Solution to exam in MAT3400/4400, Linear analysis with applications.
Exam date Monday, December 5, 2011.
Problem 1. The n-th Fourier coefficient of f for $n \neq 0$ is

$$
\begin{aligned}
c_{n}(f) & =\int_{-\pi}^{\pi} f(x) e_{-n}(x) d x=\int_{-\pi}^{0} \frac{1}{\sqrt{2 \pi}}\left(-e^{-i n x}\right) d x \\
& =-\frac{1}{\sqrt{2 \pi}} \int_{0}^{\pi} e^{i n x} d x=-\frac{1}{\sqrt{2 \pi}}\left[\frac{e^{i n x}}{i n}\right]_{0}^{\pi} \\
& =\frac{1}{\sqrt{2 \pi} i n}(1-\cos (n \pi)) \\
& =\frac{1}{\sqrt{2 \pi} i n}\left(1-(-1)^{n}\right) \\
& = \begin{cases}0 & \text { if } n=2 k, k \in \mathbb{Z} \\
\frac{2}{\sqrt{2 \pi i n}} & \text { if } n=2 k+1, k \in \mathbb{Z} .\end{cases}
\end{aligned}
$$

We have $c_{0}(f)=\int_{-\pi}^{0} \frac{1}{\sqrt{2 \pi}}(-1) d x=-\frac{\sqrt{2 \pi}}{2}$. The Fourier series is

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}} c_{n}(f) e_{n}(x) & =c_{0}(f)+\sum_{n=1}^{\infty} c_{n}(f) e_{n}(x) \sum_{n=1}^{\infty} c_{-n}(f) e_{-n}(x) \\
& =-\frac{1}{2}+\sum_{n=1, n \text { odd }}^{\infty} \frac{1}{\pi i n}\left(e^{i n x}-e^{-i n x}\right) \\
& =-\frac{1}{2}+\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{\sin (2 k+1) x}{2 k+1} .
\end{aligned}
$$

Problem 2. The operator K is an integral operator where the kernel $\kappa(x, y)$ is a continuous function on $[0,1] \times[0,1]$ such that $\overline{\kappa(y, x)}=$ $\kappa(x, y)$. By the spectral theorem for compact self-adjoint operators on Hilbert space we know that the eigenvalues of K are real. We need to find the real numbers α for which $K f=\alpha f$ has non-trivial solutions. Now $K f=\alpha f \Longleftrightarrow K f(x)=\alpha f(x)$ for all $x \in[0,1]$ so, equivalently, we solve $\frac{1}{3} \int_{0}^{1} f(y) d y-x \int_{0}^{1} y f(y) d y=\alpha f(x)$ for all $x \in[0,1]$.

Denote $c_{1}=\int_{0}^{1} f(y) d y$ and $c_{2}=\int_{0}^{1} y f(y) d y$. Thus need to find f different from the zero-function such that $\frac{1}{3} c_{1}-c_{2} x=\alpha f(x)$, for all x.

Suppose first $\alpha \neq 0$. Then $f(x)$ has form $-c_{2} / \alpha x+c_{1} / 3 \alpha$. Inserting this expression for f in c_{1} and c_{2} gives

$$
c_{1}=\int_{0}^{1} f(y) d y=\int_{0}^{1}\left(-\frac{c_{2}}{\alpha} y\right) d y+\int_{0}^{1} \frac{c_{1}}{3 \alpha}=-\frac{c_{2}}{2 \alpha}+\frac{c_{1}}{3 \alpha}
$$

and

$$
c_{2}=\int_{0}^{1} y f(y) d y=-\frac{c_{2}}{3 \alpha}+\frac{c_{1}}{6 \alpha} .
$$

We obtain a system of equations

$$
\begin{aligned}
& c_{1}\left(1-\frac{1}{3 \alpha}\right)+c_{2} \frac{1}{2 \alpha}=0 \\
& c_{1} \frac{1}{6 \alpha}-c_{2}\left(\frac{1}{3 \alpha}+1\right)=0 .
\end{aligned}
$$

We want to find f different from the zero function so we look for nontrivial constants c_{1}, c_{2}. The homogeneous system above has a nonzero solution if and only if the determinant is 0 . This condition gives $36 \alpha^{2}=1$, so possible values of α that give non-zero f are $\alpha_{1}=1 / 6$ and $\alpha_{2}=-1 / 6$.

The case $\alpha_{1}=1 / 6$ gives $c_{1}=3 c_{2}$ so eigenvectors for α_{1} are functions of the form $f(x)=6 c_{2}(-x+1)$ with $c_{2} \neq 0$. The case $\alpha=-1 / 6$ gives $c_{1}=c_{2}$ so eigenvectors are $f(x)=2 c_{2}(3 x-1)$ with $c_{1} \neq 0$.
Now suppose $\alpha=0$. Then $K f(x)=0$ for all $x \in[0,1]$ implies $\frac{1}{3} c_{1}-x c_{2}=0$ for all $x \in[0,1]$, so taking $x=0$ then $x=1$ gives $c_{1}=c_{2}=0$. If we let $g(y)=y$ be the identity function on $[0,1]$, we have found that any non-zero f in the orthogonal complement of $\operatorname{span}\{1, g\}$ is an eigenvector corresponding to 0 .

For problem 2 b , note that since 1 is not an eigenvalue for K, by the Fredholm alternative the equation $f=K f+g$ has a unique solution for each $g \in H$.

Problem 3.

For problem 3a we multiply u on both sides of $L u=\alpha u$. This gives the equation $u u^{\prime \prime}+\alpha u^{2}-q u^{2}=0$. We integrate this equation from 0 to 1 and use the assumption $u(1) u^{\prime}(1)-u(0) u^{\prime}(0) \leq 0$ to get exactly the claimed inequality. Since $q(x) \geq 0$ for all $x \in[0,1]$ it follows that $\alpha \geq 0$.

For 3b we have $L u=-u^{\prime \prime}$ on $\mathcal{D}(L)=\left\{u \in C^{2}([0,1]) \mid u^{\prime}(0)=\right.$ $\left.0, u^{\prime}(1)=0\right\} \subset L^{2}([0,1])$. A real number α is eigenvalue for L if $L u=\alpha u$, equivalently $u^{\prime \prime}+\alpha u=0$. The characteristic equation is $r^{2}+\alpha=0$. The discriminant is -4α. By 3a, we know that $\alpha \geq 0$.

Case 1: $\alpha=0$. Then $r=0$, so the solutions are of form $u(x)=$ $A+B x$, and $u \in \mathcal{D}(L)$ implies $B=u^{\prime}(0)=0$. Hence $u(x)=1$ is normalised eigenvector corresponding to $\alpha=0$.

Case 2: $\alpha>0$. The solutions of $r^{2}+\alpha=0$ are $i \sqrt{\alpha}$ and $-i \sqrt{\alpha}$, so $u(x)=A \cos \sqrt{\alpha} x+B \sin \sqrt{\alpha} x$. Then $u^{\prime}(0)=0$ gives $B=0$, so $u(x)=A \cos \sqrt{\alpha} x$. We look for $u \neq 0$ so from $u^{\prime}(1)=0$ we get $\sin \sqrt{\alpha}=0$. Thus $\sqrt{\alpha} \in\{n \pi: n>0\}$. We obtain $\alpha_{n}=(n \pi)^{2}$, $n=1,2, \ldots$ as non-zero eigenvalues of L. A normalized eigenvector for α_{n} is $u_{n}(x)=\sqrt{2} \cos (n \pi x)$.

Problem 4.

Problem 4a: Since g is continuous on $(0, \infty)$ it is Borel measurable. For $a>0$ write $(0, a]=\cup_{n=1}^{\infty}\left[\frac{1}{n}, a\right]$. The function $\chi_{\left[\frac{1}{n}, a\right]} g$ for $n \geq 1$ is measurable and non-negative. The sequence $\chi_{\left[\frac{1}{n}, a\right]} g$ is increasing
with pointwise limit the function $g \chi_{(0, a]}$. By the monotone convergence theorem we have

$$
\int_{(0, a]} g d \lambda=\lim _{n} \int \chi_{\left[\frac{1}{n}, a\right]} g d \lambda=\lim _{n} \int_{\frac{1}{n}}^{a} g(t) d t=\lim _{n}\left(\frac{a^{p}}{p}-\frac{1}{p n^{p}}\right),
$$

which is a^{p} / p, as wanted. We used that for the continuous function g on bounded intervals $\left[\frac{1}{n}, a\right]$, the Lebesgue integral is the same as the Riemann integral.

Problem 4b: In case $a=0$, so that $f=0$, we have $\phi_{f}(t)=\mu(\{x$: $0>t\})=\mu(\emptyset)=0$. Since also $\chi_{(0, a)}=\chi_{\emptyset}=0$, the two claimed identities are valid. For $a>0$ we have

$$
\{x \in X: f(x)>t\}=\left\{x \in X: \chi_{A}(x)>\frac{t}{a}\right\}= \begin{cases}A & \text { if } 0<t<a \\ 0 & \text { if } a \leq t\end{cases}
$$

This shows $\phi_{f}(t)=\mu(A) \chi_{(0, a)}$. The second identity follows from 4 a and the computations

$$
\begin{aligned}
p \int_{(0, \infty)} g \phi_{f} d \lambda & =p \int \chi_{(0, \infty)} g \mu(A) \chi_{(0, a)} d \lambda=p \mu(A) \int g \chi_{(0, a)} d \lambda \\
& =p \mu(A) \int g \chi_{(0, a]} d \lambda=a^{p} \mu(A) .
\end{aligned}
$$

Problem 4c: If $f=0$ then $\phi_{f}=0$ as in problem 4b. Then $\int_{(0, \infty)} g \phi_{f} d \lambda=$ $0=\int f^{p} d \mu$. Assume f is not the zero-function. Then
$\{x \in X: f(x)>t\}=\left\{x: \sum_{j=1}^{m} a_{j} \chi_{A_{j}}(x)>t\right\}=\bigcup_{j=1}^{m}\left\{x \in X: a_{j} \chi_{A_{j}}(x)>t\right\}$.
If we denote $B_{j}=\left\{x \in X: a_{j} \chi_{A_{j}}(x)>t\right\}$, then $B_{j}=\emptyset$ if $a_{j}=0$ or $0<a_{j} \leq t$ and $B_{j}=A_{j}$ if $0<t<a_{j}$. In particular, $B_{j} \cap B_{k}=\emptyset$ if $j \neq k$. By problem 4b we have $\phi_{f_{j}}=0$ if $a_{j}=0$ and $\phi_{f_{j}}=\mu\left(A_{j}\right) \chi_{\left(0, a_{j}\right)}$ if $a_{j}>0$. Since μ is additive, we get

$$
\phi_{f}(t)=\mu\left(\bigcup_{j=1}^{m} B_{j}\right)=\sum_{j=1}^{m} \mu\left(B_{j}\right)=\sum_{j=1}^{m} \phi_{f_{j}}(t) .
$$

This shows that ϕ_{f} is Borel measurable (because sums of measurable functions are again measurable). By linearity of integral and part 4b we also get

$$
p \int_{(0, \infty)} g \phi_{f} d \lambda=\sum_{j=1}^{m} p \int_{(0, \infty)} g \phi_{f_{j}} d \lambda=\sum_{j=1}^{m} a_{j}^{p} \mu\left(A_{j}\right),
$$

which is exactly $\int_{X} f^{p} d \mu$ by the definition of the integral.
Problem 4d: Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of simple, nonnegative measurable functions such that $f_{n} \leq f_{n+1}$ for all n and $f_{n} \rightarrow f$. Then
also f_{n}^{p} increases to f^{p} because $p \geq 1$. We claim that the sequence $\phi_{f_{n}}$ increases to ϕ_{f}. Since for every $t>0$ we have

$$
B_{n}=\left\{x \in X: f_{n}(x)>t\right\} \subset\left\{x \in X: f_{n+1}(x)>t\right\}=B_{n+1}
$$

and μ is a measure, it follows that $\phi_{f_{n}}(t) \leq \phi_{f_{n+1}}(t)$ for all $n \geq 1$ and all t. Since also $f_{n} \leq f$ we get similarly that $\phi_{f_{n}} \leq \phi_{f}$ for all $n \geq 1$. Thus $\lim \phi_{f_{n}} \leq \phi_{f}$.

Let $t \in(0, \infty)$. Let $x \in X$ such that $f(x)>t$. Since $f_{n}(x) \rightarrow$ $f(x)$ there must be an $n \geq 1$ such that $t<f_{n}(x)<f(x)$ (otherwise, $\left.\lim _{n} f_{n}(x) \leq t\right)$. So $x \in \cup_{n} B_{n}$. It follows that $\{x \in X: f(x)>t\} \subset$ $\cup_{n} B_{n}$. Hence, by continuity of μ, we have

$$
\phi_{f}(t)=\mu(\{x \in X: f(x)>t\}) \leq \mu\left(\cup_{n} B_{n}\right)=\lim _{n} \mu\left(B_{n}\right)=\lim \phi_{f_{n}}(t) .
$$

It follows that $\phi_{f} \leq \lim \phi_{f_{n}}$, so in fact $\phi_{f}=\lim \phi_{f_{n}}$. Since each $\phi_{f_{n}}$ is Borel measurable by 4 c , so must ϕ_{f} be. Note that $g \phi_{f}=\lim g \phi_{f_{n}}$. Now (1) follows from two applications of the monotone convergence theorem (in two different measurable spaces) and 4 c :

$$
\begin{aligned}
\int_{x} f^{p} d \mu & =\lim _{n} \int_{X} f_{n}^{p} d \mu \\
& =\lim _{n} p \int_{(0, \infty)} g \phi_{f_{n}} d \lambda \\
& =p \int_{(0, \infty)} \lim _{n} g \phi_{f_{n}} d \lambda \\
& =p \int_{(0, \infty)} g \phi_{f} d \lambda .
\end{aligned}
$$

