEG, from MP1 to MP2, and to
MP3, each one more sophisticated than the other, providing better compression.
MP3 is not the latest development of audio coding in the MPEG family: AAC
(Advanced Audio Coding) is presented as the successor of MP3 by its principal
developer, Fraunhofer Society, and can achieve better quality than MP3 at the
same bit rate, particularly for bit rates below 192 kb/s. AAC became well
known in April 2003 when Apple introduced this format (at 128 kb/s) as the
standard format for their iTunes Music Store and iPod music players. AAC is
also supported by many other music players, including the most popular mobile
phones.

The technologies behind AAC and MP3 are very similar. AAC supports
more sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the
same transformation as MP3, but AAC processes 1 024 samples at a time. AAC
also uses much more sophisticated processing of frequencies above 16 kHz and
has a number of other enhancements over MP3. AAC, as MP3, uses Huffman
coding for efficient coding of the transformed values. Tests seem quite conclusive
that AAC is better than MP3 for low bit rates (typically below 192 kb/s), but
for higher rates it is not so easy to differentiate between the two formats. As

31



for MP3 (and the other formats mentioned here), the quality of an AAC file
depends crucially on the quality of the encoding program.

There are a number of variants of AAC, in particular AAC Low Delay (AAC-
LD). This format was designed for use in two-way communication over a net-
work, for example the internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be toler-
ated).

1.6 Summary

We discussed the basic question of what is sound is, and concluded that sound
could be modeled as a sum of frequency components. We discussed meaningful
operations of sound, such as adjust the bass and treble, adding echo, or adding
noise. We also gave an introduction to the MP3 standard for compression of
sound.

32


