
Solution to exam in MAT3400/4400, Linear analysis with applications.
Exam date Monday, December 5, 2011.

Problem 1. The n-th Fourier coefficient of f for n 6= 0 is

cn(f) =

∫ π

−π
f(x)e−n(x)dx =

∫ 0

−π

1√
2π

(−e−inx)dx

= − 1√
2π

∫ π

0

einxdx = − 1√
2π

[
einx

in

]π
0

=
1√

2πin
(1− cos(nπ))

=
1√

2πin
(1− (−1)n)

=

{
0 if n = 2k, k ∈ Z

2√
2πin

if n = 2k + 1, k ∈ Z.

We have c0(f) =
∫ 0

−π
1√
2π

(−1)dx = −
√

2π
2

. The Fourier series is

∑
n∈Z

cn(f)en(x) = c0(f) +
∞∑
n=1

cn(f)en(x)
∞∑
n=1

c−n(f)e−n(x)

= −1

2
+

∞∑
n=1,n odd

1

πin
(einx − e−inx)

= −1

2
+

2

π

∞∑
k=0

sin(2k + 1)x

2k + 1
.

Problem 2. The operator K is an integral operator where the kernel
κ(x, y) is a continuous function on [0, 1] × [0, 1] such that κ(y, x) =
κ(x, y). By the spectral theorem for compact self-adjoint operators on
Hilbert space we know that the eigenvalues of K are real. We need to
find the real numbers α for which Kf = αf has non-trivial solutions.
Now Kf = αf ⇐⇒ Kf(x) = αf(x) for all x ∈ [0, 1] so, equivalently,

we solve 1
3

∫ 1

0
f(y)dy − x

∫ 1

0
yf(y)dy = αf(x) for all x ∈ [0, 1].

Denote c1 =
∫ 1

0
f(y)dy and c2 =

∫ 1

0
yf(y)dy. Thus need to find f

different from the zero-function such that 1
3
c1− c2x = αf(x), for all x.

Suppose first α 6= 0. Then f(x) has form −c2/αx+ c1/3α. Inserting
this expression for f in c1 and c2 gives

c1 =

∫ 1

0

f(y)dy =

∫ 1

0

(−c2
α
y)dy +

∫ 1

0

c1
3α

= − c2
2α

+
c1
3α

and

c2 =

∫ 1

0

yf(y)dy = − c2
3α

+
c1
6α
.

1



2

We obtain a system of equations

c1(1−
1

3α
) + c2

1

2α
= 0

c1
1

6α
− c2(

1

3α
+ 1) = 0.

We want to find f different from the zero function so we look for non-
trivial constants c1, c2. The homogeneous system above has a non-
zero solution if and only if the determinant is 0. This condition gives
36α2 = 1, so possible values of α that give non-zero f are α1 = 1/6
and α2 = −1/6.

The case α1 = 1/6 gives c1 = 3c2 so eigenvectors for α1 are functions
of the form f(x) = 6c2(−x+ 1) with c2 6= 0. The case α = −1/6 gives
c1 = c2 so eigenvectors are f(x) = 2c2(3x− 1) with c1 6= 0.

Now suppose α = 0. Then Kf(x) = 0 for all x ∈ [0, 1] implies
1
3
c1 − xc2 = 0 for all x ∈ [0, 1], so taking x = 0 then x = 1 gives
c1 = c2 = 0. If we let g(y) = y be the identity function on [0, 1],
we have found that any non-zero f in the orthogonal complement of
span{1, g} is an eigenvector corresponding to 0.

For problem 2b, note that since 1 is not an eigenvalue for K, by the
Fredholm alternative the equation f = Kf + g has a unique solution
for each g ∈ H.

Problem 3.
For problem 3a we multiply u on both sides of Lu = αu. This gives

the equation uu′′ + αu2 − qu2 = 0. We integrate this equation from 0
to 1 and use the assumption u(1)u′(1) − u(0)u′(0) ≤ 0 to get exactly
the claimed inequality. Since q(x) ≥ 0 for all x ∈ [0, 1] it follows that
α ≥ 0.

For 3b we have Lu = −u′′ on D(L) = {u ∈ C2([0, 1]) | u′(0) =
0, u′(1) = 0} ⊂ L2([0, 1]). A real number α is eigenvalue for L if
Lu = αu, equivalently u′′ + αu = 0. The characteristic equation is
r2 + α = 0. The discriminant is −4α. By 3a, we know that α ≥ 0.

Case 1: α = 0. Then r = 0, so the solutions are of form u(x) =
A + Bx, and u ∈ D(L) implies B = u′(0) = 0. Hence u(x) = 1 is
normalised eigenvector corresponding to α = 0.

Case 2: α > 0. The solutions of r2 + α = 0 are i
√
α and −i

√
α,

so u(x) = A cos
√
αx + B sin

√
αx. Then u′(0) = 0 gives B = 0, so

u(x) = A cos
√
αx. We look for u 6= 0 so from u′(1) = 0 we get

sin
√
α = 0. Thus

√
α ∈ {nπ : n > 0}. We obtain αn = (nπ)2,

n = 1, 2, . . . as non-zero eigenvalues of L. A normalized eigenvector
for αn is un(x) =

√
2 cos(nπx).

Problem 4.
Problem 4a: Since g is continuous on (0,∞) it is Borel measurable.

For a > 0 write (0, a] = ∪∞n=1[
1
n
, a]. The function χ[ 1

n
,a]g for n ≥ 1

is measurable and non-negative. The sequence χ[ 1
n
,a]g is increasing
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with pointwise limit the function gχ(0,a]. By the monotone convergence
theorem we have∫

(0,a]

gdλ = lim
n

∫
χ[ 1

n
,a]gdλ = lim

n

∫ a

1
n

g(t)dt = lim
n

(
ap

p
− 1

pnp
),

which is ap/p, as wanted. We used that for the continuous function g
on bounded intervals [ 1

n
, a], the Lebesgue integral is the same as the

Riemann integral.
Problem 4b: In case a = 0, so that f = 0, we have φf (t) = µ({x :

0 > t}) = µ(∅) = 0. Since also χ(0,a) = χ∅ = 0, the two claimed
identities are valid. For a > 0 we have

{x ∈ X : f(x) > t} = {x ∈ X : χA(x) >
t

a
} =

{
A if 0 < t < a

0 if a ≤ t.

This shows φf (t) = µ(A)χ(0,a). The second identity follows from 4a
and the computations

p

∫
(0,∞)

gφfdλ = p

∫
χ(0,∞)gµ(A)χ(0,a)dλ = pµ(A)

∫
gχ(0,a)dλ

= pµ(A)

∫
gχ(0,a]dλ = apµ(A).

Problem 4c: If f = 0 then φf = 0 as in problem 4b. Then
∫

(0,∞)
gφfdλ =

0 =
∫
fpdµ. Assume f is not the zero-function. Then

{x ∈ X : f(x) > t} = {x :
m∑
j=1

ajχAj
(x) > t} =

m⋃
j=1

{x ∈ X : ajχAj
(x) > t}.

If we denote Bj = {x ∈ X : ajχAj
(x) > t}, then Bj = ∅ if aj = 0 or

0 < aj ≤ t and Bj = Aj if 0 < t < aj. In particular, Bj ∩ Bk = ∅ if
j 6= k. By problem 4b we have φfj

= 0 if aj = 0 and φfj
= µ(Aj)χ(0,aj)

if aj > 0. Since µ is additive, we get

φf (t) = µ(
m⋃
j=1

Bj) =
m∑
j=1

µ(Bj) =
m∑
j=1

φfj
(t).

This shows that φf is Borel measurable (because sums of measurable
functions are again measurable). By linearity of integral and part 4b
we also get

p

∫
(0,∞)

gφfdλ =
m∑
j=1

p

∫
(0,∞)

gφfj
dλ =

m∑
j=1

apjµ(Aj),

which is exactly
∫
X
fpdµ by the definition of the integral.

Problem 4d: Let {fn}n≥1 be a sequence of simple, nonnegative mea-
surable functions such that fn ≤ fn+1 for all n and fn → f . Then
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also fpn increases to fp because p ≥ 1. We claim that the sequence φfn

increases to φf . Since for every t > 0 we have

Bn = {x ∈ X : fn(x) > t} ⊂ {x ∈ X : fn+1(x) > t} = Bn+1

and µ is a measure, it follows that φfn(t) ≤ φfn+1(t) for all n ≥ 1 and
all t. Since also fn ≤ f we get similarly that φfn ≤ φf for all n ≥ 1.
Thus limφfn ≤ φf .

Let t ∈ (0,∞). Let x ∈ X such that f(x) > t. Since fn(x) →
f(x) there must be an n ≥ 1 such that t < fn(x) < f(x) (otherwise,
limn fn(x) ≤ t). So x ∈ ∪nBn. It follows that {x ∈ X : f(x) > t} ⊂
∪nBn. Hence, by continuity of µ, we have

φf (t) = µ({x ∈ X : f(x) > t}) ≤ µ(∪nBn) = lim
n
µ(Bn) = limφfn(t).

It follows that φf ≤ limφfn , so in fact φf = limφfn . Since each φfn

is Borel measurable by 4c, so must φf be. Note that gφf = lim gφfn .
Now (1) follows from two applications of the monotone convergence
theorem (in two different measurable spaces) and 4c:∫

x

fpdµ = lim
n

∫
X

fpndµ

= lim
n
p

∫
(0,∞)

gφfndλ

= p

∫
(0,∞)

lim
n
gφfndλ

= p

∫
(0,∞)

gφfdλ.


