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1 CHAPTER 1 — INTRODUCTION TO THE FINITE ELEMENT
METHOD AND BAR ELEMENTS

Cook : 2.1, 2.2, 2.4 (for bars), 2.5 and 2.6
1.1 Simple springs

To establish the systematic elastic behaviour oelEments we shall determine equilibrium
equations for a bar element by two separate metbg@s. First we assume the bar is uniform
and behaves like a spring, which is equivalenh&rhost fundamentally simple expression of a
uniform and uniformly loaded bar.

{.f 1 r'f 2

N N

F1 F>

Figure 1-1 - Forces and degrees of freedom in a spg

Displacement is denotetj forces are denotdg and the spring stiffness is denoted-rom
Figure 1-1 we find that force equilibrium may besci#bed according to equati¢h).

F+F,=0 (1)

Furthermore we find that the displacemeahtandd, may be expressed according to the fofees
andF; as described in equatio(®),

F
F

(2)

-

k(dl - dz)
k(dz - d1)

N
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If we organise the system of equati¢@kin a matrix equation, we find the following retati(3);

K 1 -1j)4 _|R 3)
-1 1|d,| |F
On element level it is common to generalise equdBpwith the following notatior{4);

kd =r , where (4)

k:k[_ll ‘1}

In equation(4), k is known as the element stiffness matdxs the element displacement vector
andr is the element load vector.

The system of equatior8) makes little sense on its own, since the equilibrequation$l)

show that~; andF, are oppositely equal forces. Consequedilgndd, are also oppositely equal
displacements if we only consider the case showiigare 1-1. Therefore it is initially no real
reason to introduce the matrix form of the equilibr equations since we could more easily
calculate the elongation of the spring by the follty expressiorfs);

2d, = Nk (5)

Furthermore, if we tried to solve equati@) we would find that the matrix equation did not éav
a unique solution in its current state. The expianas that equatio(3) only has a solution if
consistent boundary conditions are applied, whscini issue we will come back to later in this
chapter. The interesting question is thus; whywagerganising our equations in matrix form, as
stated in equatio(8)? For single springs, there is no real reasonecausatrix equation in order
to calculate displacements. However, for systenspahgs we may utilise the general matrix
equilibrium formulation systematically to achieveiagle matrix equation for the entire system
of springs. The reason we are looking at the médrixulations is at the centre of the finite
element method. This entire course is dedicatexpbaining why and how we shall utilise such
matrix formulations in order to establish simpleelar systems of equations for larger structures
composed of bars, beams and membranes.

Now we shall interchange the spring with a bar imctude more details in section 1.2.

1.2 Bar elements
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In Figure 1-2, a bar element is shown. At eachartie bar the position is denotedrexies

When elements are subject to boundary conditiordemnents are connected to one another, the
applications of boundary conditions or connectiaresalways in the nodes of the element.
Interactions between elements may in specialisedsche applied between nodes, but for the
purposes of this course, boundary conditions andections between elements will always be
placed in nodes. For bar elements the nodes asyslat either end of the bar.

d d,

¥
L J

§
Nodel  Fy EA.L Node2  F,

v
Ly
¥

Figure 1-2 — A bar element

Displacements and forces are denateshdF respectively. It is a convention in structural
mechanics that;

nodal forces and nodal displacements within an elg@mare always defined as positive in
the same directian

F, oA oA F,

e —

Figure 1-3 — Sectional equilibrium for the bar elenent

With reference to Figure 1-2 and Figure 1-3 we egitablish equilibrium much in the same
manner as for the spring in section 1.1. Equilioris deduced in equatiof8) and(7).

F,+0A=0 (6)
F,-0A=0

o=Eeg
gzdz_d1

L

If we substitute strain for stress into equati(@jswve find two equilibrium equations for the bar

(7);

EA EA (7)
F1+T(d2—d1)20 FlzT(dl_dZ)
=
EA EA
Fz_T(dz_dl)zo FzzT(dz_dl)
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As for the spring element, we may organise theldguim equations in matrix form
EA| 1 -1|d | |k (8)
L|-1 1]|d, F,

If we substitute the tensile stiffness of the IaEé‘F‘ with the spring stiffnesk as given in section

1.1, we find that equatior{8) and(3) are in fact the same equation. As for the sprlagent, it
is customary to generalise equat{8phwith the following terminology

kd =r , where 9)
‘ :E_{ 1 —1}
Li-1 1

d
a=|
d,

iy
| I |

k is the element stiffness matrix,js the element displacement vector anslthe element load
vector.

From equatiorf9) we should also make the following important obaéon;

A column ok is the vector of loads that must be applied to lament at its nodes to
maintain a deformation state in which the corregfinog nodal degree of freedom has
unit value while all other nodal degrees of freedana zero.

For bar elements, each node has only one degffeeedom, which makes the above observation
fairly obvious. However, the result is in fact gealdor all element formulations, and plays an
important part in how kinematic compatibility ishéeved when using the finite element method.
We shall return to this observation at a laterestagen we discuss beam elements.

1.3 System analysis

In sections 1.1 and 1.2 we looked at the elasbpgrties of springs and bars, and we found
matrix equations for equilibrium of single elemerassuming linear elastic material properties.
The system analysis is concerned with connectiagnehts to one another, and to apply
boundary conditions and loading. For any structorathanics problem the following conditions
must apply;

* Kinematic compatibility
* Equilibrium

« A material law
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In sections 1.1 and 1.2 the two latter bullets weenesidered. Boundary conditions and continuity
in the structure is covered under kinematic conlyldsi, and furthermore loading adds further
consideration on equilibrium.

To illustrate how systems are combined in thedielement method, we will look at a simple
system of two connected bars.

1.3.1 Example — Axially loaded bars with varying cross-setions

p=plx)
1 ) {_1-_;2 ® 3
&
Ri Dl—" RQ.DQ—“ ﬂ; Dg,—"
[ E..:"lj_ f.E:lQ
Fy.dy 1 2 9, do

Figure 1-4 — Axially loaded, simply supported bar wh varying cross-section

In Figure 1-4, there are three nodes, 1, 2 ando8 bhat node number 2 is shared by both bar
elements. From section 1.2 we know that the elemguilibrium equation for a single bar
element is given by equati@f). The two individual element stiffness relationsyrtiaerefore be

described by the following equations;
1 EA 1 -1|d, _ F
l |-1 1]|d, F,
2 & 1 - dl = Fl
[ |-1 1|d, F,

However, in the global system we choose suffixesHe global node numbers, and not the
individual element. In the global system we havedmodes, and we may reformulate the
equilibrium equations for each individual element;

1 -1 0[D,

EA
Element1_>|— -1 1 0|D,
0 0 O0JDb
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0 0 0|D
Element 2 EI—AZ 0 1 -1|D,
0 -1 1| D,

D; denotes displacements in the global system, andutfiix i marks the relevant node. From the
above equations it should be noted that the rechirdisplacements at node 3 for element 1 and
node 1 for element 3 have been included in thinest relations. The nodes are not connected to
the relevant elements so there is no relation ketvierce and displacement. This has been
indicated by rows and columns of zeroes. Since ave included all the redundant equilibrium
relations in the individual element stiffness ns, they may now easily be combined into a
global stiffness matrix since all the element sgs matrices have the same dimension;

e A -A O
k1+k2:|_ -A A+tA -A|=K
0 -A A

Note that the element stiffness matrices are dermgesmall letter boldfacekl, with suffix equal
to the element number. The global stiffness madgrokenoted by a capital boldfackd

Now we have established the stiffness matrix ferttto connected bars. The global
displacement vector is trivially given as;

Dl

D=|D,

D3
Note that the global displacement vector is denbted capital boldfaceD. Since we have
established the stiffness and the displacemengrevéeft with applying the forces to the system.
In this case, we are faced with a distributed |d@dds is a problem we shall return to at a later
stage in the course. For the purposes of thisreete shall only assume that there are two

concentrated load®, andR; at nodes 2 and 3 both directed axially and taitite relative to
Figure 1-4.

In general, the forces must be balanced at eacvidiidl node.
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Newton’s second law

Figure 1-5 — Nodal force equilibrium

The nodal forcdR for a node must balance all the forcesentering the node from neighbouring
elements. Formally the relation may be expressddilasvs (10);

R=i§

R denotes the nodal force ands the number of elements with a boundary to node

(10)

With the loading conditions in place, we are ableamplete the expression for the global
equilibrium equation;
A -A 0 || D 0
KD=R:>IE -A A+A -A|D,|=|R
0 -A A D] |R
In the process of establishing the equilibrium équis for the global system of two axially

loaded bars, we have completed the following mepssof the algorithm we shall know as the
finite element method;

* Meshing (we created two elements from a system)
» Establish local stiffness matrices

» Assemble local elements for a global stiffness xatr
* Apply loading

The next step in the algorithm is to include bougd®nditions. In our case, there is a boundary
condition at node no. 1 which requires that th@ldisement at node no. 1 is zero. This can easily
be included in our equilibrium equation by simpbnuanding thab; is zero. We perform this by
zeroing out the rows and columns in the globafretgs matrix which are governed by the
displacemenbD;

o212 2T
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Now we are ready to solve our system. We invertgboipal stiffness matrix and multiply with
the load vector. This process yields the globglldsements;

D=K™'R (11)

For larger systems it may be more or less impossitbbomputek ™ by hand, so for the
remainder of this course we shall use computatiars in Matlab and ANSYS in order to
compute the actual solutions. Only for very simetifsystems will there be a need for manual
calculation of inverses.

1.4 Properties of the stiffness matrix

The global stiffness matrix of a structure has ssuvaseful properties which are relevant both for
computational efficiency in solving large systemsagell as properties which are important in
order to prove existence and uniqueness of sokutibine global stiffness matrik is/has;

e Sparse
* Symmetric
* Only positive diagonal elements
* Positive definite
» Singular
1.4.1 Sparsity

The global stiffness matrix is almost always spasgece only contributions from neighbouring
elements are included for individual element estiethe matrix. This has little theoretical value,
but a huge importance for effective solution metiiodies.

1.4.2 Symmetry

Symmetry of the global stiffness matrix followsmdetti-Maxwells theorem;

If two sets of loads act on a linearly elastic sture then work done by the first set of
loads in acting through displacements producedheysiecond set of loads is equal to the
work done by the second set in acting through dcsghents produced by the first set.

More precisely, if load®; andR; are produce displacemeiis andD,, then;
RID, =R}D,

If we substitute for the load vectdRs andR,we find;
(kD,)' D, =(KD,)'D, = D/KD, = DJKD,

K is ann x n matrix, and the displacement vect@rsandD;aren x 1 vectors. Thus both
products on either side of the equation are scplantities. Since they are scalars they may be
transposed without disturbing the equality;

DIKD, = D}KD, = D}K "D, DK "D, =0= D} (K" =K )D, =0

Since neitheD; norD;are zero vectors (as that would mean zero loadieygxpression inside
the parentheses must vanish. This concludes tlué fhat K =K'

Page 8 of 43



1.4.3 Only positive diagonal elements

It is physically obvious that diagonal elements thespositive. If all degrees of freedom except
one (arbitrarily chosen one) is constrained, a tiegaiagonal element would imply a negative
displacement for a positive force. This is of ceurapossible.

1.4.4 Positive definite
The global stiffness matrix is positive definitehiah by definition means that;
x"Kx >0,0xOR"#0

The consequence of a positive definite stiffnesgime that it is possible to use various types of
matrix factorisations oK, which is highly useful when extracting Eigen-vedwand for
optimised algorithms.

1.4.5 Singularity

The stiffness matrix is singular before boundanyditbons are applied. When no boundary
conditions are applied, the system is a mecharagher than a static system in equilibrium.
Therefore the deformations are undetermined, am@dhsequence is that the stiffness matrix is
singular.

1.5 Arbitrary orientation of the stiffness matrix

The stiffness matrix is normally established in libeal coordinate system of an element, but
when applied to a structure, the stiffness matn»shoften be rotated in order to match the global
coordinate system, see for instance Figure 1-6.

4m

-

e

im

Figure 1-6 — Bars rotated relative to the global cordinate system
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If we assume a set of forcesind a corresponding set of displacementse may express the
forces and displacements in an arbitrary coordiggséem. If we assume two consistent
coordinate systems (which means they must be caoenptel have a basia)andb, we assemble
the load and displacement vectors in the two coatdisystems respectively; d, andry, dp.
The work done by the loadirigis not dependent on the coordinate system in wihish
expressed. Therefore;

rid, =r)d, (12)

If we assume that there exists a linear transfaomat which transforms a vector in one
coordinate system to a vector in the other;

X, = T X

If we apply the transformatioh on the displacement vectds we find;
d,=Td,
If this relation is inserted into equati¢h2) we find;
rid, =r,Td, (13)

Since the displacement and loading is arbitratigsen, this equation must apply for ahy
which leads to;

r,=T'r,

a

If we insert our new found relations into the edpibm equation for an element we find the
following;

r=kd+r®

r,=T, =T (k,d, +18) =TTk, Td, +1¢) =k d, +r¢

a

Since the displacements and loads were chosemaailpithe relation must be valid for any
choice of jr, d; andry, dp, we find that;

k,=T'k,T,r,=Tr, (14)

1.5.1 Application to bars

The stiffness matrix found in sections 1.1and 4.@dduced based on the notion that the
displacement is only axial, and we have placecttimedinate system with the x-axis in the axial
direction. Thus the deformation has only one congpb@at each end. In two dimensional space
the displacement component in axial direction ffigr bar does not necessarily align itself with
one of the axes of the coordinate system. In thse cthe displacement is axial along an arbitrary
line in two dimensional space. Displacement alanthsa line has components in both axes of the
coordinate system, and therefore displacement coerse for a bar in two dimensional space

will generally increase to four rather than two gared to the one-dimensional case.

In Figure 1-7 a bar is expressed in two separatedamate systems. The coordinate system
marked by an asterisk’(xis the oriented along the axis of the bar. Theptoordinate system is
a simple Cartesian coordinate system with an oagite first node.
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¥

Figure 1-7 — Bar element in local and rotated coordate systems

We want to express the equilibrium equation forlibein the Cartesian coordinate system, such
that we may combine it with other bars in the sao@dinate system. In order to achieve this,
we must find the displacement components of u’ ana y. This is done by simple trigonometry;

u; is the x-component of;u
vy is the y-component of,u
W, is the x-component ofu
Vv is the y-component of,u
The transformation matrix is thus;
T :{cosa sine 0 0 }
0 0 cosx sina

From equatior{14) we find that the stiffness matrix and the loadteemay be described as
follows (15);

k=TTk'T (15)
r=T'r'

1.6 Extended example

A frame of bars consisting of three members is shmwFigure 1-8. In this exercise we shall
solve for displacements in the three bars basexhalytical calculations.
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The material and structural parameters are fouridanist below;
 E =207 GPa (Typical for hardened steel)
* A1 =0.0025 m2 (5cm x 5¢cm rectangular cross-segtion

* A2 =0.0015 m2 (3cm x 5¢cm rectangular cross-segtion

We already know the element stiffness relationsfemjuation9). What we need to do may be
summarized by the following list;

1. Rotate the element stiffness matrices such thgtaheall represented in the same
coordinate system

2. Augment the individual element stiffness matricashsthat they may be summed
to a global stiffness matrix

3. Implement boundary conditions and eliminate alls@md columns in the global
stiffness matrix related to constrained degredseeidom

4. Establish a load vector
5. Invert the global stiffness matrix and solve fosglacements

4 (-1,4) (1,4) 3

EA, EA,
, ¥ (02)
1F2=3MN
EA,
1+ (0,0)
i F, = 3MN

Figure 1-8 — Frame of three bars
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1.6.1 Step 1 — Rotate the element stiffness matrices

1.6.1.1 Element1

Element 1 is defined between nodes 1 and 2, arudated 90 degrees relative to the x-axis. Thus
the cosine is zero and the sine is 1. From sedtidri, we know the form of the transformation
matrix, and thus we find;

0100
T, =
0 001

The rotated element stiffness matrix is found adicwy to equatiorf15);

00 0O 0 0 O

ke = TTKT = 1 OE 1 -1{0 1 0 O :E\O 1 0 -1
! O oOfL|-1 1]0 0 01 LIO O O O
01 0 -10 1

1.6.1.2 Element 2

Element 2 is defined between nodes 2 and 3, arudaged relative to the x-axis. We could
establish the angle of rotation before we transftivenstiffness matrix, but it is easier to compute
sines and cosines directly from the triangle. Tihe sf the angle is the height of the element,

which is 2m, divided by the length which ig5m. Similarly we find the cosine;

sina :Z—\E
5
cosa :g

This leaves us with a transformation matrix;

Tzﬁ{l 2 0 o}
5|0 0 1 2
Again we employ equatiofi5);
10 1 2 -1 -2
ke=TTkT=£2 0&{1 —1}{1 2 0 O}zﬂ 2 4 -2 -4
2 250 1/ L|-1 1|0 0 1 2| 5L|-1 -2 1 2
0 2 -2 -4 2 4

1.6.1.3 Element 3

Element 3 is rotated relative to the x-axis and egom practically the same calculation as for
element 2. Note that the cosine is now negativieesihe angle to the x-axis is greater than 90
degrees.
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The trigonometric calculations give us the transftion matrix;

Tzﬁ{—l 2 0 o}

5/0 0 -1 2

The transformation matrix allows us to use equaticy),
-1 0 1 -2 -1 2

ke=TTkT=£2 O&l -1-1 2 O O:E—Z 4 -2 -4
s 250 -1yL}|-2 140 O -1 2 5.|-1 -2 1 -2

0 2 2 -4 -2 4

1.6.2 Step 2 - Augment the individual element stiffness atrices

We have two degrees of freedom in each node (Reiré 1-7), displacement in x-direction and
y-direction respectively. When we rotated the sgffs matrix, using the transformation mairix
we committed to using the same displacements asse@ when we developed the transformation
matrix. Thus the new element displacement and elelnad vectors should read;

ul I:x,l

_ Vl _ I:y,l
d= =

u2 I:x,2

\2 Fy,Z

We observe that we have two degrees of freedoraddn node, and we have four nodes in our
system. Thus we need to have 8 degrees of freedonr iglobal system (before boundary
conditions, where some of these will be eliminat®dhen we have 8 degrees of freedom, we
need an 8x8 global stiffness matrix, an 8x1 dignaent vector and an 8x1 load vector.

1.6.2.1 Augmentation of element stiffness matrix for elemeinl

The first element is connected to the first 4 degdreedom, lateral and vertical displacements
in nodes 1 and 2 respectively. The remaining 4 asgoé freedom are however not included for
the first element, so for these degrees of freetfmmelement stiffness matrix should have entries
of zero;
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0 0 0 0 00 0 O]
01 0-10000
0 000 00O0O
« EA[0 -1 0 1 0000
' L0 O OO 0O0OOO
0 000 00O0O
0 000 00O0O
0 0 00 00O O

1.6.2.2 Augmentation of element stiffness matrix for elemein2

The second element is connected to nodes 2 andid vdsults in a relation to degrees of
freedom 3 through 6 (as 1 and 2 are related to hicded 7 and 8 are related to node 4). The
augmented stiffness matrix becomes the following;

00 0 O O 0 00O
00 0 O O 0 00O
00 1 2 -1 -200

_EA|0 0 2 4 -2 -400

2" 5Ll00 -1 -2 1 2 00
00 -2 -4 2 4 00
00 0 O O 0 00O
00 0 0 O 0 0O

1.6.2.3 Augmentation of element stiffness matrix for elemein3

Element 3 is connected to nodes 2 and 4, whichesellement 3 to degrees of freedom 3, 4, 7
and 8. The augmented stiffness matrix becomes tlosviag;

00 0 0 0O O O
00 0 0 0O O O
00 1 -200 -1 2

_EA|0 0 -2 4 00 2 -4

*5Ll00 0 0 00 O O
00 0 O 0O O O
00 -1 2 00 1 -2
00 2 -400 -2 4]

1.6.3 Step 3 — Implement boundary conditions

Nodes 3 and 4 are constrained, which means thdt degrees of freedom 5 through 8 are
constrained. This implies that the rows 5 througm@& columns 5 through 8 in the element
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stiffness matrices may be eliminated. The resulgiopal stiffness matrix may be found by the

following expression;

0
« ... «_EA|O
K=k, +k,+k;=—=
1 2 3 |_ 0
0
0 0 0
0 A 0
‘ AtA
K=E +
0 0
5V5

0

1

0
-1

2

55

0 A A2 A,

0 0 0
0 -1 EA|O
0 0| 5L|0
0 1 0
. i
A
2
2A -2A,
5J5
AtA
5J5 |

2

o O o o

N B O O

A N O O

0

+EAD

5L |0
0

o O o o

Note that the global element stiffness matrix h&® 2ntries in its first row and its first column.
This happens since the bar has no stiffness imectiton (we do not consider bending). Since
there are only zero entries in the relevant row@idmn, the stiffness matrix is not invertible,
and the solution for this degree of freedom idéwant. Therefore we must eliminate the first
row and first column in the global stiffness matihe displacement vector is included in the
demonstration in order to avoid confusion on wtdelgrees of freedom are solved for and which
are not.

0 0 0 0 - -
0 A 0 A U, A 0 A
2 onZon | ° a+A oa‘os |
- + - T
KD=Eg o Als\/EAZ Ais\/EAZ N =E 0 NG NG u,
-A 2A-2A A _A+A|ly,] |ZA 2A-2A A A+A Y%
0 —+4 2
- 2 55 2 5/ (2 55 2 55 ]

1.6.4 Step 4 — Establish the load vector

We have vertical loading equal to 3 MN in nodesd a. The direction is opposite to the y-axis,
so the load vector must invert the values for dagls;
—_ Fl
0
—_ F2

R

1.6.5 Solve for displacements

If we insert the values for areas, Young modulus fances we achieve the following system of
equations;
2.5875 0 - 2.5875|(v, -1
0 0.7406 0.3703 |su,=10°4 O
—-25875 03703 5.5498 ||v, -1

10°
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If we invert the stiffness matrix and solve for thisplacements we find the following solution;

v,] [-00332
u,+=4 00108
v,| |-00216
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1.7 Exercises — Mandatory assignment

In this mandatory exercise we shall redo the wankedin section 1.6. The following tasks shall
be performed;

1. With the below found matlab script and the ansydecaonfirm that the solution in
section 1.6 is correct. Note that ANSYS gives diwardisplacement in node 1,
please explain why the solutions are still consiste

2. Move node 2 from position (0,2) to position (0.5a2d redo the example in section
1.6. When you are finished, confirm your resultsigsANSYS and Matlab

1.7.1 Matlab script

% Declaration of stiffness, forces and geometriapeeters

E=207000000000;
A1=0.0025;
A2=0.0015;

L1=2;

L2=sqrt(5);
F1=3000000;
F2=3000000;

% Calculation of element stiffness matrices
Offmmmmmmmmmmem e

% Local stiffness matrix
kloc=[1 -1; -1 1]

% --- Element 1 ---

T=[0100;0001];
k e 1=T"*kloc*T

% --- Element 2 ---
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T=(sqrt(5)/5)*[1200; 00 1 2];
k_e 2=T"*kloc*T

% --- Element 3 ---

T=(sqrt(5)/5)*[-1200; 00 -1 2];
k e 3=T*kloc*T

% Augmentation of element stiffness matrices tgare for assembly

% --- Element 1 ---

kl=zeros(8,8); % Create 8x8 matrix of only zeraiest

k1(1:4,1:4)=k_e_1; % The first 4x4 matrix in thepep quadrant of k1 is substituted for the local
rotated stiffness matrix

% --- Element 2 ---

k2=zeros(8,8); % Create another 8x8 matrix of @el§o entries

k2(3:6,3:6)=k_e_2; % row 3 to row 6 and column 8dumn 6 is a 4x4 matrix which relates to
degrees of freedom 3 to 6, which in turn relataddes 2 and 3

% --- Element 3 ---
k3=zeros(8,8);
k3(3:4,3:4)=k_e_3(1:2,1:2);
k3(3:4,7:8)=k_e_3(1:2,3:4);
k3(7:8,3:4)=k_e_3(3:4,1:2);
k3(7:8,7:8)=k_e 3(3:4,3:4)

% Assembly of stiffness matrices

K_tot=E*A1/L1*k1+E*A1/L2*k2+E*A2/L2*k3;

% Boundary conditions - We know that the degredsegidom in nodes 3 and
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% 4 are constrained. This means that degreeseddre 5 through 8 are
% zero.

K=zeros(3,3);
K(1:3,1:3)=K _tot(2:4,2:4);

% Forces are acting oppositely to the y-axis ardeflore they must be
% inverted in the global load vector.

R=[-F1; 0; -F2];

D=inv(K)*R
1.7.2 ANSYS script

IBATCH,LIST

/[FILNAM,ex411

[TITLE, LineAlr statisk analyse rett stav

IPREP7

ET,1,1! LINK1 elementer

R,1,0.0025 ! Tverrsnitts areal til staven

R,2,0.0015

MP,EX,1,207e9 ! E-modulen

IGeometri ("solid modelling™)

K,1,0,0 ! Punkt A er origo

K,2,0,2 ! Punkt B er i x=0, y=2

K,3,1,4 ! Punkt C i x=1, y=4

K,4,-1,4 ! Punkt D i x=-1, y=4

L,1,2 ! Linje AB

L,2,3!Linje BC

L,2,4 ! Linje BD

lInndeling i elementer

LESIZE,1,,,1 ! Deklarer at linje AB skal inndelestt element
LESIZE,2,,,1 ! Deklarerer at linje BC skal inndelest element
LESIZE,3,,,1 ! Deklarerer at linje BD skal inndele=tt element
REAL,1 ! Bruk tverrsnittsareal nr. 1 for inndelingéneste to linjer)
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LMESH,1 ! Inndeling av linje 1

LMESH,2 ! Inndeling av linje 2

REAL,2 ! Bruk tverrsnittsareal nr. 2 for inndelingéneste linje)
LMESH,3 !Inndeling av linje 3

FINISH ! Ut av Preprossessoren

/SOLU ! Leegsningsprossessoren

ANTYPE, STATIC ! Statisk analyse (default)

DK,3,all ! Ingen forskyvninger i punkt C

DK,4,all ! Ingen forskyvninger i punkt D

FK,1,fy,-3e6 ! Belastning i punkt A

FK,2,fy,-3e6 ! Belastning i punkt B

DTRAN ! Overfgrer grensebetetingelser til elemendeib
SBCTRAN ! og belastningen

SOLVE ! Lgsningsprosedyren

FINISH ! Ut av Lgsningsprossessoren

/POSTL1 ! Postprossessoren

SET ! Last inn analyseresultatene

PLDISP,1 ! Deformert konstruksjon

PRNSOL,U,COMP ! Utskrift av forskyvningene (glolaise)
LOCAL,11,0,,,,53.1301 ! Lokalt aksesystem

RSYS,11 ! aktiveres og brukes til & lese
PRNSOL,U,COMP ! forskyvningene og

PRESOL, F ! kreftene

PRESOL,ELEM ! Ta ut tilgjengelige elementresultgtsialkrefter)
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2 CHAPTER 2 —-AN INTRODUCTION TO ENERGY METHODS

Cook : 4.1, 4.2, 4.3, 4.4 (parts of section 4.4, be revisited in chapters 4 and 5 of this
compendium)

2.1 An introduction to energy methods

In classic solid mechanics it is common to dedupeagons of motion by equilibrium
calculations, particularly for bars, beams andgdain a finite element context it is however not
common to use equilibrium to deduce equations dfanoThe finite element method is based on
assuming displacement functions between nodesnatuge of the finite element method will
therefore render energy methods much more appéicalice energy methods are also based on
assuming a set of deformations in whichever dioastiare relevant (i.e. axial direction for bars,
vertical and axial direction for beams, all direas for solids etc.). When we assume a set of
displacement functions in the element method, we usa energy methods to use these assumed
displacements in order to determine element eqiuhi equations on the forkd =r.

Specifically, energy methods are the most efficraatiner of determining both the stiffness
matrix k, and the only general manner of determining aister® load vector.

2.1.1 Potential energy in a bar

If we examine the axially loaded, simply suppotad inError! Reference source not found,
we find that the applied axial forceksthe Young modulus is E, the cross-sectional eréa
and the length of the bar is L.

L J

a
EA L ;é F

?

Figure 2-1 — Axially loaded, simply supported bar

We know from Section 1.2 that the displacentkaf the bar is linear ik, and we may express
the force displacement in terms of a function (Riglre 2-2)
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Load displacement curve for a bar

Force (F)

Displacement (u)

Figure 2-2 — Load displacement curve for an axiallyoaded bar

If we want to determine the potential energy inlthe, we can integrate the load displacement
curve(16),

:Euju(F):LF (16)
L EA
F —_
U= Ludu:iuz‘F_F— L FZ:EA\U2

) EA 2EA” F0  2EA 2L

In the above equatiok) has been defined as the total potential energg Widrk done by the
axial force is simply the force times the displaeanfl17).

Q=Fd (17)

In the book by Cook et. al., the work done by exaéforces has been given the symbol It is
also common to use the symibglwhich may be found in several other referencesidver
since Cook et. al. is our main reference, we sisdlQ .

The difference between the internal energy, whictiis case is stored elastic energy, and the
external work done is called the potential energyctional;

N=uU-9Q (18)
The total potential energy is given the symbbl
2.1.2 The principle of minimum potential energy

The principle of minimum potential energy may betesti as the following;

From all admissible deformations, the system whidfils the equilibrium equations of a
conservative system is the system which has tsepegential energy

By a conservative system it is meant that the piatieenergy of an arbitrary deformation
configuration is path independent, i.e. that theeptial energy does not depend on the load
deformation history. A linearly elastic deformatioha bar is an example of a conservative
system. A plastically deformed bar is an exampla nbn-conservative system, since a
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deformation may be achieved by either elastic elastic load displacement history. A
permanent plastic deformation has different enéngy a linear elastic deformation, and these
two deformations may be equal. The work done isg¢hw/o cases is obviously different, and
thus load deformation is path dependent.

If we insert the two expressions we have dedua@dnfernal potential enerdit6) and work
done by external forcgd7) respectively into the equation for the total ptisdrenergy(18), we
get an algebraic expression for the total potestiargy;

n="Aw - Fu
2L

(19)
We observe that the total potential energy (fumaipis a second order equatioruinvhich
means it has a global minimum as the second oeder is positive. According to the principle of
minimum potential energy, we must find the confegion with minimum potential energy in
order to find the system which fulfils the equiliom equations. Obviously, the function has a
global minimum, and we may generally find that glbiminimum by finding the stationary value
of the derivative (Ref(20));

dn =Ea‘udu—qu=(Eu—Fjdu:O:>u=ﬂ (20)

2L L EA

In equation(19) we have the benefit that the function is a seamygtee polynomial in, which
means we know that there is only one stationanyejadnd since the second order term is
positive, that stationary value is a global minimd#ar a more general system, it is not obvious
however that the stationary value is unique, nat ithis a global minimum. For the purposes of
this course however, all systems we shall invetigall only have one unique stationary value
for the potential energy functional, and that stadiry value shall be the a global minimum,
which means the principle of minimum potential gyeapplies, and we may find the stationary
value by a differentiationAriation operation. Note that this does not apply for noedr systems,
and in those cases we need to sort through ditf@@ssible solutions in order to find the
physically relevant one. Nonlinear analyses wilirbeestigated in module 2 of this course.

2.1.3 Equilibrium of a bar revisited

The equilibrium for a simply supported bar was lelssaed in equatio(20). If we do not have
any boundary conditions, and we wish to estabhshpibtential energy in a generally supported
and generally loaded bar, we may simply wait toosgboundary conditions until after we have
established the equilibrium equations. Considebtrefrom Figure 1-2, given again here as
Figure 2-3 for ease of reference.
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d d,

¥
L J

v
Ly
¥

§
Node 1 F’I EA L Node 2 FE

1

Figure 2-3 — A bar element

We choose two displacement functiq@g);

u=1-2 (21)
L

u ==

2L

The functions have the properties thats unity at node 1 and zero at nodei2is unity at node
2 and zero at node 1. The functions are plottdelgare 2-4.

1

u2

ul

Figure 2-4 Shape functionsl; and u,

The importance of choosing the given displacemamttions cannot be overstated. The benefits
of choosing shape functions in this manner arddhawing;

* If u; oru; are set to zero, either a boundary condition derbor node 2 of zero
displacement will be automatically fulfilled for yend displacement on the other node.
This is a formal requirement and a necessary comndior a shape function if it is
implemented using the principle of minimum potelngiaergy.

» Linear functions are chosen for a bar, since tepldcement of a uniform bar is always
linear, as such they are capable of returning ed@fcrmations relative to the theory
applied
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» Continuity at each node is assured

* Rotational continuity is not assured, but bar tlgetives not require rotational continuity
between individual members. (For beams for instaweecannot use linear functions
since rotational continuity is required).

Before we start to introduce the assumed displanefoactions, we shall revisit the deduction
for equilibrium of a bar element using the prineiplf minimum potential energy. The work done
by external forces and the stored potential enerdiye resulting displacements according to the
assumed displacement functions may be calculateedban equatio(iL8);

EA

U= Z(Uz -u,f
Q=Fuy +Fu,
EA
n= Z(uz - U1)2 - Ru -Fu,

As we have found the total potential energy funttiwe may invoke the principle of minimum
potential energy and differentiate to find theistary value;

dri :%\(Uz - ul)(duz - dU’l)_ Fdu, - F,du, =0

= [ETA(Ul - uz) - Fljdul + [ETA(UZ - ul) - szduz =0

Since displacements at either end of the bar aresstble, the sum of the two differentialg;
anddu, can only be zero for arbitrarily choséwn, anddw, if du, anddu, are zero individually
(Later we shall discover that this statement ikedahe fundamental theorem of variational
calculus). This in turn means we can deduce twatops from the differential of the total
potential energy functional,

EA _
T(ul_UZ)_ F :E\{ 1 - }{ul} :{Fﬂ
E\(Uz _ul)= F, N R £
L
We conclude that the equilibrium equation for adlament may be deduced using the principle
of minimum potential energy.

When we introduce shape functions, we can no loviger the displacement related to each
node. We must instead integrate the stored elas&ogy along the length of the element, since
any combination of displacement functions couldtk#cally be applied. The expression for the
potential energy stored as elastic energy in artzgr be expressed on the following form;

L 2
u=1 | Eﬁ(ﬁj dx
29 dx
If we introduce our assumed displacement functiwasnay integrate ix, assuming that andA
are constant along the length of the bar.
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L

u_—j A( ]d x=1 EA(dzl dzljd
20
x=L

U= EZA[dZLl—de dzi‘z} EA(dz 2d1d2+d22)

Now we have our total potential energy expressedrims of two undetermined coefficients
which give the amplitudes of our assumed displacgpelynomials. The remaining issue is to
determine the work done by external forces;

Q=Fd +Fd,
In order to determine these coefficients we invtileeprinciple of minimum potential energy;

drl —E—A(Zd dd, - 2d,dd, - 2d,dd, + 2d,dd,) - Fdd, - F,dd, =0

Since the above equation is valid for admissihlandd,, we may individually setd, anddd, to

Zero,
EA
T(dl_dZ):Fl :E\{l —Hdl}_{ﬁ}
ELA(dd) L|{-1 1]|d,] |F,

To repeat the process of assembly and a pracppabach to applying boundary conditions we
shall have another extended example of a bar frame.

2.1.4 Extended example — Bar Frame I

We consider a vertically loaded bar frame, showhigure 2-5

4 Element 7 5

Element & Element 5 Element 4 Element 3

Element 2

Element 1

F

Figure 2-5 — A vertically loaded frame of bars
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The nodal coordinates are given in the followirsg, lalong with the material properties and
cross-sectional area of the bars;

- E=1
« A=1
 F=0.1

* Node 1: (0,0)
* Node 2: (0,2)
* Node 3: (0,4)
« Node 4: (1,1)
* Node 5: (3,1)

We follow the same procedure as we chose for th&réae in the extended example of section
1.6;

1. Rotate the element stiffness matrices such thgtaheall represented in the same
coordinate system

2. Augment the individual element stiffness matricashsthat they may be summed
to a global stiffness matrix

3. Implement boundary conditions and eliminate alls@md columns in the global
stiffness matrix related to constrained degredseeidom

4. Establish a load vector
5. Invert the global stiffness matrix and solve fosgdlacements

2.1.4.1 Rotation of element stiffness matrices

The basic stiffness matrix for a bar element is;

1 —
« = EA
L|I-1 1
Elements 1, 2 and 7 have the same orientationtHeargdl axial stiffness (EA). Thus they have

identical element stiffness matrices. The direcbbrach element is parallel to the x-axis, which
means the sine is zero and the direction cosifieTfius the transformation matrix is simply;

1 000
T, =
0010

We find the element stiffness matrix expressedhéngiobal coordinate system;

1 0-10

0 0 0 O
ke =T7KT, =

-10 1 0

0000
kg =kS =k
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Elements 6 and 4 have the same angle to the gledpab and the same length, and therefore they
as well have the same element stiffness matrix {fansl the same transformation matrix).

TfﬁF 10 o}

20011
1 1 -1 -1
ke =TTKT, = = 111l
2l-1 -1 1 1
-1 -1 1 1
ke =k®

Elements 3 and 5 have the same angle to the gledpak and the same length. This means the
third and final element stiffness matrix configumatmay be calculated for element 3 and 5 both;

J2[-11 0 O
T, =—
2/0 0 -1 1
1 -1 -1 1
1l-1 1 1 -1
ke =TIKkT. ==
T o101 1 -1
1 -1 -1 1
k§=k¢

2.1.4.2 Augmentation of the element stiffness matrix to algbal system

The system in Figure 2-5 is a two-dimensional fradhlears, which means each node has two
degrees of freedom. The total number of degreé®eflom in the system (including those
constrained by boundary conditions) is 10. The glalsplacement vector may therefore be
written as followq22);

U (22)

The small suffixa onD has been included to show that this is the augedegibbal displacement
vector, to distinguish it from the full global dispement vector in which we have included
boundary conditions. The sub indiceswandv indicate node number andndicates
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displacement in x-direction asndicates displacement in y-direction. Sirl@e is a 10x1 vector,

k? (i.e. the augmented element stiffness matriceg} damension 10x10.

Augmentation of element stiffness matrix for eleinkn

Element 1 has two degrees of freedom in nodes Ratids means Element 1 relates to degrees
of freedom 1 through 4. The augmented elemennhss# matrix becomes;

O O OO0 oo o o o

o

oooooopo;

o

0

O O O O o oo o

0

0

O O O O o oo o

0

0

O O O O o oo o

0

0

O O O O o oo o

0

0

O O O O o oo o

0

0

O O O O O O O O

0

0

O O O O O O o o o

Augmentation of element stiffness matrix for eleti&n

Element 2 relates to degrees of freedom 3 through Godes 2 and 3;

00

O O O O o oo o

O O OO0 oo o o o

0

0

o+ O

o O O O

0

O O OO0 oo o o o

o

O O OO0 oo o o o

o

O O OO0 oo o o o

o

0

O O O O o oo o

0

0

O O O O O ©O O O

0

0

O O O O O O o o o

Augmentation of element stiffness matrix for elet&n

Element 3 has degrees of freedom in nodes 3 antliBh means element 3 relates to degrees of
freedom 5, 6, 9 and 10;
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[0 000 0 0 00 O O]
0000 O 00O O O
0000 O0O 00O O O
0000 O 00O O O
a-EA0 000 1 -100 -11
*2Ll/0 000 -11 00 1 -1
0000 O0O 00O O O
0000 O 00O O O
000O0-1100 1 -1
0000 1 -100 -1 1|

Augmentation of element stiffness matrix for eleingn

Element 4 has degrees of freedom in nodes 2 antliBh means degrees of freedom 3, 4, 9 and
10 are related to the augmented stiffness matrix;

000 0 00O0O0 O O
000 0 00O0O0 O O
001 1 0000 -1 -1
001 1 0000 -1 -1

_ EAlOO 0O 0 000O O O

““2Ll100 0 0 0000 0 O
000 0 0000 O O
000 0 00O0O0 O O
00-1-10000 1 1
00 -1-10000 1 1|

Augmentation of element stiffness matrix for eletrfen

Element 5 is related to nodes 2 and 4, which mekemsent 5 is related to degrees of freedom 3,
4,7 and 8;

000 00O O O 00O
000 00O O O 00O
001 -100-11 00
00-11 001 -100

- EA0 0 0 0000 000

® 2L|I00 O 0 OO O O 00O
00-11 001 -100
001 -100-11 00
000 00O O O 00O
00 0 0 00 0O O 0 O

Augmentation of element stiffness matrix for eletn@&n
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Element 6 is related to nodes 1 and 4, which mekemsent 6 is related to degrees of freedom 1,
2,7 and 8;

1 1. 0000-1-100
1 1. 0000 -1-100
0 00000O0 O 00O
0 000000 O 00O
. EAlO0 0 0000 O 0 00O
®"2L|0 0 0O0OO0OO0 O O 00O
-1 -10000 1 1 00
-1 -10000 1 1 00
0 000000 O 00O
(0 00000 0 0 0 O]

Augmentation of element stiffness matrix for elemén

Element 7 has degrees of freedom in nodes 4 anddhwelates to degrees of freedom 7 through
10.

000000 OTUOUO OO
000000 OTUOU OO
000000 OTU OGO OO
000000 OTU OGO OO

ka:@oooooooooo

" LIOOO0OO0OO0OO O OO0 O
0000O0O0 1 0-10
000000 OTU OGO OO
0000O0O0-1010
000000 0 O O O]

2.1.4.3 Summation to global stiffness matrix

Note that when the matrices have been summeds ib&an included that the element lengths for
the lateral elements are 2 whereas the elemenhieifgy the angled elementsve .
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2442

Q -1 0 0 0 _Q _Q 0 0
2 2 2 2
V2o 42 g g g Y2 2
2 2 2 2
-1 0 2+4/2 0 -1 0 _Q Q _Q Q
2 2 2 2
0 0 0 2 0 0 Q _Q _Q _Q
2 2 2 2
Jo 0 a1 oo 222, 22
n 2 Z 3
2 0 0 0 0 _y2 N2 0 0 R
2 2 2 2
BB, e h oo g
2 2 2 2
_Q Q Q _Q 0 0 0 J2 0 0
2 2 2 2
0 0 _ﬂ _Q _Q ﬂ -1 0 1+4J2 0
2 2 2 2
0 0 @ _Q @ _Q 0 0 0 J2
L 2 2 2 2 J

2.1.4.4 Implementation of boundary conditions

From the constraint in node 1 we must fix degrddseeedom 1 and 2. From the constraint in
node 3 we must fix degrees of freedom 5 and 6. ¥lieege this by eliminating rows and

columns 1, 2, 5 and 6 from the global stiffnessrivaand entries 1, 2, 5 and 6 from the global
load vector;
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The resulting global stiffness matrix becomes;

I
_@72_@72 o o
|

S o

ﬁ72_ﬁ_72 o W

_@_72_@72 _W o

o

<
+
(Q\]

o ]S

o _ﬁ_72_@72_@_72_@72

1442 0

0

i
|

— |~
1
¥

The relevant degrees of freedom are the initiah@rged global displacement vector, where

degrees of freedom 1, 2, 5 and 6 have been excluded
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2.1.4.5 Establish a load vector

The global load vector consists of a single paatlin node 2, with direction along the y-axis.
This is related to displacementand must therefore have the same place in thénipaéctor as

the displacement. There are no other loads, and therefore the pload vector may be written
as follows;

O o oo oo

2.1.4.6 Solution

The displacement vector may be found as by thevatlg equation;

0
- 04828
01
-0.2414
-01
|- 0.2414]

D=K™'R=

A Matlab script for the solution of this exercisegiven below;
E=1;

A=1;

L_straight=2;

L_angled=sqrt(2);

T6=[sqrt(2)/2 sqrt(2)/2 0 0; 0 0 sqrt(2)/2 sqrt@)/
T5=[-sqrt(2)/2 sqrt(2)/2 0 0; 0 0 -sqrt(2)/2 sqjtA;
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kle=(E*A/L_straight)*{10-10;0000;-1010;000j;
k2e=k1le;
k7e=kle;

k=[1-1; -1 1];

k6e=(E*A/L_angled)*T6*k*T6;
k5e=(E*A/L_angled)*T5*k*T5;
kd4e=k6e;
k3e=k5e;

K=zeros(10,10);

% ELEMENT 1
K(1:4,1:4)=k1e;

% ELEMENT 2
K(3:6,3:6)=K(3:6,3:6)+k2e;

% ELEMENT 3
K(5:6,5:6)=K(5:6,5:6)+k3e(1:2,1:2);
K(5:6,9:10)=K(5:6,9:10)+k3e(1:2,3:4);
K(9:10,5:6)=K(9:10,5:6)+k3e(3:4,1:2);
K(9:10,9:10)=K(9:10,9:10)+k3e(3:4,3:4);

% ELEMENT 4
K(3:4,3:4)=K(3:4,3:4)+k4e(1:2,1:2);
K(3:4,9:10)=K(3:4,9:10)+k4e(1:2,3:4);
K(9:10,3:4)=K(9:10,3:4)+k4e(3:4,1:2);
K(9:10,9:10)=K(9:10,9:10)+k4e(3:4,3:4);

% ELEMENT 5

K(3:4,3:4)=K(3:4,3:4)+k5e(1:2,1:2);
K(3:4,7:8)=K(3:4,7:8)+k5e(1:2,3:4);
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K(7:8,3:4)=K(7:8,3:4)+k5e(3:4,1:2);
K(7:8,7:8)=K(7:8,7:8)+k5e(3:4,3:4);

% ELEMENT 6

K(1:2,1:2)=K(1:2,1:2)+k6e(1:2,1:2);
K(1:2,7:8)=K(1:2,7:8)+k6e(1:2,3:4);
K(7:8,1:2)=K(7:8,1:2)+k6e(3:4,1:2);
K(7:8,7:8)=K(7:8,7:8)+k6e(3:4,3:4);

% ELEMENT 7
K(7:8,7:8)=K(7:8,7:8)+k7e(1:2,1:2);
K(7:8,9:10)=K(7:8,9:10)+k7e(1:2,3:4);
K(9:10,7:8)=K(9:10,7:8)+k7e(3:4,1:2);
K(9:10,9:10)=K(9:10,9:10)+k7e(3:4,3:4);

K_glob=zeros(6,6);
K_glob(1:2,1:2)=K(3:4,3:4);
K_glob(1:2,3:6)=K(3:4,7:10);
K_glob(3:6,1:2)=K(7:10,3:4);
K_glob(3:6,3:6)=K(7:10,7:10);

R=zeros(6,1);

R(2)=-0.1;
D=inv(K_glob)*R
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An Ansys script is given below for the solutiontbis exercise;
/IBATCH,LIST

/[FILNAM,ex411

[TITLE, LineAlr statisk analyse rett stav

IPREP7

ET,1,1! LINK1 elementer

R,1,1 ! Tverrsnitts areal til staven

MP,EX,1,1 ! E-modulen

IGeometri ("solid modelling")

K,1,0,0 ! Punkt A er i origo

K,2,2,0 ! Punkt B er i x=2, y=0

K,3,4,0 ! Punkt C i x=4, y=0

K,4,1,1 ! Punkt D i x=1, y=1

K,5,3,1 ! Punkt E i x=3, y=1

L,1,2 ! Linje 12

L,2,3 ! Linje 23

L,3,5! Linje 35

L,2,5! Linje 25

L,2,4 ! Linje 24

L,1,4! Linje 14

L,4,5 ! Linje 45

liInndeling i elementer

LESIZE,ALL,,,1 ! Deklarer at alle linjer skal innlds i ett element
REAL,1 ! Bruk tverrsnittsareal nr. 1 for inndelingéneste to linjer)
LMESH,ALL ! Inndeling av alle linjer

FINISH ! Ut av Preprossessoren

/SOLU ! LA sningsprossessoren

ANTYPE, STATIC ! Statisk analyse (default)

DK,1,all ! Ingen forskyvninger i punkt A

DK,3,all ! Ingen forskyvninger i punkt C

FK,2,fy,-0.1 ! Belastning i punkt B

DTRAN ! OverfA rer grensebetetingelser til elementiall
SBCTRAN ! og belastningen

SOLVE ! LA sningsprosedyren
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FINISH ! Ut av LA sningsprossessoren

/POSTL1 ! Postprossessoren

SET ! Last inn analyseresultatene

PLDISP,1 ! Deformert konstruksjon

PRNSOL,U,COMP ! Utskrift av forskyvningene (glolaise)
LOCAL,11,0,,,,53.1301 ! Lokalt aksesystem

PRESOL,ELEM ! Ta ut tilgjengelige elementresultgtsialkrefter)
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2.2 Exercises

2.2.1 Continuation of extended example 2.1.4

a) Before boundary conditions are applied to the dlsb#ness matrix, constrained degrees
of freedom are still present in the stiffness nxatfiwe multiply the global stiffness
matrix with the nodal displacements we get thedsrio each node, which allows us to
find the reaction forces in nodes 1 and 3. Findréaetion forces.

b) Apply cross-sectional are®s=0.015 and Young modulus E=207 GPa. Substitutéotice
F with ---. Recalculate the nodal displacementsraadtion forces.

c) The steel is of type X65, which has a specifiedimum yield stress of 450 MPa.
However, bars are inaccurate (no bending for icggrand therefore the allowed axial
stress is well below the yield limit. The allowalabeal stress is 250 MPa. Find the
maximum load F which keeps the axial stress bels®MPa anywhere in the structure

d) Use ANSYS to experiment on the consequences okaltplateral displacement in node
no. 3 (i.e. change the boundary condition to oolystrain the vertical degree of freedom
in node 3).

2.2.2

In the figure below a system of springs is showndRhe global stiffness matrix for the system
of springs;
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2.2.3

I denne oppgaven skal vi benytte direkte oppsetting av elementsivhetsmatrisen for et stavele-
ment basert pa lgsningen av en ordiner differensialligning.

S1, ur]_ - 59, dz
— — — — — — — —p
® B - r, u

a) Differentialligningen for et stavelement er gitt ved utrykket:

d L du(z) ——y
— (EA(.t) - ) = p(x)

hvor FA(x) er aksiell stivhet for staven, u(x) er forskvninger og p(z) er en aksiell jevnt
fordelt last langs stavelementet.

Set FA(x) = 1 konstant og p(r) = 0 langs stav aksen. Set opp uttrykket for den nye
differentialligningen.

b) Finn det generelle utrykket for lgsningen av den nye differentialligningen.
¢) Elementets lengde er { = 1. Benytt randkravene

wrx=0)=d1 og ulr=1)=d

til a finne den spesielle lgsningen for dette problemet.

d) Spenningene i staven kan finnes ved uttrykket

E er elastisitetsmodulen til materialet (materiallov), og ¢ = % er aksialtoyningen i
staven. Kreftene i staven kan na finnes fra uttrykket

j\-‘r = Ao

hvor A er stavens tverrsnittsareal. Benytt dette til a finne en sammenheng mellom en-
dekraft og endeforskyvning for de fire tilfellene:
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i) Finn Ny = N(x

(. for dy =1 og dy = 0.
i) Finn Ny = N(a

(.

(.

=0) for dy = 0 og dy = 1.
) for dy =1 og da = 0.
)

for dy =0 og dy = 1.

iii) Finn N2 = N(a
iv) Finn Ns = N(z =

1l
L
e) Benytt svarene i oppgave d) (og definisjonen av at s; er rettet motsatt vei av N) til a

etablere relasjonen
stl _ [k k2| )da
59 ka1 koo da

f) Finn samme relasjon som i ¢) men med aksiell stivhet EA = F'A konstant, og stavens
lengde satt lik £ = (.
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