MEK 2500 2015: Mandatory assignment 1

Due date: September 102015

1. Please complete the following exercises from the textbook (Physics of Continuous Matter, 2nd edition):

B.2, B.14,

C.4,
7.4, 7.10
2. Imagine a two-dimensional beam occuping the domain $\Omega=[0, L] \times[0,1] \subset \mathbb{R}^{2}$ for $L \geq 0$. Denote the coordinates of Ω by $X=\left(X_{1}, X_{2}\right)$. Assume that the beam is held fixed at one end ${ }^{1}$ and that a load is placed on the beam ${ }^{2}$ with a strength parameter $k \geq 0$, resulting in a deformation x of the beam of the form

$$
\begin{equation*}
x(X)=\binom{x_{1}(X)}{x_{2}(X)}=\binom{L k X_{1} X_{2}}{-k X_{1}^{2}} \tag{1}
\end{equation*}
$$

(a) Compute the displacement field in Lagrangian coordinates defined by:

$$
\begin{equation*}
U(X)=x(X)-X \tag{2}
\end{equation*}
$$

(b) Compute the small-strain strain tensor (in Lagrangian coordinates):

$$
\begin{equation*}
\varepsilon(X)=\frac{1}{2}\left(\nabla_{X} U+\nabla_{X} U^{T}\right) \tag{3}
\end{equation*}
$$

(c) Compute the largest in absolute value principal strain (in Lagrangian coordinates) in the points $A_{0}=(L, 1)$ and $A_{1}=(0,1)$.
(d) Use the provided script to plot the deformation x with $L=10$ and $k=0.1$ and the largest principal strain of $\varepsilon(X)$ over the domain Ω.

[^0]
[^0]: ${ }^{1}$ For instance by attaching it to a wall with superglue
 ${ }^{2}$ For instance by you standing on the other end

