
Part II

Wavelets and applications to
image processing

125

Chapter 5

Wavelets

In Part I on Fourier analysis our focus was to approximate periodic functions or
vectors in terms of trigonometric functions. We saw that the Discrete Fourier
transform could be used to obtain the representation of a vector in terms of
such functions, and the computations could be done efficiently with the FFT
algorithm. This was useful for analyzing, filtering, and compression of sound
and other discrete data. However, Fourier series and the DFT also have some
serious limitations:

1. First of all, the functions used in the approximation are periodic with
short periods. In contrast, for most functions encountered in applications
the frequency content changes with time. Although Fourier analysis tools
also exist for analyzing non-periodic functions, these tools mostly have a
theoretical significance and are rarely used in practice, because of lack of
efficient implementations.

2. Secondly, all components of the Fourier basis vectors are nonzero — in
fact they all have absolute value 1 at all points. This means that, in order
to compute a value using the representation in the Fourier basis, we must
for each instance in time sum over all N vectors in the basis. This is
time-consuming when N is large.

In this chapter we are going to introduce the basic properties of an alternative
to Fourier analysis, namely wavelets. Similar to Fourier analysis, wavelets are
also based on the idea of transforming a function to a different basis. But in
contrast to Fourier analysis, where the basis is fixed, wavelets provide a general
framework with many different types of bases. In this chapter, we introduce
the framework via the simplest wavelets. We then discuss some general wavelet
concepts before we consider a second example.

126

(a) (b)

Figure 5.1: A view of Earth from space (a) and a zoomed in view (b).

5.1 Why wavelets?
Figure 5.1 shows two views of the Earth. The one on the left is the startup
image in Google Earth, a program for viewing satellite images, maps and other
geographic information. The right image is a zoomed-in view of a small part of
the Earth. There is clearly an amazing amount of information available behind a
program like Google Earth, with images detailed enough to differentiate between
buildings and even trees or cars all over the Earth. So when the Earth is spinning
in the opening screen, all the Earth’s buildings appear to be spinning with it!
If this was the case, the Earth would not be spinning on the screen. There
would just be so much information to process that a laptop would not be able
to display a rotating Earth.

There is a simple reason that the globe can be shown spinning in spite of the
huge amounts of information that need to be handled. We are going to see later
that a digital image is just a rectangular array of numbers that represent the
colour at a dense set of points. As an example, the images in Figure 5.1 are both
made up of a grid with 1576 points in the horizontal direction and 1076 points
in the vertical direction, for a total of 1 695 776 points. The colour at a point is
represented by three eight-bit integers, which means that the image file contains
a total of 5 087 328 bytes. So regardless of how close to the surface of the Earth
our viewpoint is, the resulting image always contains the same number of points.
This means that when we are far away from the Earth we can use a very coarse
model of the geographic information that is being displayed, but as we zoom in,
we need to display more details and therefore need a more accurate model.

Observation 5.1. When discrete information is displayed in an image, there
is no need to use a mathematical model that contains more detail than what
is visible in the image.

A consequence of Observation 5.1 is that for applications like Google Earth
we should use a mathematical model that makes it easy to switch between

127

1 2 3 4 5 6 7 8 9 10

�1.0

�0.5

0.5

1.0

(a)

1 2 3 4 5 6 7 8 9 10

�1.0

�0.5

0.5

1.0

(b)

Figure 5.2: Two examples of piecewise constant functions.

different levels of detail, or different resolutions. Such models are called mul-

tiresolution models, and wavelets are prominent examples of this kind of models.

5.2 Wavelets constructed from piecewise constant
functions

There are many different kinds of wavelets that all share certain standard prop-
erties. In this section we will introduce the simplest wavelets and through this
also the general framework for constructing wavelets. The construction goes in
two steps: First we introduce the resolution spaces, and then the detail spaces
and wavelets.

5.2.1 Resolution spaces

The starting point is the space of piecewise constant functions on an interval
[0, N).

Definition 5.2 (The resolution space V0). Let N be a natural number. The
resolution space V0 is defined as the space of functions defined on the interval
[0, N) that are constant on each subinterval [n, n+ 1) for n = 0, . . . , N − 1.

Two examples of functions in V0 for N = 10 are shown in Figure 5.2. It is
easy to check that V0 is a linear space, and for computations it is useful to know
the dimension of the space and have a basis.

Lemma 5.3. Define the function φ(t) by

φ(t) =

�
1, if 0 ≤ t < 1;

0, otherwise;
(5.1)

128

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

(a)

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

(b)

Figure 5.3: The functions φ2 (a) and φ7 (b) in V0.

and set φn(t) = φ(t − n) for any integer i. The space V0 has dimension N ,
and the N functions {φn}N−1

n=0 form an orthonormal basis for V0 with respect
to the standard inner product

�f, g� =
�

N

0
f(t)g(t) dt. (5.2)

In particular, any f ∈ V0 can be represented as

f(t) =
N−1�

n=0

cnφn(t) (5.3)

for suitable coefficients (ci)
N−1
i=0 . The function φn is referred to as the charac-

teristic function of the interval [n, n+ 1)

Two examples of the basis functions defined in Lemma 5.5 are shown in
Figure 5.3.

Proof. Two functions φn1 and φn2 with n1 �= n2 clearly satisfy
�
φn1(t)φn2(t)dt =

0 since φn1(t)φn2(t) = 0 for all values of x. It is also easy to check that �φn� = 1
for all n. Finally, any function in V0 can be written as a linear combination the
functions φ0, φ1, . . . , φN−1, so the conclusion of the lemma follows.

In our discussion of Fourier analysis, the starting point was the function
sin 2πt that has frequency 1. We can think of the space V0 as being analogous
to this function: The function

�
N−1
n=0 (−1)nφn(t) is (part of the) square wave

that we discussed in Chapter 1, and which also oscillates regularly like the sine
function, see Figure 5.4 (a). The difference is that we have more flexibility
since we have a whole space at our disposal instead of just one function —
Figure 5.4 (b) shows another function in V0.

In Fourier analysis we obtained a linear space of possible approximations by
including sines of frequency 1, 2, 3, . . . , up to some maximum. We use a similar

129

1 2 3 4 5 6 7 8 9 10

�1.0

�0.5

0.5

1.0

(a)

1 2 3 4 5 6 7 8 9 10

�1.0

�0.5

0.5

1.0

(b)

Figure 5.4: The square wave in V0 (a) and an approximation to cos t from V0.

approach for constructing wavelets, but we double the frequency each time and
label the spaces as V0, V1, V2, . . .

Definition 5.4 (Refined resolution spaces). The space Vm for the interval
[0, N) is the space of piecewise linear functions defined on [0, N) that are
constant on each subinterval [n/2m, (n+ 1)/2m) for n = 0, 1, . . . , 2mN − 1.

Some examples of functions in the spaces V1, V2 and V3 for the interval [0, 10]
are shown in Figure 5.5. As m increases, we can represent smaller details. In
particular, the function in (d) is a piecewise constant function that oscillates
like sin 2π22t on the interval [0, 10].

It is easy to find a basis for Vm, we just use the characteristic functions of
each subinterval.

Lemma 5.5. Let [0, N) be a given interval with N some positive integer, and
let Vm denote the resolution space of piecewise constant functions for some
integer m ≥ 0. Then the dimension of Vm is 2mN . Define the functions

φm,n(t) = 2m/2
φ(2mt− n), for n = 0, 1, . . . , 2mN − 1, (5.4)

where φ is the characteristic function of the interval [0, 1]. The functions
{φm,n}2

m
N−1

n=0 form an orthonormal basis for Vm, and any function f ∈ Vm

can be represented as

f(t) =
2mN−1�

n=0

cnφm,n(t)

for suitable coefficients (cn)
2mN−1
n=0 .

Proof. The functions given in (5.25) are exactly the characteristic functions of
the subintervals [n/2m, (n+1)2m) which we referred to in Definition 5.4, so the
proof is very similar to the proof of Lemma 5.5. The one mysterious thing may

130

2 4 6 8 10

�1.0

�0.5

0.5

1.0

(a)

2 4 6 8 10

�1.0

�0.5

0.5

1.0

(b)

2 4 6 8 10

�1.0

�0.5

0.5

1.0

(c)

2 4 6 8 10

�1.0

�0.5

0.5

1.0

(d)

Figure 5.5: Piecewise constant approximations to cos t on the interval [0, 10] in
the spaces V1 (a), V2 (b), and V3 (c). The plot in (d) shows the square wave in
V2.

131

be the normalisation factor 2−m/2. This comes from the fact that
�

N

0
φ(2mt− n)2 dt =

� (n+1)/2m

n/2m
φ(2mt− n)2 dt = 2−m

� 1

0
φ(u)2 du = 2−m

.

The normalisation therefore ensures that �φm,n� = 1.

In the theory of wavelets, the function φ is also called a scaling function. The
origin behind this name is that the scaled (and translated) functions φm,n of φ
are used as basis functions for the refined resolution spaces. Later on we will see
that other scaling functions φ can be chosen, where the scaled versions φm,n will
be used to define similar resolution spaces, with slightly different properties.

5.2.2 Function approximation property

Each time m is increased by 1, the dimension of Vm doubles, and the subinterval
on which the functions in Vm are constant are halved in size. It therefore seems
reasonable that, for most functions, we can find good approximations in Vm

provided m is big enough.

Theorem 5.6. Let f be a given function that is continuous on the interval
[0, N]. Given � > 0, there exists an integer m ≥ 0 and a function g ∈ Vm such
that ��f(t)− g(t)

�� ≤ �

for all t in [0, N].

Proof. Since f is (uniformly) continuous on [0, N], we can find an integer m so
that

��f(t1)− f(t2)
�� ≤ � for any two numbers t1 and t2 in [0, N] with |t1 − t2| ≤

2−m. Define the approximation g by

g(t) =
2mN−1�

n=0

f
�
tm,n+1/2

�
φm,n(t),

where tm,n+1/2 is the midpoint of the subinterval
�
n2−m

, (n+ 1)2−m
�
,

tm,n+1/2 = (n+ 1/2)2−m
.

For t in this subinterval we then obviously have |f(t)−g(t)| ≤ �, and since these
intervals cover [0, N], the conclusion holds for all t ∈ [0, N].

Theorem 5.6 does not tell us how to find the approximation g although the
proof makes use of an approximation that interpolates f at the midpoint of each
subinterval. Note that if we measure the error in the L

2-norm, we have

�f − g�2 =

�
N

0

��f(t)− g(t)
��2 dt ≤ N�

2
,

so �f − g� ≤ �
√
N . We therefore have the following corollary.

132

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) The function to be approximated.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(b) The projection onto V2.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(c) The projection onto V4.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(d) The projection onto V6.

Figure 5.6: Comparison of the function defined by f(t) = t
2 on [0, 1] with the

projection onto different spaces Vm.

Corollary 5.7. Let f be a given continuous function on the interval [0, N]
and let proj

Vm
(f) denote the best approximation to f from Vm. Then

lim
m→∞

�f − proj
Vm

(f)� = 0.

Figure 5.6 illustrates how some of the approximations of the function f(x) =
x
2 from the resolution spaces for the interval [0, 1] improve with increasing m.

5.2.3 Detail spaces and wavelets

So far we have described a family of function spaces that allow us to determine
arbitrarily good approximations to a continuous function. The next step is to
introduce the so-called detail spaces and the wavelet functions. For this we focus
on the two spaces V0 and V1.

We start by observing that since

[n, n+ 1) = [2n/2, (2n+ 1)/2) ∪ [(2n+ 1)/2, 2n/2)

133

we have
φ0,n =

1√
2
φ1,2n +

1√
2
φ1,2n+1. (5.5)

This provides a formal proof of the intuitive observation that V0 ⊂ V1. For if
g ∈ V0, then we can write

g(t) =
N−1�

n=0

cnφ0,n(t) =
N−1�

n=0

cn

�
φ1,2n + φ1,2n+1

�
/

√
2.

The right-hand side clearly lies in V1. A similar argument shows that Vk ⊂ Vk+1

for any integer k ≥ 0.

Lemma 5.8. The spaces V0, V1, . . . , Vm, . . . are nested,

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm · · · .

The next step is to investigate what happens if we start with a function g1

in V1 and project this to an approximation g0 in V0.

Lemma 5.9. Let proj
V0

denote the orthogonal projection onto the subspace
V0. Then the projection of a basis function φ1,n is given by

proj
V0
(φ1,n) =

�
φ0,n/2/

√
2, if n is even;

φ0,(n−1)/2/
√
2, if n is odd.

(5.6)

If g1 ∈ V1 is given by

g1 =
2N−1�

n=0

c1,nφ1,n, (5.7)

then

proj
V0
(g1) = g0 =

N−1�

n=0

c0,nφ0,n

where c0,n is given by
c0,n =

c1,2n + c1,2n+1√
2

. (5.8)

Proof. We first observe that φ1,n(t) �= 0 if and only if n/2 ≤ t < (n + 1)/2.
Suppose that n is even. Then the intersection

�
n

2
,
n+ 1

2

�
∩ [n1, n1 + 1) (5.9)

134

is nonempty only if n1 = n

2 . Using the orthogonal decomposition formula we
get

proj
V0
(φ1,n) =

N−1�

k=0

�φ1,n,φ0,k�φ0,k = �φ1,n,φ0,n1�φ0,n1

=

� (n+1)/2

n/2

√
2 dtφ0,n/2 =

1√
2
φ0,n/2.

When n is odd, the intersection (5.9) is nonempty only if n1 = (n− 1)/2, which
gives the second formula in (5.6) in the same way.

We project the function g1 in V1 using the formulas in (5.6). We split the
sum in (5.7) into even and odd values of n,

g1 =
2N−1�

n=0

c1,nφ1,n =
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1. (5.10)

We can now apply the two formulas in (5.6),

proj
V0
(g1) = proj

V0

�
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

�

=
N−1�

n=0

c1,2n proj
V0
(φ1,2n) +

N−1�

n=0

c1,2n+1 proj
V0
(φ1,2n+1)

=
N−1�

n=0

c1,2nφ0,n/
√
2 +

N−1�

n=0

c1,2n+1φ0,n/
√
2

=
N−1�

n=0

c1,2n + c1,2n+1√
2

φ0,n

which proves (5.8)

When g1 ∈ V1 is projected onto V0, the result g0 = proj
V0
g1 is in general

different from g0. We can write g1 = g0 + e0, where e0 = g1 − g0 represents
the error we have commited in making this projection. e0 lies in the ortogonal
complement of V0 in V1 (in particular, e0 ∈ V1).

Definition 5.10. We will denote by W0 the orthogonal complement of V0 in
V1. We also call W0 a detail space

The name detail space is used since e0 ∈ W0 can be considered as the
detail which is left out when considering g0 instead of g1 (due to the expression
g1 = g0 + e0). We will write V1 = V0 ⊕ W0 to say that any element in V1

can be written uniquely as a sum of an element in V0, and an element in the
orthogonal complement W0. ⊕ here denotes what is called a direct sum, which
can be more generally defined as follows for any vector spaces which are linearly
independent:

135

Definition 5.11 (Direct sum of vector spaces). Assume that U, V ⊂ W are
vector spaces, and that U and V are mutually linearly independent. By U⊕V

we mean the vector space consisting of all vectors of the form u + v, where
u ∈ U , v ∈ V . We will also call U ⊕ V the direct sum of U and V .

This definition also makes sense if we have several vector spaces, since the
direct sum clearly obeys the associate law U ⊕ (V ⊕W) = (U ⊕V)⊕W , i.e. we
can define U ⊕ V ⊕W = U ⊕ (V ⊕W). We will have use for this use of direct
sum of several vector space in the next section.

In other words, the resolution space V1 is the direct sum of the lower order
resolution space V0, and the detail space W0. The expression g1 = g0+e0 is thus
a decomposition into a low-resolution approximation, and the details which are
left out in this approximation. In the context of our Google Earth example, in
Figure 5.1 you should interpret g0 as the image in (a), g1 as the image in (b),
and e0 as the additional details which are needed to reproduce (b) from (a).
While Lemma 5.12 explained how we can compute the low level approximation
g0 from g1, the next result states how we can compute the detail/error e0 from
g1.

Lemma 5.12. With W0 the orthogonal complement of V0 in V1, set

ψ̂0,n =
φ1,2n − φ1,2n+1

2

for n = 0, 1, . . . , N − 1. Then ψ̂0,n ∈ W0 and

proj
W0

(φ1,n) =

�
ψ̂0,n/2, if n is even;
−ψ̂0,(n−1)/2, if n is odd.

(5.11)

If g1 ∈ V1 is given by g1 =
�2N−1

n=0 c1,nφ1,n, then

proj
W0

(g1) = e0 =
N−1�

n=0

ŵ0,nψ̂0,n

where ŵ0,n is given by
ŵ0,n = c1,2n − c1,2n+1. (5.12)

Proof. We start by determining the error when φ1,n, for n even, is projected

136

onto V0. The error is then

proj
W0

(φ1,n) = φ1,n −
φ0,n/2√

2

= φ1,n − 1√
2

�
1√
2
φ1,n +

1√
2
φ1,n+1

�

=
1

2
φ1,n − 1

2
φ1,n+1

= ψ̂0,n/2.

Here we used the relation (5.6) in the second equation. When n is odd we have

proj
W0

(φ1,n) = φ1,n −
φ0,(n−1)/2√

2

= φ1,n − 1√
2

�
1√
2
φ1,n−1 +

1√
2
φ1,n

�

=
1

2
φ1,n − 1

2
φ1,n−1

= −ψ̂0,(n−1)/2.

For a general function g1 we first split the sum into even and odd terms as
in (5.10) and then project each part onto W0,

proj
W0

(g1) = proj
W0

�
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

�

=
N−1�

n=0

c1,2n proj
W0

(φ1,2n) +
N−1�

n=0

c1,2n+1 proj
W0

(φ1,2n+1)

=
N−1�

n=0

c1,2nψ̂0,n −
N−1�

n=0

c1,2n+1ψ̂0,n

=
N−1�

n=0

(c1,2n − c1,2n+1)ψ̂0,n

which is (5.12)

In Figure 5.7 we have useed lemmas 5.9 and 5.12 to plot the projections of
φ1,0 ∈ V1 onto V0 and W0. It is an interesting exercise to see from the plots
why exactly these functions should be least-squares approximations of φ1,n. It
is also an interesting exercise to prove the following from lemmas 5.9 and 5.12:

Proposition 5.13. Let f(t) ∈ V1, and let fn,1 be the value f attains on
[n, n+ 1/2), and fn,2 the value f attains on [n+ 1/2, n+ 1). Then proj

V0
(f)

is the function in V0 which equals (fn,1 + fn,2)/2 on the interval [n, n + 1).

137

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Basis function in V
1

Projection on V
0

(a) φ1,0 ∈ V1 together with its projection
onto V0

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Basis function in V
1

Projection on W
0

(b) φ1,0 ∈ V1 together with its projection
onto W0

Figure 5.7: The projection of a basis function in V1 onto V0 and W0.

Moreover, proj
W0

(f) is the function in V0 which equals (fn,1 − fn,2)/2 on the
interval [n, n+ 1).

In other words, the projection on V0 is constructed by averaging on two
subintervals, while the projection on W0 is constructed by taking the difference
from the mean. This sounds like a reasonable candidate for the least-squares
approximations. In the exercise we generalize these observations.

Consider the functions ψ̂0,n = (φ1,2n − φ1,2n+1)/2 from Lemma 5.12. They
are clearly orthogonal since their nonzero parts do not overlap. We also note
that �ψ̂0,n� =

√
2/2, since it has absolute value

√
2/2 on two intervals of length

1/2. The functions defined by ψ0,n(t) =
√
2 ψ̂0,n(t) will therefore form an or-

thonormal set.

Lemma 5.14. Define the function ψ by

ψ(t) =
�
φ1,0(t)− φ1,1(t)

�
/

√
2 = φ(2t)− φ(2t− 1) (5.13)

and set

ψ0,n(t) = ψ(t− n) =
�
φ1,2n(t)− φ1,2n+1(t)

�
/

√
2 for n = 0, 1, . . . , N − 1.

(5.14)
Then the set {ψ0,n}N−1

n=0 is an orthonormal basis for W0, the orthogonal com-
plement of V0 in V1.

Later we will encounter other functions, which also will be denoted by ψ,
and have similar properties as stated in Lemma 5.14. In the theory of wavelets,
such ψ are called mother wavelets. In Figure 5.8 we have plotted the functions
φ and ψ. There is one important property of ψ, which we will return to:

138

�1.0 �0.5 0.5 1.0 1.5 2.0

�1.0

�0.5

0.5

1.0

(a) The function φ (a)

�1.0 �0.5 0.5 1.0 1.5 2.0

�1.0

�0.5

0.5

1.0

(b) The function ψ

Figure 5.8: The functions we used to analyse the space of piecewise constant
functions

Observation 5.15. We have that
�
N

0 ψ(t)dt = 0.

This can be seen directly from the plot in Figure 5.8, since the parts of the
graph above and below the x-axis cancel.

We now have all the tools needed to define the Discrete Wavelet Transform.

Theorem 5.16 (Discrete Wavelet Transform). The space V1 can be decom-
posed as the orthogonal sum V1 = V0 ⊕W0 where W0 is the orthogonal com-
plement of V0 in V1, and V1 therefore has the two bases

φ1 = (φ1,n)
2N−1
n=0 and (φ0,ψ0) =

�
(φ0,n)

N−1
n=0 , (ψ0,n)

N−1
n=0

�
.

The Discrete Wavelet Transform (DWT) is the change of coordinates from the
basis φ1 to the basis (φ0,ψ0). If

g1 =
2N−1�

n=0

c1,nφ1,n ∈ V1

g0 =
N−1�

n=0

c0,nφ0,n ∈ V0

e0 =
N−1�

n=0

w0,nψ0,n ∈ W0

and g1 = g0 + e0, then the DWT is given by

c0,n = (c1,2n + c1,2n+1)/
√
2 (5.15)

w0,n = (c1,2n − c1,2n+1)/
√
2. (5.16)

139

Conversely, the Inverse Discrete Wavelet Transform (IDWT) is the change of
coordinates from the basis (φ0,ψ0) to the basis φ1, and is given by

c1,2n = (c0,n + w0,n)/
√
2 (5.17)

c1,2n+1 = (c0,n − w0,n)/
√
2. (5.18)

Proof. Most of this theorem has already been established. In particular, the
formulas (5.15)–(5.16) are just (5.8) and (5.12). What remains is to prove the
formulas (5.17)–(5.18). For this we note from (5.5) and (5.14) that

g0 + e0 =
N−1�

n=0

c0,nφ0,n +
N−1�

n=0

w0,nψ0,n (5.19)

=
N−1�

n=0

c0,n(φ1,2n + φ1,2n+1)/
√
2 +

N−1�

n=0

w0,n(φ1,2n − φ1,2n+1)/
√
2

(5.20)

=
N−1�

n=0

(c0,n + w0,n)φ1,2n/
√
2 + (c0,n − w0,n)φ1,2n+1/

√
2. (5.21)

It is common to reorder the basis vectors in (φ0,ψ0) to

C1 = {φ0,0,ψ0,0,φ0,1,ψ0,1, · · · ,φ0,N−1,ψ0,N−1}. (5.22)

The subscript 1 is used since C1 is a basis for V1. This reordering of the basis
functions is useful since it makes it easier to write down the change of coordinates
matrices. To be more precise, from formulas (5.17)–(5.18) it is apparent that
Pφ1←C1 is the matrix where

�
1√
2

1√
2

1√
2

− 1√
2

�

is repeated along the main diagonal N times. Also, from formulas (5.15)–(5.16)
it is apparent that PC1←φ1

is the same matrix. Such matrices are called block

diagonal matrices. This particular block diagonal matrix is clearly orthogonal,
since it transforms one orthonormal base to another.

Exercises for Section 5.2

Ex. 1 — Show that the coordinate vector for f ∈ V0 in the basis {φ0,0,φ0,1, . . . ,φ0,N−1}
is (f(0), f(1),f(N − 1)).

140

Ex. 2 — Show that

proj
V0
(f) =

N−1�

n=0

��
n+1

n

f(t)dt

�
φ0,n(t) (5.23)

for any f . Show also that the first part of Proposition 5.13 follows from this.

Ex. 3 — Show that

�
�

n

��
n+1

n

f(t)dt

�
φ0,n(t)− f�2

= �f, f� −
�

n

��
n+1

n

f(t)dt

�2

.

This, together with the previous exercise, gives us an expression for the least-
squares error for f from V0 (at least after taking square roots).

Ex. 4 — Consider the projection T of V1 onto V0.
a. Show that T (φ) = φ and T (ψ) = 0.
b. Show that the matrix of T relative to C1 is given by the diagonal matrix

where 1 and 0 are repeated alternatingly on the diagonal, N times (i.e.
1 at the even indices, 0 at the odd indices).

c. Show in a similar way that the projection of V1 onto W0 has a matrix
relative to C1 given by the diagonal matrix where 1 and 0 also are repeated
alternatingly on the diagonal, but with the opposite order.

Ex. 5 — Use lemma 5.9 to write down the matrix for the linear transformation
proj

V0
: V1 → V0 relative to the basis φ1 and φ0. Also, use lemma 5.12 to write

down the matrix for the linear transformation proj
W0

: V1 → W0 relative to the
basis φ1 and ψ0.

Ex. 6 — Show that

proj
W0

(f) =
N−1�

n=0

��
n+1/2

n

f(t)dt−
�

n+1

n+1/2
f(t)dt

�
ψ0,n(t) (5.24)

for any f . Show also that the second part of Proposition 5.13 follows from this.

141

5.3 Multiresolution analysis for piecewise constant
functions

In the Section 5.2 we introduced the important decomposition V1 = V0 ⊕ W0

which lets us rewrite a function in V1 as an approximation in V0 and the corre-
sponding error in W0 which is orthogonal to the approximation. The resolution
spaces Vm were in fact defined for all integers m ≥ 0. It turns out that all these
resolution spaces can be decomposed in the same way as V1.

Definition 5.17. The orthogonal complement of Vm−1 in Vm is denoted
Wm−1. All the spaces {Wk}k are also called detail spaces.

The first question we will try to answer is how we can, for f ∈ Vm, extract
the corresponding detail in Wm−1.

5.3.1 Extraction of details at higher resolutions

We first need to define ψm,n in terms of ψ, similarly to how we defined φm,n in
terms of φ,

ψm,n(t) = 2m/2
ψ(2mt− n), for n = 0, 1, . . . , 2mN − 1. (5.25)

As in Lemma 5.14, it is straightforward to prove that ψ
m

= {ψm,n}2
m
N−1

n=0 is
an orthonormal basis for Wm. Moreover, we have the following result, which is
completey analogous to Theorem 5.16.

Theorem 5.18. The space Vm can be decomposed as the orthogonal sum
Vm = Vm−1 ⊕ Wm−1 where Wm−1 is the orthogonal complement of Vm−1 in
Vm, and Vm has the two bases

φ
m

= (φm,n)
2mN−1
n=0

and
(φ

m−1,ψm−1) =
�
(φm−1,n)

2m−1
N−1

n=0 , (ψm−1,n)
2m−1

N−1
n=0

�
.

If

gm =
2mN−1�

n=0

cm,nφm,n ∈ Vm,

gm−1 =
2m−1

N−1�

n=0

cm−1,nφm−1,n ∈ Vm−1,

em−1 =
2m−1

N−1�

n=0

wm−1,nψm−1,n ∈ Wm−1,

142

and gm = gm−1 + em−1, then the change of coordinates from the basis φ
m

to
the basis (φ

m−1,ψm−1) is given by

cm−1,n = (cm,2n + cm,2n+1)/
√
2, (5.26)

wm−1,n = (cm,2n − cm,2n+1)/
√
2. (5.27)

Conversely, the change of coordinates from the basis (φ
m−1,ψm−1) to the

basis φ
m

is given by

cm,2n = (cm−1,n + wm−1,n)/
√
2, (5.28)

cm,2n+1 = (cm−1,n − wm−1,n)/
√
2. (5.29)

We will omit the proof of Theorem 5.18, and only remark that it can be
proved by making the substitution t → 2mu in Lemma 5.9 and Lemma 5.12, and
then following the proof of Theorem 5.16. Clearly, we can now find the change
of coordinate matrices as before, and as before this is most easily expressed if
we reorder the basis vectors for (φ

m
,ψ

m
) again as in Equation (5.22), i.e. we

define

Cm = {φm,0,ψm,0,φm,1,ψm,1, · · · ,φm,2m−1N−1,ψm,2m−1N−1}. (5.30)

The bases φ
m

and Cm are both referred to as wavelet bases. It is now apparent
that both change of coordinates matrices Pφm←Cm , PCm←φm

can be obtained
by repeating the matrix

1√
2

�
1 1
1 −1

�

along the diagonal, but this time it is repeated 2m−1
N times. In mathematical

statements in the following, we will always express a change of coordinates in
terms of the wavelet bases φ

m
and Cm, due to the nice expression this ma-

trix then has. In implementations, however, we also need to reorder Cm to
(φ

m−1,ψm−1), in order to prepare for successive changes of coordinates, as we
will now describe.

Let us return to our interpretation of the Discrete Wavelet Transform as
writing a function g1 ∈ V1 as a sum of a function g0 ∈ V0 at low resolution,
and a detail function e0 ∈ W0. Theorem 5.18 states similarly how we can write
gm ∈ Vm as a sum of a function gm−1 ∈ Vm−1 at lower resolution, and a detail
function em−1 ∈ Wm−1. The same decomposition can of course be applied to
gm−1 in Vm−1, then to the resulting approximation gm−2 in Vm−2, and so on,

Vm = Vm−1 ⊕Wm−1

= Vm−2 ⊕Wm−2 ⊕Wm−1

...
= V0 ⊕W0 ⊕W1 ⊕ · · ·⊕Wm−2 ⊕Wm−1. (5.31)

143

This change of coordinates corresponds to replacing as many φ-functions as we
can with ψ-functions, i.e. replacing the original function with a sum of as much
detail at different resolutions as possible. Let us give a name to the bases we
will use for these direct sums.

Definition 5.19 (Canonical basis for direct sum). Let C1, C2 . . . , Cn be inde-
pendent vector spaces, and let B1,B2, . . . ,Bn be corresponding bases. The ba-
sis {B1,B2, . . . ,Bn}, i.e., the basis where the basis vectors from Bi are included
before Bj when i < j, is referred to as the canonical basis for C1⊕C2⊕ · · ·⊕Cn

and is dentoed B1 ⊕ B2 ⊕ . . .⊕ Bn.

When we above say “basis for V0 ⊕ W0 ⊕ W1 ⊕ · · · ⊕ Wm−2 ⊕ Wm−1”, we
really mean the canonical basis for this space. In general, the Discrete Wavelet
Transform is used to denote a change of coordinates from φm to the canonical
basis, for any m.

Definition 5.20 (m-level Discrete Wavelet Transform). Let Fm denote the
change of coordinates matrix from φ

m
to the canonical basis

φ0 ⊕ψ0 ⊕ψ1 ⊕ · · ·⊕⊕ψ
m−2 ⊕ψ

m−1

for V0 ⊕W0 ⊕W1 ⊕ · · ·⊕Wm−2 ⊕Wm−1. The matrix Fm is called a (m-level)
Discrete Wavelet Transform, or a DWT. After this change of coordinates, the
resulting coordinates are called wavelet coefficients. The change of coordinates
the opposite way is called an (m-level) Inverse Discrete Wavelet Transform, or
IDWT.

Clearly, this generalizes the Discrete Wavelet Transform defined in Sec-
tion 5.2. At each level in a DWT, Vk is split into one part from Vk−1, and
one part from Wk−1. We can visualize this with the following figure, where the
arrows represent changes of coordinates:

Vm
��

��

Vm−1
��

��

Vm−2
��

��

· · · ��

��

V0

Wm−1 Wm−2 Wm−3 W0

The part from Wk−1 is not subject to further transformation. This is seen in
the figure since Wm−1 is a leaf node, i.e. there are no arrows going out from
Wm−1. In a similar illustration for the IDWT, the arrows would go the opposite
way. The Discrete Wavelet Transform is the analogue in a wavelet setting to
the Discrete Fourier transform. When applying the DFT to a vector of length
N , one starts by viewing this vector as coordinates relative to the standard
basis. When applying the DWT to a vector of length N , one instead views
the vector as coordinates relative to the basis φ

m
. This makes sense in light of

Exercise 5.2.1.

144

The DWT is what is used in practice when transforming a signal using
wavelets, and it is straightforward to implement: One simply needs to iter-
ate(5.26)-(5.27) for m,m− 1, . . . , 1, also at each step, the coordinates in φ

m−1

should be placed before the ones in ψ
m−1, due to the order of the basis vectors

in the canonical basis of the direct sum. At each step, only the first coordinates
are further transformed. The following function, called DWTHaarImpl, follows
this procedure. It takes as input the number of levels m, as well as the input
vector x, runs the m-level DWT on x, and returns the result:

function xnew=DWTHaarImpl(x,m)

xnew=x;

for mres=m:(-1):1

len=length(xnew)/2^(m-mres);

c=(xnew(1:2:(len-1))+xnew(2:2:len))/sqrt(2);

w=(xnew(1:2:(len-1))-xnew(2:2:len))/sqrt(2);

xnew(1:len)=[c w];

end

Note that this implementation is not recursive, contrary to the FFT. The for-
loop here runs through the different resolutions. Inside the loop we perform the
change of coordinates from φ

k
to (φ

k−1,ψk−1) by applying equations (5.26)-
(5.27). This works on the first coordinates, since the coordinates from φ

k
are

stored first in
Vk ⊕Wk ⊕Wk+1 ⊕ · · ·⊕Wm−2 ⊕Wm−1.

Finally, the c-coordinates are stored before the w-coordinates, again as required
by the order in the canonical basis. In this implementation, note that the first
levels require the most multiplications, since the latter levels leave an increasing
part of the coordinates unchanged. Note also that the change of coordinates
matrix is a very sparse matrix: At each level a coordinate can be computed
from only two of the other coordinates, so that this matrix has only two nonzero
elements in each row/column. The algorithm clearly shows that there is no need
to perform a full matrix multiplication to perform the change of coordinates.

The corresponding function for the IDWT, called IDWTHaarImpl, goes as
follows:

function x=IDWTHaarImpl(xnew,m)

x=xnew;

for mres=1:m

len=length(x)/2^(m-mres);

ev=(x(1:(len/2))+x((len/2+1):len))/sqrt(2);

od=(x(1:(len/2))-x((len/2+1):len))/sqrt(2);

x(1:2:(len-1))=ev;

x(2:2:len)=od;

end

Here the steps are simply performed in the reverse order, and by iterating equa-
tions (5.28)-(5.29).

145

http://folk.uio.no/oyvindry/matinf2360/matlab/DWTHaarImpl.m
http://folk.uio.no/oyvindry/matinf2360/matlab/IDWTHaarImpl.m

You may be puzzled by the names DWTHaarImpl and IDWTHaarImpl. In
the next sections we will consider other cases, where the underlying function φ

may be a different function, not necessarily piecewise constant. It will turn out
that much of the analysis we have done makes sense for other functions φ as
well, giving rise to other structures which we also will refer to as wavelets. The
wavelet resulting from piecewise constant functions is thus simply one example
out of many, and it is commonly referred to as the Haar wavelet.

Example 5.21. When you run a DWT you may be led to believe that coeffi-
cients from the lower order resolution spaces may correspond to lower frequen-
cies. This sounds reasonable, since the functions φ(2mt− n) ∈ Vm change more
quickly than φ(t − n) ∈ V0. However, the functions φm,n do not correspond
to pure tones in the setting of wavelets. But we can still listen to sound from
the different resolution spaces. In Exercise 9 you will be asked to implement
a function which runs an m-level DWT on the first samples of the sound file
castanets.wav, extracts the coefficients from the lower order resolution spaces,
transforms the values back to sound samples with the IDWT, and plays the
result. When you listen to the result the sound is clearly recognizable for lower
values of m, but is degraded for higher values of m. The explanation is that
too much of the detail is omitted when you use a higher m. To be more pre-
cise, when listening to the sound by throwing away wvereything from the detail
spaces W0,W1, . . . ,Wm−1, we are left with a 2−m share of the data. Note that
this procedure is mathematically not the same as setting some DFT coefficients
to zero, since the DWT does not operate on pure tones.

It is of interest to plot the samples of our test audio file castanets.wav, and
compare it with the first order DWT coefficients of the same samples. This is
shown in Figure 5.9. The first part half of the plot represents the low-resolution
approximation of the sound, the second part represents the detail/error. We see
that the detail is quite significant in this case. This means that the first order
wavelet approximation does not give a very good approximation to the sound.
In the exercises we will experiment more on this.

It is also interesting to plot only the detail/error in the sound, for different
resolutions. For this, we must perform a DWT so that we get a representation
in the basis V0⊕W0⊕W1⊕ · · ·⊕Wm−1, set the coefficicents from V0 to sero, and
transform back with the IDWT. In figure 5.10 the error is shown for the test
audio file castanets.wav for m = 1, m = 2. This clearly shows that the error
is larger when two levels of the DWT are performed, as one would suspect. It
is also seen that the error is larger in the part of the file where there are bigger
variations. This also sounds reasonable.

The previous example illustrates that wavelets as well may be used to per-
form operations on sound. As we will see later, however, our main application
for wavelets will be images, where they have found a more important role than
for sound. Images typically display variations which are less abrupt than the
ones found in sound. Just as the functions above had smaller errors in the corre-
sponding resolution spaces than the sound had, images are thus more suited for
for use with wavelets. The main idea behind why wavelets are so useful comes

146

0 5 10

x 10
4

−1

−0.5

0

0.5

1

(a) The 217 first sound samples

0 5 10

x 10
4

−1

−0.5

0

0.5

1

(b) The first order DWT coefficients

Figure 5.9: The sound samples and the DWT coefficients of the sound
castanets.wav.

0 5 10

x 10
4

−1

−0.5

0

0.5

1

(a) m = 1

0 5 10

x 10
4

−1

−0.5

0

0.5

1

(b) m = 2

Figure 5.10: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for different values of m.

147

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(a) A square wave

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(b) f(t) = 1− 2|1/2− t/N |
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 5.11: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · ·⊕Wm−1) for
N = 1024 for different functions f(t), for different values of m.

from the fact that the detail, i.e., wavelet coefficients corresponding to the spaces
Wk, are often very small. After a DWT one is therefore often left with a couple
of significant coefficients, while most of the coefficients are small. The approxi-
mation from V0 can be viewed as a good approximation, even though it contains
much less information. This gives another reason why wavelets are popular for
images: Detailed images can be very large, but when they are downloaded to
a web browser, the browser can very early show a low-resolution of the image,
while waiting for the rest of the details in the image to be downloaded. When
we later look at how wavelets are applied to images, we will need to handle one
final hurdle, namely that images are two-dimensional.

Example 5.22. Above we plotted the DWT coefficients of a sound, as well
as the detail/error. We can also experiment with samples generated from a
mathematical function. Figure 5.11 plots the error for different functions, with
N = 1024. In these cases, we see that we require large m before the detail/error
becomes significant. We see also that there is no error for the square wave. The
reason is that the square wave is a piecewise constant function, so that it can be
represented exactly by the φ-functions. For the other functions, however, this

148

is not the case, so we here het an error.

Above we used the functions DWTHaarImpl, IDWTHaarImpl to plot the er-
ror. For the functions we plotted in the previous example it is also possible to
compute the wavelet coefficients, which we previously have denoted by wm,n,
exactly. You will be asked to do this in exercises 12 and 13. The following
example shows the general procedure which can be used for this:

Example 5.23. Let us compute the wavelet coefficients wm,n for the function
f(t) = 1− t/N . This function decreases linearly from 1 to 0 on [0, N]. Since the
wm,n are coefficients in the basis {ψm,n}, it follows by the orthogonal decompo-
sition formula that wm,n = �f,ψm,n� =

�
N

0 f(t)ψm,n(t)dt. Using the definition
of ψm,n we get that

wm,n =

�
N

0
(1− t/N)ψm,n(t)dt = 2m/2

�
N

0
(1− t/N)ψ(2mt− n)dt.

Moreover ψm,n is nonzero only on [2−m
n, 2−m(n+1)), and is 1 on [2−m

n, 2−m(n+
1/2)), and −1 on [2−m(n+ 1/2), 2−m(n+ 1)). We can therefore write

wm,n = 2m/2

� 2−m(n+1/2)

2−mn

(1− t/N)dt− 2m/2

� 2−m(n+1)

2−m(n+1/2)
(1− t/N)dt

= 2m/2

�
t− t

2

2N

�2−m(n+1/2)

2−mn

− 2m/2

�
t− t

2

2N

�2−m(n+1)

2−m(n+1/2)

= 2m/2

�
2−m(n+ 1/2)− 2−2m(n+ 1/2)2

2N
− 2−m

n++
2−2m

n
2

2N

�

− 2m/2

�
2−m(n+ 1)− 2−2m(n+ 1)2

2N
− 2−m(n+ 1/2) +

2−2m(n+ 1/2)2

2N

�

= 2m/2

�
2−2m

n
2

2N
− 2−2m(n+ 1/2)2

N
+

2−2m(n+ 1)2

2N

�

=
2−3m/2

2N

�
n
2 − 2(n+ 1/2)2 + (n+ 1)2

�

=
1

N22+3m/2
.

We see in particular that wm,n → 0 when m → ∞. We see also that there were
a lot of computations even in this very simple example. For most functions we
therefore usually do not compute wm,n exactly. Instead we use implementations
like DWTHaarImpl, IDWTHaarImpl, and run them on a computer.

5.3.2 Matrix factorization of the DWT

In this section we will write down a matrix factorization of the DWT. This
factorization is not used much in mathematical statements, since one typically
hides this in implementations of the DWT. This is very similar to the case for the

149

FFT, where the matrix factorizations grow increasingly complex when N = 2n

is large, but where the algorithms are still very compact. We need the concept
of a direct sum of matrices before we can write down the DWT factorization:

Definition 5.24 (Direct sum of matrices). Let T1, T2, . . . , Tn be square ma-
trices. By the direct sum of T1, . . . , Tn, denoted T1 ⊕ T2 ⊕ · · ·⊕ Tn, we mean
the block-diagonal matrix where the matrices T1, T2,. . . ,Tn are placed along
the diagonal, with zeros everywhere else.

We can now establish the matrix factorization of the DWT and IDWT in
terms of the direct sum of matrices:

Theorem 5.25 (Matrix of the m-level DWT). Define the (2mN) × (2mN)
change of coordinate matrices

Gm = (Pφm←Cm)T

Hm = PCm←φm

The m-level DWT and IDWT can be expressed as

Fm = (P21NH1 ⊕ I2mN−21N)(P22NH2 ⊕ I2mN−22N)

· · · (P2m−1NHm−1 ⊕ I2mN−2m−1N)P2mNHm,

(Fm)−1 = (P2mNGm)T ((P2m−1NGm−1)
T ⊕ I2mN−2m−1N)

· · · ((P22NG2)
T ⊕ I2mN−22N)((P21NG1)

T ⊕ I2mN−21N).

where PN is the matrix we used to group a vector into its even- and odd
indexed samples in Section 4.1 (i.e. PNx = (x(e)

,x(o))).

Proof. The m level DWT performs m changes of coordinates in order. For k =
0, 1, . . . ,m−1, these steps are (in this order), the change of coordinates from the
canonical basis of Vm−k⊕m−1

r=m−k
Wr to the canonical basis of Vm−k−1⊕m−1

r=m−k−1
Wr. This change of coordinates only transforms the coordinates from Vm−k, and
there are 2m−k

N such coordinates. The remaining 2mN − 2m−k
N coordinates

are left unchanged, which corresponds to

0, 2mN − 2m−1
N, . . . , 2mN − 2m−(m−2)

N, ..., 2mN − 2m−(m−1)
N

coordinates for k = 0, 1, . . . ,m − 1, which explain the I0, I2mN−2m−1N ,. . . ,
I2mN−22N , I2mN−21N matrices above from right to left. The change of coor-
dinates from Vm−k to Vm−k−1 ⊕ Wm−k−1 is implemented with the change of
coordinates matrix Hm−k, followed by a reoredering of the coordinates so that
the even-indexed ones come first. It is clear that this can be implemented as
P2m−kNHm−k, where P2m−kN is defined as in Section 4.1. This explains the
matrices P2mNHm, P2m−1NHm−1,. . . , P22NH2, P21NH1 above, from right to
left.

150

The m-level IDWT is the product of the inverse matrices in the opposite
order. We have that

(P2m−kNHm−k ⊕ I2mN−2m−kN)−1 = (P2m−kNHm−k)
−1 ⊕ I2mN−2m−kN

= (Gm−k)
T (P2m−kN)T ⊕ I2mN−2m−kN

= (P2m−kNGm−k)
T ⊕ I2mN−2m−kN

where we used Exercise 5. The result now follows.

A good question is why we use the transpose of Gm in its definition. We
will discuss this later.

5.3.3 Summary

Let us finally summarize the properties of the spaces Vm. We showed that they
were nested, i.e.

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · .

We also showed that continuous functions could be approximated arbitrarily
well from Vm, as long as m was chosen large enough. Moreover it is clear that
the space V0 is closed under all translates, at least if we view the functions
in V0 as periodic with period N , defined as previously on the period [0, N)
(translating with N then means that we get the same function back). In the
following we will always identify a function with this periodic extension, just as
we did in Fourier analysis. When performing this identification, it is also clear
that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1. We have therefore shown
that the scaling funtion φ fits in with the following general framework.

Definition 5.26. A Multiresolution analysis, or MRA, is a nested sequence
of function spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ · · · (5.32)

so that

1. Any continuous function can be approximated arbitrarily well from Vm,
as long as m is large enough,

2. f(t) ∈ V0 if and only if f(2mt) ∈ Vm,

3. f(t) ∈ V0 if and only if f(t− n) ∈ V0 for all n.

4. There is a function φ, called a scaling function, so that {φ(t−n)}0≤n<N

is a basis for V0. .

Note that, while the basis function we have seen up to now have been or-
thogonal, we state here that we allow them to be simply a basis as well. The
reason is that it will turn out that the assumption of orthogonality may be too

151

strict, in that it makes it difficult to construct interesting wavelets. We will
return to this. The concept of Multiresolution Analysis is much used, and one
can find a wide variety of functions φ (not only piecewise constant functions),
which gives rise to a Multiresolution Analysis. With a multiresolution analysis
there is another important thing we also need: We need to be able to efficiently
compute the decomposition of gm ∈ Vm into the low resolution approximation
gm−1 ∈ Vm−1 and the detail em−1 ∈ Wm−1. This requires that we have a simple
expression for the corresponding projections. In particular, we need to find a
basis for Wm, which hopefully also is orthonormal. Once we have this, the or-
thogonal decomposition formula can be used to compute the projections, i.e. we
can compute the detail and low resolution approximations. Let us summarize
this in the following recipe for constructing wavelets:

Idea 5.27 (Recipe for constructing wavelets). In order to construct wavelets
which are useful for practical purposes, we need to do the following:

1. Find a function φ which gives rise to a multiresolution analysis, and so
that we easily can compute the projection from V1 onto V0.

2. Find a function ψ so that {ψ(t− n)}0≤n<N is an orthonormal basis for
W0, and so that we easily can compute the projection from V1 onto W0.

If we can achieve this, the m-level Discrete Wavelet Transform can be defined
and computed similarly as in the case when φ is a piecewise constant function,
with the obvious replacements.

In the next sections we will follow this recipe in order to contruct other
wavelets. Along the way we will run into other questions which are interesting.
One of them is, given the resolution spaces, is there a unique choice of φ, ψ? If
not, are any choices of φ, ψ better than others? How can we quantify how good
such a choice is?

Exercises for Section 5.3

Ex. 1 — Generalize exercise 5.2.4 to the projections from Vm+1 onto Vm amd
Wm.

Ex. 2 — Show that f(t) ∈ Vm if and only if g(t) = f(2t) ∈ Vm+1.

Ex. 3 — Let C1, C2 . . . , Cn be independent vector spaces, and let Ti : Ci → Ci

be linear transformations. The direct sum of T1, T2,. . . ,Tn which is written
T1 ⊕T2 ⊕ . . .⊕Tn denotes the linear transformation from C1 ⊕C2 ⊕ · · ·⊕Cn to
itself defined by

T1 ⊕ T2 ⊕ . . .⊕ Tn(c1 + c2 + · · ·+ cn) = T1(c1)⊕ T2(c2)⊕ · · ·⊕ Tn(cn)

152

when c1 ∈ C1, c2 ∈ C2, . . . , cn ∈ Cn. Show that, if Bi is a basis for Ci then

[T1 ⊕ T2 ⊕ . . .⊕ Tn]B1⊕B2⊕...⊕Bn = [T1]B1 ⊕ [T2]B2 ⊕ · · ·⊕ [Tn]Bn ,

Here three new concepts are used: a direct sum of matrices, a direct sum of
bases, and a direct sum of linear transformations.

Ex. 4 — Assume that T1 and T2 are matrices, and that the eigenvalues of T1

are equal to those of T2. What are the eigenvalues of T1 ⊕T2? Can you express
the eigenvectors of T1 ⊕ T2 in terms of those of T1 and T2?

Ex. 5 — Assume that A and B are square matrices which are invertible. Show
that A⊕B is invertible, and that (A⊕B)−1 = A

−1 ⊕B
−1.

Ex. 6 — Let A,B,C,D be square matrices of the same dimensions. Show
that (A⊕B)(C ⊕D) = (AC)⊕ (BD).

Ex. 7 — Assume that you run an m-level DWT on a vector of length r. What
value of N does this correspond to? Note that an m-level DWT performs a
change of coordinates from Vm to V0 ⊕W0 ⊕W1 ⊕ · · ·⊕Wm−2 ⊕Wm−1.

Ex. 8 — Run a 2-level DWT on the first 217 sound samples of the audio file
castanets.wav, and plot the values of the resulting DWT-coefficients. Compare
the values of the coefficients from V0 with those from W0 and W1.

Ex. 9 — In this exercise we will experiment with applying an m-level DWT
to a sound file.

a. Write a function

function playDWTlower(m)

which
1. reads the audio file castanets.wav,
2. performs an m-level DWT to the first 217 sound samples of x using

the function DWTHaarImpl,
3. sets all wavelet coefficients representing detail to zero (i.e. keep only

wavelet coefficients from V0 in the decomposition V0 ⊕ W0 ⊕ W1 ⊕
· · ·⊕Wm−2 ⊕Wm−1),

4. performs an IDWT on the resulting coefficients using the function
IDWTHaarImpl,

5. plays the resulting sound.

153

b. Run the function playDWTlower for different values of m. For which m

can you hear that the sound gets degraded? How does it get degraded?
Compare with what you heard through the function playDFTlower in
Example 3.15, where you performed a DFT on the sound sample instead,
and set some of the DFT coefficients to zero.

c. Do the sound samples returned by playDWTlower lie in [−1, 1]?

Ex. 10 — Attempt to construct a (nonzero) sound where the function playDWTlower

form the previous exercise does not change the sound for m = 1, 2.

Ex. 11 — Repeat Exercise 9, but this time instead keep only wavelet coeffi-
cients from the detail spaces W0,W1, Call the new function playDWTlowerdifference.
What kind of sound do you hear? Can you recognize the original sound in what
you hear?

Ex. 12 — Compute the wavelet detail coefficients analytically for the func-
tions in Example 5.22, i.e. compute the quantities wm,n =

�
N

0 f(t)ψm,n(t)dt
similarly to how this was done in Example 5.23.

Ex. 13 — Compute the wavelet detail coefficients analytically for the func-
tions f(t) =

�
t

N

�k, i.e. compute the quantities wm,n =
�
N

0

�
t

N

�k
ψm,n(t)dt

similarly to how this was done in Example 5.23. How do these compare with
the coefficients from the Exercise 12?

5.4 Wavelets constructed from piecewise linear
functions

In Section 5.3 we started with the simple space of functions that are constant on
each interval between two integers, which has a very simple orthonormal basis
given by translates of the characteristic function of the interval [0, 1). From
this we constructed a so-called multiresolution analysis of successively refined
spaces of piecewise constant functions that may be used to approximate any
continuous function arbitrarily well. We then saw how a given function in a fine
space could be projected orthogonally into the preceding coarser space. The
computations were all taken care of with the Discrete Wavelet Transform.

In many situations, piecewise constant functions are too simple, and in this
section we are going to extend the construction of wavelets to piecewise linear
functions. The advantage is that piecewise linear functions are better for ap-
proximating smooth functions and data than piecewise constants, which should
translate into smaller components (errors) in the detail spaces in many prac-
tical situations. As an example, this would be useful if we are interested in

154

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

(a) A piecewise linear function.

�1 1 2 3 4

0.2

0.4

0.6

0.8

1.0

(b) The two functions φ(t) and φ(t− 3).

Figure 5.12: Some piecewise linear functions.

compression.

5.4.1 Multiresolution analysis

Our experience from deriving Haar wavelets will guide us in the construction
of piecewise linear wavelets. The first task is to define the underlying function
spaces.

Definition 5.28 (Resolution spaces of piecewise linear functions). The space
Vm is the subspace of continuous functions on R which are periodic with period
N , and linear on each subinterval of the form [n2−m

, (n+ 1)2−m).

Any f ∈ Vm is uniquely determined by its values on [0, N). Figure 5.12 (a)
shows an example of a piecewise linear function in V0 on the interval [0, 10]. We
note that a piecewise linear function in V0 is completely determined by its value
at the integers, so the functions that are 1 at one integer and 0 at all others are
particularly simple and therefore interesting, see Figure 5.12 (b). These simple
functions are all translates of each other and can therefore be built from one
scaling function, as is required for a multiresolution analysis.

Recall that the support of a function f defined on a subset I of R is given
by the closure of the set of points where the function is nonzero,

supp(f) = {t ∈ I | f(t) �= 0}.

Lemma 5.29. Let the function φ be defined by

φ(t) =

1 + t, if −1 ≤ t < 0;

1− t, if 0 ≤ t < 1;

0, otherwise;
(5.33)

155

and for any m ≥ 0 set

φm,n(t) = φ(2mt− n) for n = 0, 1, . . . , 2mN − 1,

or in vector notation

φ
m

= (φm,0,φm,1, . . . ,φm,2mN−1).

The functions {φm,n}2
m
N−1

n=0 , restricted to the interval [0, N], form a basis for
the space Vm for this interval. In other words, the function φ is a scaling
function for the spaces V0, V1, Moreover, the function φ0,n(t) is the
function in V0 with smallest support that is nonzero at t = n.

Proof. The proof is similar for all the resolution spaces, so it is sufficient to
consider the proof in the case of V0. The function φ is clearly linear between each
pair of neighbouring integers, and it is also easy to check that it is continuous.
Its restriction to [0, N] therefore lies in V0. And as we noted above φ0,n(t) is 0
at all the integers except at t = n where its value is 1.

A general function f in V0 is completely determined by its values at the inte-
gers in the interval [0, N] since all straight line segments between neighbouring
integers are then fixed. Note that we can also write f as

f(t) =
N−1�

n=0

f(n)φ0,n(t) (5.34)

since this function agrees with f at the integers in the interval [0, N] and is
linear on each subinterval between two neighbouring integers. This means that
V0 is spanned by the functions {φ0,n}N−1

n=0 . On the other hand, if f is identically
0, all the coefficients in (5.34) are also 0, so {φ0,n}N−1

n=0 are linearly independent
and therefore a basis for V0.

Suppose that the function g ∈ V0 has smaller support than φ0,n, but is
nonzero at t = n. Then g must be identically zero either on [n − 1, n) or on
[n, n + 1], since a straight line segment cannot be zero on just a part of an
interval between integers. But then g cannot be continuous, which contradicts
the fact the it lies in V0.

The function φ and its translates and dilates are often referred to as hat
functions for obvious reasons.

A formula like (5.34) is also valid for functions in Vm.

Lemma 5.30. A function f ∈ Vm may be written as

f(t) =
2mN−1�

n=0

f(n/2m)φm,n(t). (5.35)

156

An essential property of a multiresolution analysis is that the spaces should
be nested.

Lemma 5.31. The piecewise linear resolution spaces are nested,

V0 ⊂ V1 ⊂ · · · ⊂ Vm ⊂ · · · .

Proof. We only need to prove that V0 ⊂ V1 since the other inclusions are similar.
But this is immediate since any function in V0 is continuous, and linear on any
subinterval in the form [n/2, (n+ 1)/2).

In the piecewise constant case, we saw in Lemma 5.5 that the scaling func-
tions were automatically orthogonal since their supports did not overlap. This
is not the case in the linear case, but we could orthogonalise the basis φ

m
with

the Gram-Schmidt process from linear algebra. The disadvantage is that we lose
the nice local behaviour of the scaling functions and end up with basis functions
that are nonzero over all of [0, N]. And for most applications, orthogonality is
not essential; we just need a basis.

Let us sum up our findings so far.

Observation 5.32. The spaces V0, V1, . . . , Vm, . . . form a multiresolution
analysis generated by the scaling function φ.

The next step in the derivation of wavelets is to find formulas that let us
express a function given in the basis φ0 for V0 in terms of the basis φ1 for V1.

Lemma 5.33. The function φ0,n satisfies the relation

φ0,n =
1

2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1. (5.36)

A general function g0 in V0 is also in V1, and if

g0 =
N−1�

n=0

c0,nφ0,n =
2N−1�

n=0

c1,nφ1,n

then

c1,2n = c0,n, for n = 0, 1, . . . , N − 1; (5.37)
c1,2n+1 = (c0,n + c0,(n+1) mod N)/2, for n = 0, 1, . . . , N − 1. (5.38)

Proof. Since φ0,n is in V0 it may be expressed in the basis φ1 with formula
(5.35),

φ0,n(t) =
2N−1�

k=0

φ0,n(k/2)φ1,k(t).

157

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

The relation (5.36) now follows since

φ0,n

�
(2n− 1)/2

�
= φ0,n

�
(2n+ 1)/2

�
= 1/2, φ0,n(2n/2) = 1,

and φ0,n(k/2) = 0 for all other values of k.
To prove (5.37) and (5.38), we use (5.36),

g0 =
N−1�

n=0

c0,nφ0,n

=
N−1�

n=0

c0,n(φ1,2n−1/2 + φ1,2n + φ1,2n+1/2)

=
N−1�

n=0

c0,nφ1,2n +
N−1�

n=0

c0,(n+1) mod Nφ1,2n+1/2 +
N−1�

n=0

c0,nφ1,2n+1/2

=
N−1�

n=0

c0,nφ1,2n +
N−1�

n=0

(c0,n + c0,(n+1) mod N)φ1,2n+1/2,

where we have performed a substitution of the form n → n+1. The result now
follows by comparing with

�2N−1
n=0 c1,nφ1,n.

The relations in Lemma 5.33 can also be expressed in matrix form. If we set

c1 = (c1,n)
2N−1
n=0 , ce1 = (c1,2n)

N−1
n=0 , co1 = (c1,2n+1)

N−1
n=0 ,

we may write the equations (5.37) and (5.38) as
�
ce1
co1

�
=

�
I

A0

�
c0, (5.39)

158

where I is the N × N identity matrix and A0 is the N × N circulant Toeplitz
matrix given by

A0 =
1

2

1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 1
1 0 0 · · · 0 1

. (5.40)

The formulas (5.37)–(5.38), or alternatively (5.39), show how a function in
V0 and can be represented in V1. Analogous formulas let us rewrite a function
in Vk in terms of the basis for Vk+1.

5.4.2 Detail spaces and wavelets

The next step in our derivation of wavelets for piecewise linear functions is the
definition of the detail spaces. In the case of V0 and V1, we need to determine
a space W0 so that V1 is the direct sum of V0 and W0. In the case of piecewise
constants we started with a function g1 in V1, computed the least squares ap-
proximation g0 in V0, and then defined the space W0 as the space of all possible
error functions. This is less appealing in the linear case since we do not have
an orthogonal basis for V0.

As in the case of piecewise constants we start with a function g1 in V1, but
we use an extremely simple approximation method, we simply drop every other
coefficient.

Definition 5.34. Let g1 be a function in V1 given by

g1 =
2N−1�

n=0

c1,n φ1,n. (5.41)

The approximation g0 = S(g1) in V0 interpolates g1 at the integers,

g0(n) = g1(n), n = 0, 1, . . . , N − 1. (5.42)

It is very easy to see that the coefficients of g0 actually can be obtained by
dropping every other coefficient:

Lemma 5.35. Let g1 be given by (5.41) and suppose that g0 =
�

N−1
n=0 c0,nφ0,n

in V0 interpolates g1 at the integers in 0, . . . , N − 1. Then the coefficients are
given by

c0,n = c1,2n, for n = 0, 1, . . . , N − 1, (5.43)
and

S(φ1,n) =

�
φ0,n/2, if n is an even integer;
0, otherwise.

159

Once the method of approximation is determined, it is straightforward to
determine the detail space as the space of error functions. With the notation
from Definition 5.34, the error is given by e0 = g1 − g0. Since g0 interpolates g1
at the integers, the error is 0 there,

e0(n) = 0, for n = 0, 1, . . . , N − 1.

Conversely, any function in V1 which is 0 at the integers may be viewed as
an error function in the above sense. This provides the basis for a precise
description of the error functions.

Lemma 5.36. Suppose the function g0 in V0 interpolates a function g1 in V1

at the integers. Then the error e0 = g1 − g0 lies in the space W0 defined by

W0 = {f ∈ V1 | f(n) = 0, for n = 0, 1, . . . , N − 1.

A basis for W0 is given by the wavelets {ψ0,n}N−1
n=0 defined by

ψ0,n = φ1,2n+1, for n = 0, 1, . . . , N − 1.

If g1 =
�2N−1

n=0 c1,n φ1,n is approximated by g0 in V0 as in Lemma 5.35, the
error is given by e0 =

�
N−1
n=0 w0,nψ0,n where

w0,n = c1,2n+1 −
1

2
(c1,2n + c1,(2n+2) mod 2N). (5.44)

Proof. We must show that any error function can be written in terms of the
wavelets. First of all we note that the wavelets are linearly independent since
their supports do not intersect. Let g1 ∈ V1 be as in (5.41) and let the g0 ∈ V0

160

be the approximation described by Lemma 5.35. Then the error is given by

e0 = g1 − g0

=
2N−1�

n=0

c1,nφ1,n −
N−1�

n=0

c0,nφ0,n

=
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1 −
N−1�

n=0

c1,2nφ0,n

=
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

− 1

2

N−1�

n=0

c1,2nφ1,2n−1 −
N−1�

n=0

c1,2nφ1,2n − 1

2

N−1�

n=0

c1,2nφ1,2n+1

=
N−1�

n=0

c1,2nφ1,2n +
N−1�

n=0

c1,2n+1φ1,2n+1

− 1

2

N−1�

n=0

c1,(2n+2) mod 2Nφ1,2n+1 −
N−1�

n=0

c1,2nφ1,2n − 1

2

N−1�

n=0

c1,2nφ1,2n+1

=
N−1�

n=0

�
c1,2n+1 −

1

2
(c1,2n + c1,(2n+2) mod 2N)

�
φ1,2n+1.

In the third equation we split the sum in g1 into even and odd terms and used
the definition of g0 in (5.43). In the next step we then rewrote g0 in V1 using
formula (5.37), and finally we rewrote φ0,n using formula (5.36).

We now have all the ingredients to formulate an analog of Theorem 5.18 that
describes how Vm can be expressed as a direct sum of Vm−1 and Wm−1. The
formulas for m = 1 generalise without change, except that the upper bound on
the summation indices must be adjusted.

Theorem 5.37. The space Vm can be decomposed as the direct sum Vm =
Vm−1 ⊕Wm−1 where Wm−1 is the space of all functions in Vm that are zero
at the points {n/2m−1}N2m−1−1

n=0 . The space Vm has the two bases

φ
m

= (φm,n)
2mN−1
n=0

and
(φ

m−1,ψm−1) =
�
(φm−1,n)

2m−1
N−1

n=0 , (ψm−1,n)
2m−1

N−1
n=0

�
.

161

If gm ∈ Vm, gm−1 ∈ Vm−1, and em−1 ∈ Wm−1 are given by

gm =
2mN−1�

n=0

cm,nφm,n,

gm−1 =
2m−1

N−1�

n=0

cm−1,nφm−1,n,

em−1 =
2m−1

N−1�

n=0

wm−1,nψm−1,n,

and gm = gm−1 + em−1, then the change of coordinates from the basis φ
m

to
the basis (φ

m−1,ψm−1) is given by

cm−1,n = cm,2n,

wm−1,n = cm,2n+1 − (cm,2n + cm,(2n+2) mod 2N)/2.

Conversely, the change of coordinates from the basis (φ
m−1,ψm−1) to the

basis φ
m

is given by

cm,2n = cm−1,n, (5.45)
cm,2n+1 = wm−1,n + (cm−1,n + cm−1,n+1)/2. (5.46)

The matrix notation in (5.39) may be generalised to cover Theorem 5.37.
With the natural extension of the notation in (5.39) we see that IDWT given
by (5.45) and (5.46) can be expressed as

�
ce
m

co
m

�
=

�
I 0

Am−1 I

��
cm−1

wm−1

�
(5.47)

where both identity matrices have dimension N2m−1. The matrix Am−1 is a�
N2m−1) ×

�
N2m−1) matrix which is the natural generalisation of the matrix

A0 defined in (5.40). The DWT is simply the inverse of (5.39) and is given by
�
cm−1

wm−1

�
=

�
I 0

−Am−1 I

��
ce
m

co
m

�
. (5.48)

There is another simple expression for the DWT we will have use for. From
Equation (5.36) and from the definition of ψ we have

φ0,n =
1

2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1

ψ0,n = φ1,2n+1.

Again, it is custom to use the normalized functions φm,n(t) = 21/2φ(2mt − n).

162

Using these instead, the two equations above take the form

φ0,n =
1

2
√
2
φ1,2n−1 +

1√
2
φ1,2n +

1

2
√
2
φ1,2n+1

ψ0,n =
1√
2
φ1,2n+1. (5.49)

These two relations together give all columns in the change of coordinate matrix
Pφ1←C1 , when the spaces φ

m
, Cm instead are defined in terms of the function

ψ, and the normalized φ. In particular, the first two columns in this matrix are

1√
2

1 0
1/2 1
0 0
...

...
0 0
1/2 0

. (5.50)

The remaining columns are obtained by shifting this, as in a circulant Toeplitz
matrix. Similarly we can compute the change of coordinate matrix the opposite
way, PC1←φ1

: Equations (5.49) can be written

1√
2
φ1,2n = φ0,n − 1

2
√
2
φ1,2n−1 −

1

2
√
2
φ1,2n+1

1√
2
φ1,2n+1 = ψ0,n,

from which it follows that

φ1,2n =
√
2φ0,n − 1

2
φ1,2n−1 −

1

2
φ1,2n+1

= −
√
2

2
ψ0,n−1 +

√
2φ0,n −

√
2

2
ψ0,n

φ1,2n+1 =
√
2ψ0,n,

which in the same way as above give the following two first columns in the
change of coordinate matrix PC1←φ1

:

√
2

1 0
−1/2 1
0 0
...

...
0 0

−1/2 0

. (5.51)

Also here, the remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix.

163

0 5 10

x 10
4

−1

−0.5

0

0.5

1

(a) m = 1

0 5 10

x 10
4

−1

−0.5

0

0.5

1

(b) m = 2

Figure 5.13: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for different values of m.

Example 5.38. In Section 5.6 we will construct an algorithm which performs
DWT/IDWT, for a general wavelet. In particular, this algorithm can be used
for the wavelet we constructed in this section. Let us also for this wavelet plot
the detail/error in the test audio file castanets.wav for different resolutions, as
we did in Example 5.21. The result is shown in Figure 5.13. When comparing
with Figure 5.10 we see much of the same, but it seems here that the error is
bigger than before. In the next section we will try to explain why this is the
case, and construct another wavelet based on piecewise linear functions which
remedies this.

Example 5.39. Let us also repeat Exercise 5.22, where we plotted the de-
tail/error at different resolutions, for the samples of a mathematical function.
Figure 5.14 shows the new plot. With the square wave we see now that there
is an error. The reason is that a piecewise constant function can not be rep-
resented exactly by piecewise linear functions, due to discontinuity. For the
second function we see that there is no error. The reason is that this function
is piecewise constant, so there is no error when we represent the function from
the space V0. With the third function, hoewever, we see an error.

Exercises for Section 5.4

Ex. 1 — Show that, for f ∈ V0 we have that [f]φ0
= (f(0), f(1), . . . , f(N−1)).

This generalizes the result for piecewise constant functions.

164

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(a) A square wave

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(b) f(t) = 1− 2|1/2− t/N |
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 5.14: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · ·⊕Wm−1) for
N = 1024 for different functions f(t), for different values of m.

165

Ex. 2 — Show that

�φ0,n,φ0,n� =
2

3

�φ0,n,φ0,n±1� =
1

6
�φ0,n,φ0,n±k� = 0 for k > 1.

As a consequence, the {φ0,n}n are neither orthogonal, nor have norm 1.

Ex. 3 — The convolution of two functions defined on (−∞,∞) is defined by

(f ∗ g)(x) =
� ∞

−∞
f(t)g(x− t)dt.

Show that we can obtain the piecewise linear φ we have defined as φ = χ[−1/2,1/2)∗
χ[−1/2,1/2) (recall that χ[−1/2,1/2) is the function which is 1 on [−1/2, 1/2) and
0 elsewhere). This gives us a nice connection between the piecewise constant
scaling function (which is similar to χ[−1/2,1/2)) and the piecewise linear scaling
function in terms of convolution.

5.5 Alternative wavelets for piecewise linear func-
tions

The direct sum decomposition that we derived in Section 5.4 was very simple,
but also has its shortcomings. To see this, set N = 1 and consider the space
V10, which has dimension 210, which in most cases will mean that the function
g10 will be a very good representation of the underlying data. However, when
we compute gm−1 we just pick every other coefficient from gm. By the time we
get to g0 we are just left with the first and last coefficient from g10. In some
situations this may be adequate, but usually not.

To address this shortcoming, let us return to the piecewise constant wavelet,
and assume that f ∈ Vm. By the orthogonal decomposition theorem we have

f =
N−1�

n=0

�f,φ0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�f,ψr,n�ψr,n. (5.52)

If f is s times differentiable, it can be represented as f = Ps(x) +Qs(x), where
Ps is a polynomial of degree s, and Qs is a function which is very small (Ps

could for instance be a Taylor series expansion of f). If in addition �tk,ψ� = 0,
for k = 1, . . . , s, we have also that �tk,ψr,t� = 0 for r ≤ s, so that �Ps,ψr,t� = 0

166

also. This means that (5.52) can be written

f =
N−1�

n=0

�Ps +Qs,φ0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Ps +Qs,ψr,n�ψr,n

=
N−1�

n=0

�Ps +Qs,φ0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Ps,ψr,n�ψr,n +
m−1�

r=0

2rN−1�

n=0

�Qs,ψr,n�ψr,n

=
N−1�

n=0

�f,φ0,n�φ0,n +
m−1�

r=0

2rN−1�

n=0

�Qs,ψr,n�ψr,n.

Here the first sum lies in V0. We see that the wavelet coefficients from Wr are
�Qs,ψr,n�, which are very small since Qs is small. This means that the detail in
the different spaces Wr is very small, which is exactly what we aimed for. Let
us summarize this as follows:

Theorem 5.40 (Vanishing moments). We say that ψ has k vanishing mo-
ments if the integrals

�∞
−∞ t

l
ψ(t)dt = 0 for all 0 ≤ l ≤ k − 1. If a function

f ∈ Vm is r times differentiable, and ψ has r vanishing moments, then f can
be approximated well from V0. Moreover, the quality of this approximation
improves when r increases.

It is also clear from the argument that if f is a polynomial of degree less
than or equal to k − 1 and ψ has k vanishing moments, then the wavelet detail
coefficients are exactly 0. This theorem at least says what we have to aim for
when the wavelet basis is orthonormal. The concept of vanishing moments also
makes sense when the wavelet is not orthonormal, however. One can show that
it is desirable to have many vanishing moments for other wavelets also. We
we will not go into this (the wavelets used in practice turn out to be “almost”
orthonormal, although they are not actually orthonormal. In such cases the
computations above serve as good approximations, so that it is desirable to
have many vanishing moments also here).

The Haar wavelet has one vanishing moment, since
�
N

0 ψ(t)dt = 0 as we
noted in Observation 5.15. It is an exercise to see that the Haar wavelet has
only one vanishing moment, i.e.

�
N

0 tψ(t)dt �= 0.
Now consider the wavelet we have used up to now for piecewise linear func-

tions, i.e. ψ(t) = φ1,1(t). Clearly this has no vanishing moments, since ψ(t) ≥ 0
for all t. This is thus not a very good choice of wavelet. Let us see if we can
construct an alternative function ψ̂, which has two vanishing moments, i.e. one
more than the Haar wavelet.

Idea 5.41. Adjust the wavelet construction in Theorem 5.37 so that the new
wavelets {ψ̂m−1,n}N2m−1

n=0 in Wm−1 satisfy
�

N

0
ψ̂m−1,n(t) dt =

�
N

0
tψ̂m−1,n(t) dt = 0, (5.53)

167

for n = 0, 1, . . . , N2m − 1.

As usual, it is sufficient to consider what happens when V1 is written as a
direct sum of V0 and W0. From Idea 5.41 we see that we need to enforce two
conditions for each wavelet function. If we adjust the wavelets in Theorem 5.37
by adding multiples of the two neighbouring hat functions, we have two free
parameters,

ψ̂0,n = ψ0,n − αφ0,n − βφ0,n+1 (5.54)

that we may determine so that the two conditions in (5.53) are enforced. If we
do this, we get the following result:

Lemma 5.42. The function

ψ̂0,n(t) = ψ0,n(t)−
1

4

�
φ0,n(t) + φ0,n+1(t)

�
(5.55)

satisfies the conditions
�

N

0
ψ̂0,n(t) dt =

�
N

0
tψ̂0,n(t) dt = 0.

Using Equation (5.36), which stated that

φ0,n(t) =
1

2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1 (5.56)

we get

ψ̂0,n(t) = ψ0,n(t)−
1

4

�
φ0,n(t) + φ0,n+1(t)

�

= φ0,2n+1(t)−
1

4

�1
2
φ1,2n−1 + φ1,2n +

1

2
φ1,2n+1 +

1

2
φ1,2n+1 + φ1,2n+2 +

1

2
φ1,2n+3

�

= −1

8
φ1,2n−1 −

1

4
φ1,2n +

3

4
φ1,2n+1 −

1

4
φ1,2n+2 −

1

8
φ1,2n+3. (5.57)

Note that what we did here is equivalent to finding the coordinates of ψ̂ in the
basis φ1: Equation (5.55) says that

[ψ̂]φ0⊕ψ0
= (−1/4,−1/4, 0, . . . , 0)⊕ (1, 0, . . . , 0). (5.58)

Since the IDWT is the change of coordinates from φ0⊕ψ0 to φ1, we could also
have computed [ψ̂]φ1

by taking the IDWT of (−1/4,−1/4, 0, . . . , 0)⊕(1, 0, . . . , 0).
In the next section we will consider more general implementations of the DWT
and the IDWT, which we thus can use instead of performing the computation
above.

168

−2 −1 0 1 2
−0.5

0

0.5

1

Figure 5.15: The function ψ we constructed as an alternative wavelet for piece-
wise linear functions.

Again, it is custom to use the normalized functions φm,n(t) = 21/2φ(2mt−n).
Using these instead, the two equations above take the form

φ0,n(t) =
1

2
√
2
φ1,2n−1 +

1√
2
φ1,2n +

1

2
√
2
φ1,2n+1

ψ̂0,n(t) = − 1

8
√
2
φ1,2n−1 −

1

4
√
2
φ1,2n +

3

4
√
2
φ1,2n+1 −

1

4
√
2
φ1,2n+2 −

1

8
√
2
φ1,2n+3.

These two relations together give all columns in the change of coordinate matrix
Pφ1←C1 , when the spaces φ

m
, Cm instead are defined in terms of the function

ψ̂, and the normalized φ. In particular, the first two columns in this matrix are

1√
2

1 −1/4
1/2 3/4
0 −1/4
0 −1/8
0 0
...

...
0 0
1/2 −1/8

. (5.59)

The first column is the same as before, since there was no change in the definition
of φ. The remaining columns are obtained by shifting this, as in a circulant
Toeplitz matrix. Similarly we could compute the change of coordinate matrix
the opposite way, PC1←φ1

. We will explain how this can be done in the next
section. The function ψ is plotted in Figure 5.15.

Example 5.43. Let us also plot the detail/error in the test audio file castanets.wav
for different resolutions for our alternative wavelet, as we did in Example 5.21.
The result is shown in Figure 5.16. Again, when comparing with Figure 5.10
we see much of the same. It is difficult to see an improvement from this fig-
ure. However, this figure also clearly shows a smaller error than the wavelet of

169

0 5 10

x 10
4

−1

−0.5

0

0.5

1

(a) m = 1

0 5 10

x 10
4

−1

−0.5

0

0.5

1

(b) m = 2

Figure 5.16: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · · ⊕Wm−1) in
the sound file castanets.wav, for different values of m.

the preceding section. A partial explanation is that the wavelet we now have
constructed has two vanishing moments.

Example 5.44. Let us also repeat Exercise 5.22 for our alternative wavelet,
where we plotted the detail/error at different resolutions, for the samples of a
mathematical function. Figure 5.17 shows the new plot. Again for the square
wave there is an error, which seems to be slightly lower than for the previous
wavelet. For the second function we see that there is no error, as before. The
reason is the same as before, since the function is piecewise constant. With the
third function there is an error. The error seems to be slightly lower than for
the previous wavelet, which fits well with the number of vanishing moments.

Exercises for Section 5.5

Ex. 1 — In this exercise we will show that there is a unique function on the
form (5.54) which has two vanishing moments.

a. Show that, when ψ̂ is defined by (5.54), we have that

ψ̂(t) =

−αt− α for − 1 ≤ t < 0

(2 + α− β)t− α for 0 ≤ t < 1/2

(α− β − 2)t− α+ 2 for 1/2 ≤ t < 1

βt− 2β for 1 ≤ t < 2

0 for all other t

170

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(a) A square wave

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(b) f(t) = 1− 2|1/2− t/N |
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

The function itself

Detail at the first 6 resolutions

Detail at the first 8 resolutions

(c) f(t) = 1/2 + cos(2πt/N)/2

Figure 5.17: The error (i.e. the contribution from W0 ⊕W1 ⊕ · · ·⊕Wm−1) for
N = 1024 for different functions f(t), for different values of m.

171

b. Show that
�

N

0
ψ̂(t)dt =

1

2
− α− β

�
N

0
tψ̂(t)dt =

1

4
− β.

c. Explain why there is a unique function on the form (5.54) which has two
vanishing moments, and that this function is given by Equation (5.55).

Ex. 2 — In the previous exercise we ended up with a lot of calculations to
find α,β in Equation (5.54). Let us try to make a program which does this for
us, and which also makes us able to generalize the result.

a. Define

ak =

� 1

−1
t
k(1− |t|)dt

bk =

� 2

0
t
k(1− |t− 1|)dt

ek =

� 1

0
t
k(1− 2|t− 1/2|)dt,

for k ≥ 0. Explain why finding α,β so that we have two vanishing
moments in Equation 5.54 is equivalent to solving the following equation:

�
a0 b0

a1 b1

��
α

β

�
=

�
e0

e1

�

Write a program which sets up and solves this system of equations, and
use this program to verify the values for α,β we previously have found.
Hint: recall that you can integrate functions in Matlab with the function
quad. As an example, the function φ(t), which is nonzero only on [−1, 1],
can be integrated as follows:

quad(@(t)t.^k.*(1-abs(t)),-1,1)

b. The procedure where we set up a matrix equation in a. allows for gener-
alization to more vanishing moments. Define

ψ̂ = ψ0,0 − αφ0,0 − βφ0,1 − γφ0,−1 − δφ0,2. (5.60)

We would like to choose α,β, γ, δ so that we have 4 vanishing moments.
Define also

gk =

� 0

−2
t
k(1− |t+ 1|)dt

dk =

� 3

1
t
k(1− |t− 2|)dt

172

for k ≥ 0. Show that α,β, γ, δ must solve the equation

a0 b0 g0 d0

a1 b1 g1 d1

a2 b2 g2 d2

a3 b3 g3 d3

α

β

γ

δ

 =

e0

e1

e2

e3

 ,

and solve this with Matlab.
c. Plot the function defined by (5.60), which you found in b.

Hint: If t is the vector of t-values, and you write
(t>=0).*(t<=1).*(1-2*abs(t-0.5)), you get the points φ1,1(t).

d. Explain why the coordinate vector of ψ̂ in the basis φ0 ⊕ψ0 is

[ψ̂]φ0⊕ψ0
= (−α,−β,−δ, 0, . . . , 0− γ)⊕ (1, 0, . . . , 0).

Hint: you can also compare with Equation (5.58) here. The placement of
−γ may seem a bit strange here, and has to with that φ0,−1 is not one of
the basis functions {φ0,n}N−1

n=0 . However, we have that φ0,−1 = φ0,N−1,
i.e. φ(t + 1) = φ(t −N + 1), since we always assume that the functions
we work with have period N .

e. Sketch a more general procedure than the one you found in b., which
can be used to find wavelet bases where we have even more vanishing
moments.

Ex. 3 — It is also possible to add more vanishing moments to the Haar
wavelet. Define

ψ̂ = ψ0,0 − a0φ0,0 − · · ·− ak−1φ0,k−1.

Define also cr,l =
�
l+1
l

t
r
dt, and er =

� 1
0 t

r
ψ(t)dt.

a. Show that ψ̂ has k vanishing moments if and only if a0, . . . , ak−1 solves
the equation

c0,0 c0,1 · · · c0,k−1

c1,0 c1,1 · · · c1,k−1
...

...
...

...
ck−1,0 ck−1,1 · · · ck−1,k−1

a0

a1
...

ak−1

=

e0

e1
...

ek−1

(5.61)

b. Write a function

function a=vanishingmomshaar(k)

which solves Equation 5.61, and returns a0, a1, . . . , ak−1 in the vector a.

173

5.6 Wavelets and filters
Up to now we have seen three different examples of wavelet bases: One for
piecewise constant functions, and two for piecewise linear functions. In each
case it turned out that the change of coordinate matrices Pφm←Cm , PCm←φm

had a special structure: They were obtained by repeating the first two columns
in a circulant way, similarly to how we did in a circulant Toeplitz matrix. The
matrices were not exactly circulant Toeplitz matrices, however, since there are
two different columns repeating. The change of coordinate matrices occuring in
the stages in a DWT are thus not digital filters, but they seem to be related.
Let us start by giving these new matrices names:

Definition 5.45 (MRA-matrices). An N × N -matrix T , with N even, is
called an MRA-matrix if the columns are translates of the first two columns
in alternating order, in the same way as the columns of a circulant Toeplitz
matrix.

From our previous calculations it is clear that, once φ and ψ are given
through an MRA, the corresponding change of coordinate matrices will always
be MRA-matrices. The MRA-matrices is our connection between matrices and
wavelets. We would also like to state a similar connection with filters, i.e. show
how the DWT could be implemented in terms of filters. We start with the
following definition:

Definition 5.46. We denote by H0 the (unique) filter with the same first
row as PCm←φm

, and by H1 the (unique) filter with the same second row as
PCm←φm

.

Using this definition it is clear that

(PCm←φm
cm)k = (H0cm)k when k is even

(PCm←φm
cm)k = (H1cm)k when k is odd

since the left hand side depends only on row k in the matrix PCm←φm
, and this

is equal to row k in H0 (when k is even) or row k in H1 (when k is odd). This
means that PCm←φm

cm can be computed with the help of H0 and H1 as follows:

Theorem 5.47 (DWT expressed in terms of filters). Let cm be the coordi-
nates in φ

m
, and let H0, H1 be defined as above. Any stage in a DWT can

ble implemented in terms of filters as follows:

1. Compute H0cm. The even-indexed entries in the result are the cordinates
cm−1 in φ

m−1.

2. Compute H1cm. The odd-indexed entries in the result are the coordi-
nates wm−1 in ψ

m−1.

174

Note that this corresponds to applying two filters, and throwing away half
of the results (since we only keep even-indexed and odd-indexed entries, respec-
tively). In practice we do not compute the full application of the filter due to
this. We can now complement Figure 5.3.1 by giving names to the arrows as
follows:

Vm

H0 ��

H1

��

Vm−1
H0 ��

H1

��

Vm−2
H0 ��

H1

��

· · · H0 ��

H1

��

V0

Wm−1 Wm−2 Wm−3 W0

Let us make a similar anlysis for the IDWT, and let us first make the following
definition:

Definition 5.48. We denote by G0 the (unique) filter with the same first
column as Pφm←Cm , and by G1 the (unique) filter with the same second column
as Pφm←Cm .

These filters are uniquely determined, since any filter is uniquely determined
from one of its columns. We can now write

Pφm←Cm

cm−1,0

wm−1,0

cm−1,1

wm−1,1

· · ·
cm−1,2m−1N−1

wm−1,2m−1N−1

= Pφm←Cm

cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0

+

0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1

= Pφm←Cm

cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0

+ Pφm←Cm

0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1

= G0

cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0

+G1

0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1

.

Here we have split a vector into its even-indexed and odd-indexed elements,
which correspond to the coefficients from φ

m−1 and ψ
m−1, respectively. In the

last equation, we replaced with G0, G1, since the multiplications with Pφm←Cm

depend only on the even and odd columns in that matrix (due to the zeros

175

inserted), and these columns are equal in G0, G1. We can now state the following
characterization of the inverse Discrete Wavelet transform:

Theorem 5.49 (IDWT expressed in terms of filters). Let G0, G1 be defined
as above. Any stage in an IDWT can be implemented in terms of filters as
follows:

cm = G0

cm−1,0

0
cm−1,1

0
· · ·

cm−1,2m−1N−1

0

+G1

0
wm−1,0

0
wm−1,1

· · ·
0

wm−1,2m−1N−1

. (5.62)

We can now also complement Figure 5.3.1 for the IDWT with named arrows
as follows:

Vm Vm−1
G0

�� Vm−2
G0

�� · · ·
G0

�� V0
G0

��

Wm−1

G1

��

Wm−2

G1

��

Wm−3

G1

��

W0

G1

��

Note that the filters G0, G1 were defined in terms of the columns of Pφm←Cm ,
while the filters H0, H1 were defined in terms of the rows of PCm←φm

. This
difference is seen from the computations above to come from that the change
of coordinates one way splits the coordinates into two parts, while the inverse
change of coordinates performs the opposite.

There are two reasons why it is smart to express a wavelet transformation
in terms of filters. First of all, it enables us to reuse theoretical results from the
world of filters in the world of wavelets. Secondly, and perhaps most important,
it enables us to reuse efficient implementations of filters in order to compute
wavelet transformations. A lot of work has been done in order to establish
efficient implementations of filters, due to their importance.

In Example 5.21 we argued that the elements in Vm−1 correspond to fre-
quencies at lower frequencies than those in Vm, since V0 = Span(φ0,n) should be
interpreted as content of lower frequency than the φ1,n, with W0 = Span(ψ0,n

the remaining high frequency detail. To elaborate more on this, we have that
have that

φ(t) =
2N−1�

n=0

(G0)n,0φ1,n(t) (5.63)

ψ(t) =
2N−1�

n=0

(G1)n,1ψ1,n(t)., (5.64)

176

where (Gk)i,j are the entries in the matrix Gk. Similar equations are true for
φ(t− k),ψ(t− k). Due to (5.63), the filter G0 should have lowpass filter charac-
teristics, since it extracts the information at lower frequencies. G1 should have
highpass filter characteristics du to (5.64). Let us verify this for the different
wavelets we have defined up to now.

5.6.1 Frequency response for the Haar Wavelet

For the Haar wavelet we saw that, in Pφm←Cm , the matrix
�

1√
2

1√
2

1√
2

− 1√
2

�

repeated along the diagonal. From this it is clear that

G0 = {1/
√
2, 1/

√
2}

G1 = {1/
√
2,−1/

√
2}.

We have seen these filters previously: G0 is a movinge average filter (of two ele-
ments), while G1 is a bass-reducing filter (up to multiplication with a constant).
We compute their frequency response as

λG0(ω) =
1√
2
+

1√
2
e
−iω =

√
2e−iω/2 cos(ω/2)

λG1(ω) =
1√
2
e
iω − 1√

2
=

√
2ieiω/2 sin(ω/2).

The magnitude of these are plotted in Figure 5.18, where the lowpass/highpass
characteristics are clearly seen. The two frequency responses seem also to be
the same, except for a shift by π in frequency. We will show later that this is
not coincidental. In this case we also have that

H0 = {1/
√
2, 1/

√
2}

H1 = {1/
√
2,−1/

√
2},

so that the frequency responses for the DWT have the same lowpass/highpass
characteristics.

5.6.2 Frequency responses for wavelets of piecewise linear

functions

For the first wavelet for piecewise linear functions we looked at in the previous
section, Equation (5.50) gives that

G0 =
1√
2
{1/2, 1, 1/2}

G1 =
1√
2
{1}. (5.65)

177

0 2 4 6
0

0.5

1

1.5

(a) λG0 (ω)

0 2 4 6
0

0.5

1

1.5

(b) λG1 (ω)

Figure 5.18: The frequency responses for the MRA of piecewise constant func-
tions.

G0 is again a filter we have seen before: Up to multiplication with a constant,
it is the treble-reducing filter with values from row 2 of Pascal’s triangle. The
frequency responses are thus

λG0(ω) =
1

2
√
2
e
iω +

1√
2
+

1

2
√
2
e
−iω =

1√
2
(cosω + 1)

λG1(ω) =
1√
2
.

λG1(ω) thus has magnitude 1√
2

at all points. The magnitude of λG0(ω) is plotted
in Figure 5.19. Comparing with Figure 5.18 we see that here also the frequency
response has a zero at π. The frequency response seems also to be flatter around
π. For the DWT, Equation (5.51) gives us

H0 =
√
2{1}

H1 =
√
2{−1/2, 1,−1/2}. (5.66)

We see that, up to a constant, H1 is obtained from G0 by adding an alternating
sign. We know from before that this turns a lowpass filter into a highpass filter,
so that H1 is a highpass filter (it is a bass-reducing filter with values taken from
row 2 of Pascals triangle).

Let us compare with the alternative wavelet we used for piecewise linear
functions. In Equation (5.59) we wrote down the first two columns in Pφm←Cm .
This gives us that the two filters are

G0 =
1√
2
{1/2, 1, 1/2}

G1 =
1√
2
{−1/8,−1/4, 3/4,−1/4,−1/8}. (5.67)

178

0 2 4 6
0

0.5

1

1.5

Figure 5.19: The frequency response λG0(ω) for the first choice of wavelet for
piecewise linear functions

Here G0 was as before since we use the same scaling function, but G1 was
changed. We also have to find the filters H0, H1. It can be shown that (although
we do not prove this), if g0,n, g1,n, h0,n, h1,n are the filter coefficients for the
filters, then

h0,n = α(−1)ng1,n

h1,n = α(−1)ng0,n, (5.68)

where α = 1�
n g0,ng1,n

. In other words, the filters are the same as G0, G1 up
to multiplication by a constant, and an alternating sign. This means, more
generally, that H1 is a highpass filter when G0 is a lowpass filter, and that H0

is a lowpass filter when G1 is a highpass filter. In this case, this means that

α =
1

1
2

�
− 1

2

�
− 1

4

�
+ 1 · 3

4 − 1
2

�
− 1

4

�� = 2,

so that

H0 =
√
2{−1/8, 1/4, 3/4, 1/4,−1/8}

H1 =
√
2{−1/2, 1,−1/2}. (5.69)

We now have that

λG1(ω) = −1/(8
√
2)e2iω − 1/(4

√
2)eiω + 3/(4

√
2)− 1/(4

√
2)e−iω − 1/(8

√
2)e−2iω

= − 1

4
√
2
cos(2ω)− 1

2
√
2
cosω +

3

4
√
2
.

The magnitude of λG1(ω) is plotted in Figure 5.20. Clearly, G1 now has highpass
characteristics, while the lowpass characteristic of G0 has been preserved. The
filters G0, G1, H0, H1 are particularly important in applications: Apart from the

179

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Figure 5.20: The frequency response λG1(ω) for the alternative wavelet for
piecewise linear functions.

scaling factors 1/
√
2,

√
2 in front, we see that the filter coefficients are all dyadic

fractions, i.e. they are on the form β/2j . Arithmetic operations with dyadic
fractions can be carried out exactly on a computer, due to representations as
binary numbers in computers. These filters are thus important in applications,
since they can be used as transformations for lossless coding. The same argu-
ment can be made for the Haar wavelet, but this wavelet had one less vanishing
moment.

5.6.3 Filter-based algorithm for the DWT and the IDWT

From the analysis in this section, we see that we can implement DWT/IDWT
based on expressions for the corresponding filters. This opens up for other op-
portunities also, in that we can start altogether by providing filters G0, G1,
H0, H1, and construct MRA-matrices with the same even/odd-indexed rows/-
columns as these filters (as in Theorem 5.47 and Theorem 5.49). If we can find
such filters so that the corresponding MRA-matrices invert each other, we can
use them in implementations of the DWT/IDWT, even though we have no idea
what the underlying functions φ,ψ may be, or if such functions exist at all.

This approach will be made in the following. To be more precise, we will
provide filters G0, G1, H0, H1 which are used in practice, and where it is known
that the corresponding MRA-matrices invert each other, and apply these in
the algorithms sketched in Theorem 5.47 and Theorem 5.49. We will restrict
ourself to the case where the filters G0, G1, H0, H1 all are symmetric. As can be
seen from the filter expressions, this was the case for all filters we have looked
at, except the Haar wavelet. We have already implemented the Haar wavelet,
however. Symmetric filters are also very common in practice. A reason for
this is that MRA-matrices based on symmetric filters also can be shown to
preserve symmetric vectors, so that they share some of the desirable properties
of symmetric filters (which lead us to the definition of the DCT).

180

The algorithm for the DWT/IDWT is essentially a matrix/vector multipli-
cation, and this can be computed entry by entry once we have the rows of the
matrices. With the DWT we have these rows, since the rows in PCm←φm

are
given by the rows of H0, H1. In Exercise 3.4.3, we implemented a symmet-
ric filter, which took the filter coefficients as input. Another thing we need
is to extend this implementation so that it works for the case where the first
two rows, instead of only the first row, are given. In Exercise 3 we take you
through the steps in finding the formulas for this. This enables us to write
an algorithm for multiplying with an MRA matrix based on symmetric filters.
You will be spared writing this algorithm, and you can assume that the func-
tion y=rowsymmmratrans(a0,a1,x) performs this task. Here x represents the
vector we want to multiply with the MRA-matrix, and y represents the result.
The parameters a0,a1 require som explanation: They represent the filter coeffi-
cients for the filters which have the same first/second rows as the MRA-matrix,
respectively. This is most easily explained for the MRA-matrix for the DWT,
since here these filters are H0 and H1. Since H0, H1 are symmetric filters, they
can be written on the form

H0 = {h0,−k1 , . . . , h0,−1h0,0, h0,1, . . . , h0,k0}

H1 = {h1,−k1 , . . . , h1,−1h1,0, h1,1, . . . , h1,k1}

Since the negative-indexed filter coefficients are equal to the positive-indexed fil-
ter coefficients, there is no need to provide them to the function rowsymmmratrans.
It will therefore be assumed that the input to rowsymmmratrans is

a0 = (h0,0, h0,1, . . . , h0,k0)

a1 = (h1,0, h1,1, . . . , h1,k1),

i.e. only the filter coefficients with index ≥ 0 are included in a0 and a1. For the
IDWT the situation is different: here only the columns of Pφm←Cm are given
(and in terms of the columns of G0, G1). We therefore first need a step where
we translate the column representation of Pφm←Cm to a row representation of
the same matrix. This is a straightforward task, however a bit tedious. You
will be spared writing this code also, and can take for granted that the func-
tion [a0,a1]=changecolumnrows(g0,g1) performs this task. The parameters
g0,g1 are best explained in terms of the IDWT: If G0, G1 are the symmetric
filters in the IDWT, they are first written on the form

G0 = {g0,−l1 , . . . , g0,−1g0,0, g0,1, . . . , g0,l0}

G1 = {g1,−l1 , . . . , g1,−1g1,0, g1,1, . . . , g1,l1},

and we write as above

g0 = (g0,0, g0,1, . . . , g0,l0)

g1 = (g1,0, g1,1, . . . , g1,l1).

181

http://folk.uio.no/oyvindry/matinf2360/matlab/rowsymmmratrans.m
http://folk.uio.no/oyvindry/matinf2360/matlab/changecolumnrows.m

The vectors a0,a1 returned by changecolumnrows are then the row represen-
tation which is accepted by the unction rowsymmmratrans.

Once we have the functions rowsymmmratrans and changecolumnrows, the
DWT and the IDWT can easily be computed. Exercises 4 and 5 will talk you
through the steps in this process. There is a very good reason for encapsulating
the filtering operations inside the function rowsymmmratrans: it can hide the
details of highly optimized implementations of different types of filters.

Example 5.50. In Exercise 8 you will be asked to implement a function
playDWTfilterslower which plays the low-resolution approximations to our
audio test file, for any type of wavelet, using the functions we have described.
With this function we can play the result for all the wavelets we have considered
up to now, in succession, and at a given resolution, with the following code:

function playDWTall(m)

disp(’Haar wavelet’);

playDWTlower(m);

disp(’Wavelet for piecewise linear functions’);

playDWTfilterslower(m,[sqrt(2)],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[1/sqrt(2)]);

disp(’Wavelet for piecewise linear functions, alternative version’);

playDWTfilterslower(m,[3/(2*sqrt(2)) 1/(2*sqrt(2)) -1/(4*sqrt(2))],...

[sqrt(2) -1/sqrt(2)],...

[1/sqrt(2) 1/(2*sqrt(2))],...

[3/(4*sqrt(2)) -1/(4*sqrt(2)) -1/(8*sqrt(2))]);

The call to playDWTlower first plays the result, using the Haar wavelet. The
code then moves on to the piecewise linear wavelet. From Equation (5.66) we
first see that

h0 = (h0,0, h0,1, . . . , h0,k0) = (
√
2) (5.70)

h1 = (h1,0, h1,1, . . . , h1,k1) = (
√
2,−

√
2/2), (5.71)

and from Equation (5.65) we see that

g0 = (g0,0, g0,1, . . . , g0,l0) = (1/
√
2, 1/(2

√
2)) (5.72)

g1 = (g1,0, g1,1, . . . , g1,l1) = (1/
√
2). (5.73)

These explain the parameters to the call to playDWTfilterslower for the piece-
wise linear wavelet. The code then moves to the alternative piecewise linear
wavelet. From Equation (5.69) we see that

h0 = (h0,0, h0,1, . . . , h0,k0) = (3
√
2/4,

√
2/4,−

√
2/8)

h1 = (h1,0, h1,1, . . . , h1,k1) = (
√
2,−

√
2/2),

182

and from Equation (5.67) we see that

g0 = (g0,0, g0,1, . . . , g0,l0) = (1/
√
2, 1/(2

√
2))

g1 = (g1,0, g1,1, . . . , g1,l1) = (3/(4
√
2),−1/(4

√
2),−1/(8

√
2)).

These explain the parameters to the call to playDWTfilterslower for the al-
ternative piecewise linear wavelet.

Exercises for Section 5.6

Ex. 1 — Find two symmetric filters, so that the corresponding MRA-matrix,
constructed with alternating rows from these two filters, is not symmetric.

Ex. 2 — Assume that an MRA-matrix is symmetric. Show hat the corre-
sponding filters are also symmetric.

Ex. 3 — Assume that G is an MRA-matrix where the rows repeated are a(0),
a(1) (symmetric around 0). Assume that their supports are [−E0, E0] and
[−E1, E1], respectively. Show that yn = (Gx)n can be computed as follows,
depending on n:

a. n even: The formulas (3.33)-(3.35) you derived in Exercise 3.4.3 can be
used, with T0,k replaced with a(0), E replaced by E0.

b. n odd: The formulas (3.33)-(3.35) you derived in Exercise 3.4.3 can be
used, with T0,k replaced with a(1), E replaced by E1.

Ex. 4 — Write a function

function xnew=DWTImpl(h0,h1,x,m)

which takes a signal x of length N , computes the transforms F1, ..., Fm−1, and
computes the coordinate of x in the basis V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wm−1. Your
function should call the function rowsymmmratrans to achieve this. Remember
that you have to sort the even and odd outputs after calling that function, before
you apply the next step. You can assume that the signal x has length 2m.

Ex. 5 — Write a function

function x=IDWTImpl(g0,g1,xnew,m)

which recovers the coordinates in the basis Vm from those in the basis V0⊕W0⊕
W1 ⊕ · · · ⊕Wm−1. Your function should call the function changecolumnrows,
and the function rowsymmmratrans.

183

Ex. 6 — In this exercise we will practice setting up the parameters h0,h1,g0,g1
which are used in the calls to DWTImpl and IDWTImpl.

a. Assume that one stage in a DWT is given by the MRA-matrix

PC1←φ1
=

1/5 1/5 1/5 0 0 0 · · · 0 1/5 1/5
−1/3 1/3 −1/3 0 0 0 · · · 0 0 0
1/5 1/5 1/5 1/5 1/5 0 · · · 0 0 0
0 0 −1/3 1/3 −1/3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...

Write down the compact form for the corresponding filters H0, H1, and
compute and plot the frequency responses. Are the filters symmetric? If
so, also write down the parameters h0,h1 you would use for this matrix
in a call to DWTImpl.

b. Assume that one stage in the IDWT is given by the MRA-matrix

Pφ1←C1 =

1/2 −1/4 0 0 · · ·
1/4 3/8 1/4 1/16 · · ·
0 −1/4 1/2 −1/4 · · ·
0 1/16 1/4 3/8 · · ·
0 0 0 −1/4 · · ·
0 0 0 1/16 · · ·
0 0 0 0 · · ·
...

...
...

...
...

0 0 0 0 · · ·
1/4 1/16 0 0 · · ·

Write down the compact form for the filters G0, G1, and compute and
plot the frequency responses. Are the filters symmetric? If so, also write
down the parameters g0,g1 you would use for this matrix in a call to
IDWTImpl.

Ex. 7 — Let us also practice on writing down the change of coordinate ma-
trices from the parameters h0,h1,g0,g1.

a. Assume that h0=[3/8 1/4 1/16] and h1=[1/2 -1/4]. Write down the
compact form for the filters H0, H1. Plot the frequency responses and
verify that H0 is a lowpass filter, and that H1 is a highpass filter. Also
write down the change of coordinate matrix PC1←φ1

for the wavelet cor-
responding to these filters.

b. Assume that g0=[1/3 1/3] and g1=[1/5 -1/5 1/5]. Write down the
compact form for the filters G0, G1. Plot the frequency responses and
verify that G0 is a lowpass filter, and that G1 is a highpass filter. Also
write down the change of coordinate matrix Pφ1←C1 for the wavelet cor-
responding to these filters.

184

Ex. 8 — Write a function

function playDWTfilterslower(m,h0,h1,g0,g1)

which reimplements the function playDWTlower from Exercise 5.3.9 so that it
takes as input the positive parts of the four different filters as in Example 5.50.
Listen to the result using the different wavelets we have encountered and for
different m, using the code from Example 5.50. Can you hear any difference
from the Haar wavelet? If so, which wavelet gives the best sound quality?

Ex. 9 — In this exercise we will change the code in Example 5.50 so that it
instead only plays the contribution from the detail spaces (i.e. W0 ⊕W1 ⊕ · · ·⊕
Wm−1).

a. Reimplement the function you made in Exercise 8 so that it instead
plays the contribution from the detail spaces. Call the new function
playDWTfilterslowerdifference.

b. In Exercise 5.3.11 we implemented a function playDWTlowerdifference

for listening to the detail/error when the Haar wavelet is used. In the
function playDWTall from Example 5.50, replace playDWTlower and
playDWTfilterslower with playDWTlowerdifference and
playDWTfilterslowerdifference. Describe the sounds you hear for
different m. Try to explain why the sound seems to get louder when you
increase m.

Ex. 10 — Let us return to the piecewise linear wavelet from Exercise 5.5.2.
a. With ψ̂ as defined as in Exercise 5.5.2 b., compute the coordinates of ψ̂

in the basis φ1 (i.e. [ψ̂]φ1
) with N = 16, i.e. compute the IDWT of

[ψ̂]φ0⊕ψ0
= (−α,−β,−δ, 0, 0, 0, 0,−γ)⊕ (1, 0, 0, 0, 0, 0, 0, 0),

which is the coordinate vector you computed in Exercise 5.5.2 d.. For this,
you should use the function IDWTImpl from Exercise 5, with parameters
being the filters G0, G1, given as described by g0,g1 by equations (5.72)-
(5.73) in Example 5.50.

b. If we redefine the basis C1 from {φ0,0,ψ0,0,φ0,1,ψ0,1, . . .},
to {φ0,0, ψ̂0,0,φ0,1, ψ̂0,1, . . .}, the vector you obtained in a. gives us an
expression for the second column in Pφ1←C1 . After redefining the basis
like this, the corresponding filter G1 has changed from that of the piece-
wise linear wavelet we started with. Use Matlab to so state the new filter
G1 with our compact filter notation. Also, plot its frequency response.
Hint: Here you are asked to find the unique filter with the same second
column as Pφ1←C1 , i.e. the vector from a..

c. Write code which uses Equation (5.68) to find H0, H1 from G0, G1, and
state these filters with our compact filter notation. Also, state the forms

185

h0,h1, which should be used in calls to DWTImpl for our new wavelet.
These replace the forms from equations (5.70)-(5.71) in Example 5.50,
which we found for the first piecewise linear wavelet.
Hint: Note that the filter G0 is unchanged from that of the first piecewise
linear wavelet (since φ is unchanged when compared to the other wavelets
for piecewise linear functions).

d. The filters you have found above should be symmetric, so that we can
follow the procedure from Example 5.50 to listen to sound which has
been wavelet-transformed by this wavelet. Write a program which plays
our audio test file as in Example 5.50 for m = 1, 2, 3, 4 (i.e. plays the
part in V0), as well as the difference as in Exercise 9 (i.e. play the part
from W0 ⊕W1 ⊕ · · ·⊕Wm−1), where the new filters you have found are
used. Listen to the sounds.

Ex. 11 — Repeat the previous exercise for the Haar wavelet as in exercise 3,
and plot the corresponding frequency responses for k = 2, 4, 6.

5.7 Summary
We started this chapter by motivating the theory of wavelets as a different func-
tion approximation scheme, which solved some of the shortcomings of Fourier se-
ries. While one approximates functions with trigonometric functions in Fourier
theory, with wavelets one instead approximates a function in several stages,
where one at each stage attempts to capture information at a given resolution,
using a function prototype. We first considered the Haar wavelet, which is a
function approximation scheme based on piecewise constant functions. We then
moved on to a scheme with piecewise linear functions, where we saw that we had
several degrees of freedom in constructing wavelets. Just as the DFT and the
DCT, we interpreted a wavelet transformation as a change of basis, and found
that the corresponding change of coordinate matrices had a particular form,
which we studied. We denoted the change of basis in a wavelet transformation
by the Discrete Wavelet Transform (DWT), and we showed how we could in-
terpret and implement the DWT in terms of filters in such a way that a wide
range of usable wavelets could be used as input to this implementation. We will
use this implementation in the coming sections, in order to analyze images.

186

	II Wavelets and applications to image processing
	Wavelets
	Why wavelets?
	Wavelets constructed from piecewise constant functions
	Resolution spaces
	Function approximation property
	Detail spaces and wavelets

	Multiresolution analysis for piecewise constant functions
	Extraction of details at higher resolutions
	Matrix factorization of the DWT
	Summary

	Wavelets constructed from piecewise linear functions
	Multiresolution analysis
	Detail spaces and wavelets

	Alternative wavelets for piecewise linear functions
	Wavelets and filters
	Frequency response for the Haar Wavelet
	Frequency responses for wavelets of piecewise linear functions
	Filter-based algorithm for the DWT and the IDWT

	Summary

