
1 Solvency and pricing

1.1 Introduction

Principal tasks in general insurance is solvency and pricing. Solvency is financial control of li-
abilities under near worst-case scenarios. Target is the (upper) percentiles qǫ of the portfolio
liability X , known as the reserve. Modelling was reviewed in the preceding chapters, and the
issue now is computation. We may need the entire distribution of X , for example when dealing
with re-insurance (section 10.6). Monte Carlo is the obvious, general tool, but some problems can
be handled by simpler Gaussian approximations, possibly with a correction for skewness added.
Computational methods for solvency are discussed in the next two sections.

The second main topic is the pricing of risk. This has a market side. A company will gladly
charge what people are willing to pay! Yet a core should be the pure premium π = E(X) or
Π = E(X ); i.e. the expected policy or portfolio payout during a certain period of time. Evalua-
tions of those are important not only as a basis for pricing, but also as an aid to decision making.
Not all risks are worth taking! Pricing or rating methods follow two main lines. The first one
draws on claim histories of individuals. Those with good records are considered lower risks and
rewarded (premium reduced), those with bad ones punished (premium raised). The traditional
approach is through the theory of credibility, a classic presented in Section 10.5. Price differen-
tials can also be administered according to the experience with groups. Credibility is a possible
approach even now, but it is often more natural to use regression where risk is allowed to depend
on explanatory variables such as age, sex, what kind of car you own, where your residence are
and so on. Section 10.4 makes use of regression methods from earlier chapters.

1.2 Portfolio liabilities by simple approximation

Introduction
The portfolio loss X for independent risks becomes Gaussian when the number of policies J →∞.
This is a consequence of the central limit theorem and leads to straightforward assessments of the
reserve that avoid detailed probabilistic modelling. The method is useful due to its simplicity,
but the underlying conditions are too restrictive for it to be the only one. Normal approximations
underestimate risk for small portfolios and in branches with large claim severities. Some of that
is rectified by taking the skewness of X into account, leading to the so-called NP-version. The
purpose of this section is to review these simple approximation methods, show how they are put
to practical use and indicate their accuracy and range of application.

Normal approximations
Let µ be claim intensity and ξz and σz mean and standard deviation of the individual losses. If
they are the same for all policy holders, the mean and standard deviation of X over a period of
length T become

E(X ) = a0J, and sd(X ) = a1

√
J ;

where

a0 = µTξz, and a1 = (µT )1/2(σ2
z + ξ2

z)
1/2; (1.1)
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see Section 6.3. This leads to to the true percentile qǫ being approximated by

qNo

ǫ = a0J + a1φǫ

√
J (1.2)

where φǫ is the (upper) ǫ percentile of the the standard normal distribution. Estimates of µ, ξz

and σz are required, but not the entire claim size distribution. Detailed modelling can be avoided
by using the sample mean and the sample standard deviation as estimates ξ̂z and σ̂z, but they
can also be found by fitting a parametric distribution.

The approximation (1.2) is nearly always valid for large portfolios even when µ, ξz and σz depend
on j. This is due to the Lindeberg extension of the central limit theorem; see Appendix A.4. The
coefficients a0 and a1 now become

a0 =
T

J

J
∑

j=1

µjξzj and a1 =

√

√

√

√

T

J

J
∑

j=1

µj(σ
2
zj + ξ2

zj). (1.3)

which reduce to (1.1) when all parameters are equal. With µj, ξzj and σzj available on file this
method gives (when applicable) a quick appraisal of the reserve.

Still another version emerges when the underlying parameters are random. The most impor-
tant special case is when claim frequencies µ1, . . . , µJ are drawn (independently of each other)
from a distribution with common mean and standard deviation ξµ and σµ. If the mean and
standard deviation ξz and σz of the size of claims are fixed, the coefficients (1.1) now become

a0 = ξµTξz, and a1 = T 1/2{ξµ(σ2
z + ξ2

z) + σ2
µξ2

z}1/2, (1.4)

see (??) and (??) in Section 6.3. The following example examines the numerical impact.

Example: Motor insurance
The Norwegian autmobile portfolio was introduced in Chapter 8. Its parameters are

ξ̂µ = 5.6%, σ̂µ = 2.0% and ξ̂z = 0.30, σ̂z = 0.35,
annual parameters unit: 1000 euro

where the model for claim intensity was identified in Section 8.3. The loss parameters ξ̂z and
σ̂z exclude personal injuries and were obtained from almost 7000 incidents; see also Section 10.4.
This is sufficient information to evaluate the reserve under the normal approximation. With
J = 10000 policies (and T = 1) the coefficients a0 and a1 are obtained from (1.1) and (1.4) and
leads to the following assessments (in 1000 euro):

Fixed claim frequency Random claim frequency

1860, 1934 and 1860, 1935.
95% reserve 99% reserve 95% reserve 99% reserve

Note how little hetereogeneity among policy holders matters! The message was the same in
Section 6.3. Even a quite substantial variation among individuals (as in the present example) is
of no more than minor importance for the reserve.
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The normal power approximation
Normal approximations are refined by adjusting for skewness in X . This is in actuarial science
known as the normal power (or NP) approximation, in reality the leading term in a series
of corrections to the central limit theorem. Another name is the Cornish-Fisher expansion; see
Feller (1971) for a probabilistic introduction and Hall (1992) for one in statistics. The underlying
theory is beyond the scope of this book, but a brief sketch of the structure is indicated in Section
10.7. Only the pure Poisson model is considered below. The extension to the negative binomial
and other models is treated in Daykin, Pentikäinen and Pesonen (1994), but as has been argued
earlier, the practical impact is limited.

Let ζz be the skewness coefficient of the claim size distribution. The modified approximation
then reads

qNP

ǫ = qNo

ǫ + a2(φ
2
ǫ − 1)/6 where a2 =

ζzσ
3
z + 3ξzσ

2
z + ξ3

z

σ2
z + ξ2

z

. (1.5)

The extra term is due to skewness and is in practice positive; see Section 10.7 for the justification.
When (1.1) replaces the normal approximation qNo

ǫ , this yields

qNP

ǫ = a0J + a1φǫ

√
J + a2(φ

2
ǫ − 1)/6

the normal component NP correction

which is a series in falling powers of
√

J . The NP correction term is independent of portfolio size.

To use the approximation in practice skewness ζz must be estimated in addition to ξz and σz

(µ as well). There is no new ideas in this. We may fit a parametric family to the historical data
or use the sample skewness coefficient introduced in Section 9.2. The mathematics becomes more
complicated to write down when the parameters vary over the portfolio, but the approximation
is still valid; see Section 10.7.

Example: Danish fire claims
Consider a portfolio for which

µ̂ = 1% and ξ̂z = 3.385, σ̂z = 8.507, ζ̂z = 18.74.
annual Unit: Million Danish kroner

The parameters for claim size are those found for the Danish fire data in Chapter 9. With
J = 1000 and J = 100000 policies the assessments of the reserve becomes those in Table 10.1.
The NP correction has considerable impact on the small portfolio on the left, raising the 99% the
reserve by as much as 60%. The principal reason is the losses being strongly skewed towards the
right (with coefficient exceeding 18). When the number of policies is higher, the relative effect
of the adjustment is smaller. With 100000 policies the difference between the two methods is of
minor importance and their almost common assessment one to be trusted.

But what about the small portfolio? The huge impact of the NP correction on the left in Table
10.1 is ominous and should make us suspicous. Indeed, the more reliable Monte Carlo assessments
in the next section match neither. The approximations of this section is likely to work best when
the NP term isn’t a dominating one.
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Money unit: Million DKK

Portfolio size: J = 1000 Portfolio: J = 100000
95% reserve 99% reserve 95% reserve 99% reserve

Normal 80 100 3860 4060
Normal power 120 160 3900 4120

Table 10.1 Normal and normal power approximations to the reserve for the
Danish fire claims.

1.3 Portfolio liabilities by simulation

Introduction
Monte Carlo has several advantages over the methods of the preceeding section. It is more general
(no restriction on use), more versatile (easier to adapt changing circumstances) and better suited
for long time horizons (Chapter 11). But the method is slow computationally and doesn’t it
demand the entire claim size distribution whereas the normal approximation could do with only
mean and variance? The last point is deceptive. If the portfolio size is so large that the Gaussian
is a reasonable approximation, the claim size distribution (apart from mean and variance) doesn’t
matter anyhow.

Computational speed is unlikely to be a problem, at least not with fast compilers such as C
or Fortran. To give you an idea suppose there are 1000 policies with average claim frequency
µT = 5%. Then a Fortran implementation of Algorithm 10.1 on a T60p processor produced one
thousand portfolio simulations in 0.02 seconds when the claim size distribution was the empirical
one. The Gamma distribution (laborious to sample) required twice as much, still only 0.04 sec-
onds. Computer time is not very far from being proportional to the mean number of claims JµT .

A skeleton algorithm
Portfolio liabiltity is a central issue in general insurance, and its seems worthwile to sketch a
general method that collects algorithms spread over several chapters. Suppose claim intensities
µ1, . . . , µJ are stored on file along with J different claim size distributions and payments functions
H1(z), . . . ,HJ(z). If Algorithm 2.10 are used for the Poisson sampling, the programming steps
can be organized as follows:

Algorithm 10.1 Portfolio liabilities in the general case
0 Input: λj = µjT (j = 1, . . . , J), claim size models, H1(z), . . . ,HJ(z).
1 X ∗ ← 0
2 For j = 1, . . . , J do
3 Draw U∗ ∼ uniform and S∗ ← − log(U∗)
4 Repeat while S∗ < λj

5 Draw claim size Z∗ %Might depend on j

6 X ∗ ← X ∗ + Hj(Z
∗) %Add loss

7 Draw U∗ ∼ uniform and S∗ ← S∗ − log(U∗) %Update for Poisson

Endfor
8 Return X ∗
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Distribution Distribution
Empirical distribution Algorithm 4.1 Extended Pareto Algorithm 9.1
Pareto mixing Algorithm 9.2 Weibull Exercise 2.5.1
Gamma Algorithms 2.13, 2.14 Fréchet Exercise 2.5.2
Log-normal Algorithm 2.2 Logistic Exercise 2.5.3
Pareto Algorithm 2.8 Burr Exercise 2.5.4

Table 10.2 List of claim size algorithms

Poisson sampling has been integrated into the code. The algorithm goes through the entire
portfolio and add costs of settling incidents until the citerion on Line 4 is not satisfied. There are
many different algorithms for Line 5. Table 10.2 lists examples from this book.

Often individual losses require most of the computer time. If so, there is little point in faster
Poisson samplers such as the guide tables (Section 4.2) and the Atkinson method (Section 2.6)
which may not bring worthwile improvements. Neither is speed enhanced very much when risks
are identical and the algorithm built around the portfolio number of claims N .

Danish fire data: The impact of the claim size model
The Danish fire data was examined in Section 9.6 and a number of models were tried. Some
worked better than others, and Table 10.3 shows how the fit or lack of it is passed on to the re-
serve. Models considered were the empirical distribution function without or with Pareto mixing
for the extremes, pure Pareto, Gamma and log-normal. All were fitted the historical fire claims
as described in Chapter 9. The portfolio size were J = 1000 with annual claim rate µ = 1%,
producing no more than 10 claims per year on average. Ten million simulations were used, making
Monte Carlo uncertainty very small indeed.

The model scenario is the same as on the left in Table 10.1 and testfies to the difficulty of
calculating the reserves for small portfolios. On its own the empirical distribution function under-
estimates risk, but it seems to work well when mixed with the Pareto distribution, and the results
are not overly dependent on where the threshold b is placed. Another well-fitting model in Sec-
tion 9.6 was the Gamma distribution on log-scale, and the reserve calculated under it does not
deviate much from Pareto mixing. Other models in Section 9.6 were grossly in error, and produce
strongly deviating results here. If you compare with the normal power method in Table 10.1 you
will discover that it over-shoots at 95% and under-shoots at 99%.

aEDF: The empirical distribuiton bThresholds are 5%, 10%, 25%, 50% cLog-transformed claims

EDFa EDFa with Pareto above bb Other claim size models
Reserve b=10 b=5.6 b=3.0 b=1.8 Pareto Gammac Log-normal
95% 72 100 104 105 100 71 94 49
99% 173 200 217 230 225 137 214 61

99.97% 330 590 870 1400 1750 900 1944 84

Table 10.3 Calculated reserves for the Danish fire data. Money unit: Million
Danish kroner (about 8 Danish kroner for one euro).
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Reserves at level 99.97% have been added. Luckily those figures are not in demand! The re-
sults are a mess of unstability, an example of the extreme difficulty of evaluations very far out
into the tails of a distribution where they become sensitive to modelling details. Percentiles that
close to one are rarely needed in insurance, but they are used by rating bureaus in finance.

1.4 Differentiated pricing through regression

Introduction
Very young male drivers or owners of fast cars are groups of clients notoriously more risky than
others, and it may not be unfair to charge them more. The technological development which makes
it easier to collect and store information with bearing on risk, can only further such practice. A
picture of how insurance incidents and their cost are connected to circumstances, conditions and
the people causing them must be built up from experience, and a principal tool is regression,
typically on log-linear form. The purpose of this section is to indicate how Poisson, Gamma and
log-normal regression from the preceding chapters are put to work.

Explanatory variables (observations, registrations, measurements) x1 . . . , xv are then linked to
claim intensity µ and mean loss per event ξz through

log(µ) = bµ0x0 + . . . + bµvxv and log(ξz) = bξ0x0 + . . . + bξvxv,

where bµ0, bµ1 . . . , and bξ0, bξ1, . . . are coefficients. By default x0 = 1, a convention introduced to
make formulae neater. The explanatory variables do not have to be the same for µ and ξz, but
the mathematics becomes simpler to write down if they are, and we can always ‘zero’ irrelevant
ones away; i.e. take bξi = 0 if (for example) xi isn’t included in the regression for ξz. In motor
insurance (the example below) regression relationships are typically stronger for µ than for ξz.
Inserting the defining equations for µ and ξz into the pure premium π = µTξz yields

π = Teη where η = (bµ0 + bξ0)x0 + . . . + (bµv + bξv)xv,

and estimates for the coefficients must be supplied.

Estimates of the pure premium
The pure premium of a policy holder with x1, . . . , xv as explanatory variables is estimated as

π̂ = Teη̂ where η̂ = (b̂µ0 + b̂ξ0)x0 + . . . + (b̂µv + b̂ξv)xv.

Here b̂µi and b̂ξi are obtained from historical data, usually through statistical software. Assess-
ment of their standard deviations is provided too, and we must learn how they are passed on to π̂
itself. Bootstrapping (Section 7.4) can be used (as always), but there is also a simpler Gaussian
technique. Since the estimated regression coefficients are often approximately normal, their sum
η̂ is as well, and π̂ becomes log-normal. This is a large-sample result which requires (in principle)
much historical data, but a robust attitude is here in order. High accuracy in error estimates isn’t
that important.

There are two sets of estimated coefficients (b̂µ0, . . . , b̂µv ) and (b̂ξ0, . . . , b̂ξv
) coming from two

different regression analyses. It is usually unproblematic to assume independence between sets
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so that (b̂µi, b̂ξj) is uncorrelated for all (i, j). If σµij = cov(b̂µi
b̂µj

) and σξij = cov(b̂ξi
b̂ξj

) are the
covariances within sets, then

E(η̂)
.
= η and var(η̂)

.
=

v
∑

i=0

v
∑

j=0

xixj(σµij + σξij) = τ2,

where the relationship on the right follows from the general variance formula for sums (rule A.20
in Table A.2). These results are passed on to π̂ through the usual formulae for the log-normal
which yield

E(π̂)
.
= π exp(τ2/2) and sd(π̂)

.
= E(π̂)

√

exp(τ2)− 1.

Note that E(π̂) > π so that π̂ is biased upwards, but usually not by very much (see below). Bias
and standard deviation is estimated by

π̂(eτ̂2/2 − 1), π̂eτ̂2/2
√

eτ̂2 − 1
bias standard deviation

where τ̂2 =
v
∑

i=0

v
∑

j=0

xixj(σ̂µij + σ̂ξij).

Here σ̂µij and σ̂ξij are estimates of their variances/covariances (provided by standard software).
In the formula for τ̂2 take σ̂µij = 0 or σ̂ξij = 0 if variable i or j (or both) isn’t included in the
regression.

Designing regression models
Log-linear regression is a general tool that offers many possibiltities within a framework that adds
contributions on logarithmic scale. On the natural scale such specifications are multiplicative; i.e.

µ = µ0 · e(bµ1+bξ1)x1 · · · e(bµv+bξv)xv

baseline variable 1 variable v

where µ0 = ebµ0+bξ0 .

Here µ0 is claim intensity when x1 = . . . = xv = 0, and the explanatory variables drive intensities
up and down compared to this baseline. As an example suppose x1 is binary, (0 for males and 1
for females). Then

µm = µ0e
(bµ2+bξv)x2 · · · e(bµv+bξv)xv and µf = µ0e

bµ1+bξ1e(bµ2+bξv)x2 · · · e(bµv+bξv)xv ,
for males for females

and µf/µm = ebµ1+bξ1 , is fixed and independent of all other covariates.

The female drivers of Section 8.3 who produced less claims than men when young and more
when old are not captured by this, but modifications are possible. One way is to design crossed
categories. The problem with such procedures as a general approach is that the number of pa-
rameters grows rapidly. For example, suppose there are three variables consisting of 2, 6 and 6
categories. The total number of combinations is then 2× 6× 6 = 72, and the cross-classification
comprises 72 groups. This may not appear much when the historical material is almost 200000
policy years (as in the example below). On average there would then be around 2500 policy years
for each group, enough for fairly accurate assessments of claim intensities through the elementary
estimate (??). However, historical data are often very unequally divided among such groups which
makes some of the estimates highly inaccurate, and often the number of groups is much higher
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aEstimated shape of the Gamma distribution: α̂ = 1.1

Intercept Age
≤ 26 > 26

Freq. -2.43 (.08) 0 (0) -0.55 (.07)
Sizea 8.33 (.07) 0 (0) -0.36 (.06)

Distance limit on policy (in 1000 km)
8 12 16 20 25-30 No limit

Freq. 0 (0) .17 (.04) 0.28 (.04) 0.50 (.04) 0.62 (.05) 0.82 (.08)
Sizea 0 (0) .02 (.04) 0.03 (.04) 0.09 (.04) 0.11 (.05) 0.14 (.08)

Geographical regions with traffic density from high to low
Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Freq. 0 (0) -0.19 (.0.4) -0.24 (.06) -0.29 (.04) -0.39 (.05) -0.36 (.04)
Sizea 0 (0) -0.10 (.0.4) -0.03 (.05) -0.07 (.04) -0.02 (.05) 0.06 (.04)

Table 10.4 Estimated coefficients of claim intensity and claim size for automobile
data (standard deviation in parenthesis). Methods: Poisson and Gamma regression.

than 72. Simplifications through log-linear regression enables us to dampen random error; see
also Exercise 10.4.3.

Example: The Norwegian automobile portfolio
A useful case for illustration is the Norwegian automobile portfolio of Chapter 8. There are around
100000 policies extending two years back with much customer turnover. Almost 7000 claims were
registered as basis for claim size modelling. Explanatory variables used are

• age (2 categories that were ≤ 26 and > 26 years)
• driving limit (6 categories)
• geographical region (6 categories).

Driving limit is a proxy for how much people drive. Age is simplified drastically compared to
what would be done in practice. The regression equation for µ now becomes

log(µ) = bµ0 + bµ1x1 +
∑6

i=2 bµ1(i)x2(i) +
∑6

i=2 bµ1(i)x3(i),
age distance limit region

with a similar relation for ξz. Coding is the same as in Section 8.4. Note that x1 is 0 or 1 according
to the whether the individual is below or above 26. Regression methods used were Poisson (claim
frequency) and Gamma (claim size).

The estimated parameters in Table 10.4 vary smoothly with the categories. As expected, the
more people drive and the heavier the traffic the larger is the risk. Claim frequency fluctuates
stronger than claim size (coefficients larger in absolute value). Accidents of young people appear
to be both more frequent and more severe. The results in Table 10.5 yield estimates of the pure
premia for the 72 groups along with their standard deviation, as explained above. Those for the
region with heaviest traffic (Oslo area) is shown in Table 10.5. Estimates are smooth and might
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Age Distance limit on policy (in 1000 km)
80 120 160 200 250-300 No limit

≤ 26 years 365 (6.3) 442 (6.8) 497 (7.5) 656 (8.3) 750 (9.0) 951 (9.8)
> 26 years 148 (2.9) 179 (3.0) 201 (3.7) 265 (3.7) 303 (4.1) 385 (4.3)

Table 10.5 Estimated pure premium (in euro) for Region 1 of the
Scandinavian autmobile portfolio (standard deviation in parenthesis)

be used as basis for pricing. The log-normal bias introduced above varied from 0.2 to 0.5, much
smaller than the standard deviations.

1.5 Differentiated pricing through credibility

Introduction
The preceding section differentiated premium according to observable attributes such as age, sex,
geographical location and so on. Other factors with impact on risk could be personal ones that are
not easily measured or observed. Drivers of automobiles may be able and concentrated or reckless
and inexperienced. Such things influence driving and the accidents caused. The issue which is
now raised is whether it is possible to assess risk individually from people’s own track records.
If so, charge unequally! Related examples are shops robbed repeatedly or buildings frequently
damaged which might lead to higher premia.

Rating risks from experience has been done all along by fitting models to historical data, but
the focus is now different, and the approach has much in common with the Bayesian ideas of
Section 7.6. Policy holders are assigned pure premia π = πpu that are random and vary from
one person to another. They can be determined by credibility estimation. This is a method
where prior knowledge of how π varies over the portfolio is combined with individual records. The
idea can be applied to groups of policy holders too, and both viewpoints are introduced below.
Credibility is a classical theme in actuarial science; see Bühlman and Gisler (2005).

Credibility: Approach and modelling
The basic assumption is that policy holders carry a list of attributes ω with impact on risk. What
ω is immaterial; the important thing is that it exists and has been drawn randomly for each
individual. Let X be the sum of claims from a certain future period (say a year) and introduce

π(ω) = E(X|ω) and σ(ω) = sd(X|ω).
conditional pure premium

(1.6)

where the notation reflects that both quantities depend on the underlying ω. As basis for pricing
we seek π = π(ω), the conditional pure premium of the policy holder. The concept can be used
on group or portfolio level too. There is now a common ω that apply to all risks jointly, and the
target is Π = E(X|ω) where X is the sum of claims from many individuals.

Let X1, . . . ,XK (policy level) or X1, . . . ,XK (group level) be past claims dating K years back.
The most accurate estimate of π and Π from such records are (Section 6.4) the conditional means

π̂ = E(X|x1, . . . , xK) and Π̂ = E(X|x1, . . . , xK)
policy level group level

(1.7)
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where x1, . . . xK are the values of X1, . . . XK or X1, . . . ,XK . Claims may be broken down on
frequency and individual losses (this viewpoint will be introduced later), but for the moment stay
with the estimates (1.7). The issue is essentially the same on either level, and the argument will
be written out for single policies. As basic framework introduce the common factor model of
Section 6.3. where X1 . . . ,XK ,X are identically and independently distributed given ω. Surely
this is plausible? It won’t be true when underlying conditions change systematically during the
K periods in question; consult some of the references in Section 10.8.

Complicated modelling can be avoided by leaning on the so-called structural parameters.
There are three of them; i.e.

ζ = E{π(ω)}, υ2 = var{π(ω)}, τ2 = E{σ2(ω)}, (1.8)

where ζ is the average pure premium over the entire population and υ and τ both represent
variation. The former is caused by diversity between individuals and the latter by physical
processes leading to incidents. These parameters determine mean and standard deviation of X
through

E(X) = ζ and sd(X) =
√

τ2 + υ2 (1.9)

which are verified by the rules of double expectation and double variance. Indeed,

E(X) = E{E(X|ω)} = E{π(ω)} = ζ,

and

var(X) = E{var(X|ω)} + var{E(X|ω)} = E{σ2(ω)}+ var{π(ω)} = τ2 + υ2;

see also (??) in Section 6.3.

Linear credibility
Let π̂K be an estimate of π based on the claim record X1, . . . ,XK . The simplest procedure would
be to go linear. This means that the estimate is of the form

π̂K = b0 + b1X1 + . . . + bKXK ,

where b0, b1, . . . , bK are carefully selected coefficients. The fact that X1, . . . ,XK are condionally
independent with the same distribution forces b1 = . . . = bK . Write w/K for the common value,
and the estimate becomes

π̂K = b0 + wX̄K where X̄K = (X1 + . . . + XK)/K. (1.10)

A natural way to proceed is to demand that b0 and w minimize the mean squared error E(π̂K−π)2.
This sets up a mathematical problem with solution

π̂K = (1− w)ζ + wX̄K , where w =
υ2

υ2 + τ2/K
; (1.11)

see Section 10.7 where the argument is given. There is a close resemblance with the Bayes esti-
mate of the normal mean in Section 7.6. The weight w defines a compromise between the average
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pure premium ζ of the population and the individual record of the policy holder. Note that w = 0
if K = 0; i.e. with no claim information available the best estimate is the population average.
Other interpretations are given among the exercises.

It is also proved in Section 10.7 that

E(π̂K − π) = 0 and that sd(π̂K − π) =
υ

√

1 + Kυ2/τ2
. (1.12)

The linear credibility estimate is unbiased, and its standard deviation decreases with K.

Optimal credibility
The preceding estimate is the best linear method, but the Bayesian estimate (1.7) offers an im-
provement since it is optimal among all methods; see Section 6.4. Now the aggregate claims
x1, . . . , xK are broken down on annual frequencies n1, . . . , nK and individual losses z1, . . . , zn

where n = n1 + . . .+nK . Suppose claim numbers and losses are stochastically independent. Then
the Bayes estimate of π = E(X) = E(N)E(Z) becomes

π̂ = E(X|n1, . . . , nK , z1, . . . , zn) = E(N |n1, . . . , nK)E(Z|z1, . . . , zn),

and the estimation problem has been decoupled into two separate ones. Both the claim intensity
µ and the mean claim size ξz = E(Z) may vary between individuals, but often more strongly
for the former, and a possible simplification is to fix ξz, the same for everybody. Then ξz =
E(Z|z1, . . . , zn), and the preceding estimate becomes

π̂ = ξzE(N |n1, . . . , nK), (1.13)

For credibility estimation of ξz consult Bühlman and Gisler (2005).

A model for past and future claim numbers N1, . . . ,NK ,N is needed. The natural one is to
assume conditional independence given µ with each claim number being Poisson(µT ). As model
for µ the customary choice is

µ = ξµG and G ∼ Gamma(α)

where G is a standard gamma variable with expectation one. It is verified in Section 10.7 that
the estimate (1.13) now becomes

π̂K = ζ
n̄ + α/K

ξµT + α/K
where n̄ = (n1 + . . . + nK)/K, (1.14)

and the population average ζ is adjusted up or down according to whether the average claim
number n̄ is larger or smaller than its expectation ξµT . The error is

E(π̂K − π) = 0 and sd(π̂K − π) =
ζ

√

α + ξµKT
(1.15)

which is also proved in Section 10.7.

Credibility on group level
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The preceding estimates apply to groups of policies as well. Suppose we seek Π(ω) = E(X|ω)
where X is the sum of claims from a group of policy holders. Now ω is common bacground
uncertainty, and the linear credibility estimate (1.11) is applied to the claim record X1, . . . ,XK

of the entire group. The structural parameters differ from what they were above. A reasonable
assumption is that individual risks are independent given ω. Then

E(X|ω) = Jπ(ω) and sd(X|ω) =
√

J σ(ω),

and the structural parameters (1.8) become Jζ, J2υ2 and Jτ2 instead of ζ, υ2 and τ2. It follows
from (1.11) that the best linear estimate is

Π̂K = (1− w)Jζ + wX̄K , where w =
υ2

υ2 + τ2/(JK)
, (1.16)

Here X̄K = (X1 + . . .+XK)/K is the average claim on group level. Its weight is much larger than
for individual policies and increases with the group size J .

Estimation error is from (1.12)

E(Π̂K −Π) = 0 and sd(Π̂K −Π) =
Jυ

√

(1 + KJυ2/τ2
, (1.17)

so that the method is unbiased as before. Note that

sd(Π̂K −Π)

sd(Π̂0 −Π)
=

1
√

1 + KJυ2/τ2
,

which decreases with KJ . The gain from the claim record is much higher when J is large which is
an important observation. It will be suggested below that the accuracy on individual level might
be poor, but it could be different for groups.

Even the optimal credibility estimates (1.13) apply on group level. The historical claim numbers
n1, . . . , nK are now aggregates from J policies. Their distribution then changes to Poisson(JµT ),
and the only thing we have to do is to replace T with JT in (1.14) and (1.15); see Exercise 10.5.5.

How accurate is credibility estimation?
Suppose ξz is fixed for all policy holders and µ is random. With ξµ = E(µ), σµ = sd(µ), ξz = E(Z)
and σz = sd(Z) we have

π(µ) = E(X|µ) = µTξz and σ2(µ) = var(X|µ) = µT (ξ2
z + σ2

z);

see Section 6.3. The structural parameters (1.8) become

ζ = ξµTξz υ2 = σ2
µT 2ξ2

z and τ2 = ξµT (ξ2
z + σ2

z),

and when these expressions are inserted into in (1.12) right, we obtain for the linear credibility
estimate

sd(π̂K − π) =
σµTξz

√

1 + KθzTσ2
µ/ξµ

where θz = ξ2
z/(ξ

2
z + σ2

z).
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Optimal Linear, σz = 0.1ξz Linear, σz = ξz

K = 0 K = 10 K = 20 K = 0 K = 10 K = 20 K = 0 K = 10 K = 20
200.0 193.2 187.1 200.0 193.3 187.2 200.0 196.5 193.2

Table 10.6 Standard deviations of credibility estimates under conditons in the text.

Accurate estimation requires the standard deviation to go down fast as K is raised, and much
hinges on the ratio σ2

µ/ξµ. Unfortunately, this is always a rather small number.

A numerical illustration is reported in Table 10.6 . Standard deviations of the optimal and
linear credibility estimate (1.15) and (1.11) are there compared when ξµ = 5.6% and σµ = 2%
annually (T = 1) which are the parameters of the Norwegian automobile portfolio. Additional
assumptions are ξz = 10000 and σz = 0.1ξz or σz = ξz. Errors conveyed by the computations
in Table 10.6 are huge. The mean annual claim ζ = 10000 · 0.056 = 560, and even 20 years of
experience with the same client hasn’t reduced uncertainty more than a trifle. Nor is the optimal
method much of an improvement over the linear one. Errors go down when σµ is smaller than
in this example, but now the historical record has even less impact. On group level the picture
might not be the same at all; see Exercise 10.5.3.

Finding the parameters
It remains to determine the parameters underlying the credibility estimates. How this can be
done for claim numbers was discussed was discussed in Section 8.3, and only linear credibility is
treated here. Historical data for J policies that have been in the company K1, . . . ,KJ years are
then of the form

1 x11 . . . x1K1
x̄1 s1

· · · · · · · ·
· · · · · · · ·
J xJ1 . . . xJKJ

x̄J sJ ,
Policies Annual claims mean sd

where the the j’th row xj1, . . . , xjKj
are the annual claims from client j and x̄j and sj its mean

and standard deviation. The following estimates are essentially due to Sundt (1983) with a fore-
runner in Bühlman and Straub (1970) and even in the biostatistical literature; see Sokal and Rohlf
(1981), Section 9.2.

Let K = K1 + . . . + KJ . Unbiased, moment estimates of the structural parameters are then

ζ̂ =
1

K
J
∑

j=1

Kj x̄j, τ̂2 =
1

K − J

J
∑

j=1

(Kj − 1)s2
j (1.18)

and

υ̂2 =

∑J
j=1(Kj/K)(x̄j − ξ̂)2 − τ̂2(J − 1)/K

1−∑J
j=1(Kj/K)2

; (1.19)

for verfication see Section 10.7. The expression for υ̂2 may be negative. If it is, the pragmatic (and
sensible) position is to take υ̂ = 0. Variation in the individual pure premium over the portfolio is
then too small to be detected.
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1.6 Re-insurance

Introduction
Re-insurance was introduced in Section 3.2. Parts of primary risks placed with a cedent are
now passed on to re-insurers who may in turn go to other re-insurers leading to a global network
of risk sharers. Re-insurers may provide cover to incidents far away both geographically and in
terms of intermediaries, but for the original clients at the bottom of the chain all this is irrelevant.
For them re-insurance instruments used higher up are without importance as long as the compa-
nies involved are solvent. These arrangements are ways to spread risk and may enable small or
medium-sized companies to take on heavier responsibilites than its own capital base allows.

Method doesn’t change much from ordinary insurance. The primary risks rest with cedents,
and the stochastic modelling is the same as before. Cash flows differ, but those are merely mod-
ifications handled through fixed functions H(z) defining the payment rules and are easily taken
care of by Monte Carlo (Section 3.3). The economic impact may be huge, the methodological not.
This section outlines some of the most common contracts and indicate consequences for pricing
and solvency.

Types of contracts
Re-insurance contracts may apply to single events or to sums of claims affecting the entire port-
folio. These losses (denoted Z and X ) are then divided between re-insurer and cedent according
to

Zre = H(Z), Zce = Z −H(Z) and X re = H(X ), X ce = X −H(X ),
single events on portfolio level

(1.20)

where 0 ≤ H(z) ≤ 1. Here Zce and X ce are the net cendent responsibility after subtracting re-
insurance.

One of the most common contracts is the a × b type considered in Chapter 3. When drawn
up in terms of single events, re-insurer and cedent responsibilities are

Zre =
0, if Z < a
Z − a, if a ≤ Z < a + b
b− a, if Z ≥ a + b,

and Zce =
Z, if Z < a
a, if a ≤ Z < a + b
Z − b, if Z ≥ a + b,

where Zre + Zce=Z. The lower bound a is the retention limit of the cedent who must cover all
claims below. Responsibility (i.e. Zce) appears unlimited, but in practice there is usually a maxi-
mum insured sum S that makes Z ≤ S. If b− a = S, the scheme gives good cedent protection. If
the upper bound b (the retention limit of the re-insurer) is infinite (rare in practice), the contract
is known as excess of loss. This type of arrangement is also used with X . Now X re and X ce are
related to X in a manner similar to the previous relationships for Zreand Zce, and if b is infinite,
the treaty is known as stopp loss.

Another type of contract is the proportional one for which

Zre = cZ, Zce = (1− Z) and X re = cX , X ce = (1− c)X
single events on portfolio level

(1.21)
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Risk is now shared by cedent and re-insurer in a fixed proportion. Suppose there are J separate
re-insurance treaties, one for each of J contracts placed with the cedent. Such an arrangement is
known as quota share if the constant of proportionality c is the same for all policies. Consider
the opposite case where c = cj depends on the contract. Specifically, suppose that

cj = max(0, 1 − a

Sj
) so that Zre

j =
0 if a ≥ Sj

(1− a/Sj)Zj if a < Sj,
(1.22)

where Sj is the maximum insured sum of the j’th primary risk. This is known as surplus re-
insurance. Note that a (the cedent retention limit) does not depend on j. As Sj increases from
a, the re-insurer part grows.

Pricing re-insurance
Examples of pure re-insurance premia are

πre = µTξre for ξre = E{H(Z)} and Πre = E{H(X )}
single event contracts contracts on portfolio level

with Monte Carlo approximations

πre∗ =
µT
m

∑m
i=1 H(Z∗

i ) and Πre∗ =
1
m

∑m
i=1 H(X ∗

i ).

single event contracts contracts on portfolio level

Simulation is usually the simplest way if you know the ropes and often takes less time to imple-
ment than to work out exact formulae (and the latter may not be possible at all). On portfolio
level simulations X ∗ of the total portfolio loss (obtained from Algorithm 10.1) are inserted into
the re-insurance contract H(x)

There is a useful formula for a × b contracts in terms of single events. If f(z) and F (z) are
density and distribution function of Z, then the mean re-insurance claim is

ξre =

∫ a+b

a
(z − a)f(z) dz +

∫

∞

a+b
bf(z) dz

=
a + b

−(z − a){1 − F (z)}|
a

+

∫ a+b

a
{1− F (z)} dz + b{1− F (a + b)} =

∫ a+b

a
{1− F (z)} dz

after integration by parts. Writing F (z) = F0(z/β) as in Section 9.2 yields

πre = µT

∫ a+b

a
{1− F0(z/β)}dz, (1.23)

which is is possible to evaluate under the Pareto distribution; i.e. when 1 − F0(z) = (1 + z)−α.
Then

πre = µT
β

α− 1

(

1

(1 + a/β)α−1
− 1

(1 + (a + b)/β)α−1

)

for α > 0, (1.24)
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with special treatment being needed for α = 1 (Exercise 10.6.2).

The example

µT = 1%, a = 50, b = 500 α = 2, β = 100 gives πre = 0.50,

which was used to test the accuracy of Monte Carlo. With m = 100000 simulations the answer
was reproduced to two decimal places. Three decimals would take one hundred times more; i.e.
m = 10 million.

The effect of inflation
Inflation drives claims upwards into the regions where re-insurance treaties apply, and contracts
will be mis-priced if the re-insurance premium is not adjusted. The mathematical formulation
rests on the rate of inflation I which changes the parameter of scale from β = β0 to βI = (1+I)β0

(Section 9.2), but the rest of the model is as before. Fot a × b contracts in terms of single
events (1.23) shows that that the pure premium πre

I under inflation is related to the original one
through

πre

I

πre

0

=

∫ b
a{1− F0(z/βI)}dz
∫ b
a{1− F0(z/β0)}dz

.

How other types of contracts react to inflation is studied among the exercises.

Consider, in particular, the case of infinite b with Pareto distributed claims. Then

πre

I

πre

0

= (1 + I)

(

1 + aβ−1
0

1 + aβ−1
0 /(1 + I)

)α−1

which is not negligable for values of α of some size; try some suitable values if I = 5%, for ex-
ample. The ratio is also an increasing function of α which means that the lighter the tail of the
Pareto distribution, the higher the impact of inflation.

That appears to be a general phenomenon. A second example is

Z0 ∼ Gamma(α) and ZI = (1 + I)Z0,
orginal model inflated model

and the pure premia πre

0 and πre

I can be computed by Monte Carlo. Suppose the lower limit a is
varied, the upper one b infinite and that I = 5%. Then the relative change (πre

I − πre

0 )/πre

0 under
variation of the shape parameter α of the Gamma distribution becomes

9% 23% 76%
α = 1 α = 10 α = 100

a median of Z0

and
17% 46% 169%
α = 1 α = 10 α = 100
a upper 10% percentile of Z0

Note the huge increase in the effect of inflation as α moves from the heavy-tailed α = 1 to
the light-tailed, almost normal α = 100.

The effect of re-insurance on the reserve
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Number of simulations: One million

Annual claim frequency: 1.05 Annual claim frequency: 5.25
Upper limit (b) 0 2200 4200 10200 0 2200 4200 10200
Pure premium 0 82 92 100 0 410 460 500
Cedent reserve 2170 590 510 480 6300 3800 1800 1200

Table 10.7 Re-insurance premium and net cedent reserve (1%) under the
conditions in the text. Money unit: Million NOK (8 NOK for 1 euro).

Re-insurance may lead to substantial reduction in capital requirements. The cedent company
loses money on average, but it can get around on less own capital, and its value per share could
be higher. A re-insurance strategy must balance extra cost against capital saved. An illustration
is given in Table 10.7. Losses were those of the Norwegain pool of natural disasters in Chapter 7
for which a possible claim size distribution is

Z ∼ Pareto(α, β) with α = 1.71 and β = 140.

The re-insurance contract was a a × b arrangement per event with a = 200 and b varied. Maxi-
mum cedent responsibility is S = 10200 for each incident. Monte Carlo was used for computation.

Table 10.7 shows cedent net reserve against the pure re-insurance premium. When the claim
frequency is 1.05 annually, the 1% reserve is down from 2170 to about one fourth in exchange for
the premium paid. Five-doubling claim frequency yields smaller savings in per cent, but larger
in value. How much does the cedent lose by taking out re-insurance? It depends on the deals
available in the market. If the premium paid is (1+γre)πre where πre is pure premium and γre the
loading, the average loss due to re-insurance is

(1 + γre)πre − πre = γreπre.
premium paid claims saved net loss

In practice γre is determined by market conditions and may vary enormously in certain branches
of insurance. Going from barely zero to 100% and even 200% in short time (a year or two) are
not unheard of!

1.7 Mathematical arguments

Section 10.2
The normal power approximation: The NP approximation of Section 10.2 is a special case of
the Cornish-Fisher expansion (Hall 1992) which sets up a series of approximations to the percentile
qǫ of a random sum X . The first two are

qǫ
.
= E(X ) + sd(X )φǫ + sd(X )

1
6 (φ2

ǫ − 1)skew(X ).

normal approximation skewness correction
(1.25)

A fourth term on the right would involve the kurtosis, but that one isn’t much in use in prop-
erty insurance. The approximation become exact as the portfolio size J → ∞. Relative error
is proportional to J−1/2 (skewness omitted) and to J−1 (skewness included), which means that
skewness adjustments enhance accuracy a good deal.
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Suppose X is the total portfolio liability based on identical Poisson risks with intensity µ and
with ξz, σz and ζz as mean, standard deviation and skewness of the claim size distribution. Mean,
variance and third order moment of X are then

E(X ) = JµTξz, var(X ) = JµT (σ2
z + ξ2

z), ν3(X ) = JµT (ζzσ
3
z + 3σ2

zξz + ξ3
z),

where the third order moment is verified below (the other two were derived in Chapter 6, see
Exercise 6.3.1). Skewness is ν3(X )/var(X )3/2, and some straightforward manipulations yield

skew(X ) =
1

(JµT )1/2

ζzσ
3
z + 3σ2

zξz + ξ3
z

(σ2
z + ξ2

z)
3/2

.

The NP approximation (1.4) follows when the formulae for sd(X ) and skew(X ) are inserted
into (1.25).

Skewness under hetereogeneous portfolios Suppose X = X1+. . .+XJ where the parameters
of policy j are µj, ξzj, σzj and ζzj, depending on j. The NP-approximation remains the same ex-
cept for a new expression for skew(X ). It can be derived by utilizing ν3(X ) = ν3(X1)+. . .+ν3(XJ )
(rule A.13 of Appendix A) with a similar rule for variances. Hence

skew(X ) =
ν3(X )

var(X )3/2
=

ν3(X1) + . . . + ν(XJ )

{var(X1) + . . . + var(XJ )}3/2

into which we must insert

var(Xj) = µjT (σ2
zj + ξ2

zj) and ν3(Xj) = µjT (ζzjσ
3
zj + 3σ2

zjξzj + ξ3
zj).

for j = 1, . . . , J .

The third order moment of X Let λ = JµT be the Poisson parameter for the total number
of claims N . The third order moment of µ3(X ) is then the expectation of

{X − λξz}3 = {(X −N ξz) + (N − λ)ξz}3 = B1 + 3B2 + 3B3 + B4

where

B1 = (X −N ξz)
3, B2 = (X −N ξz)

2(N − λ)ξz,
B3 = (X −N ξz)(N − λ)2ξ2

z , B4 = (N − λ)ξ3
z .

Expectations of all these terms follow by computing the conditional expectation given N and
applying the rule of double expectation. This is simple since X is a sum of identically and
independently distributed random variables. Start with B1. It follows from rule A.13 in Appendix
A that the conditional third order moment of X is N times the third order moment of Z. Hence

E(B1|N ) = N (EZ1 − ξz)
3 = N ζzσ

3
z which yields E(B1) = λζzσ

3
z .

Similarly, from the sum of variance formula

E(B2|N ) = Nσ2
z(N − λ)ξz and E(B2) = E{N (N − λ)}σ2

zξz = λσ2
zξz.
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It has here been utilized that E{N (N − λ)} = var(N ) = λ. For the two remaining terms

E(B3|N ) = 0 so that E(B3) = 0

and

E(B4) = E(N − λ)3ξ3
z = µ3(N )ξ3

z = λξ3
z

since ν3(N ) = λ; see Section 8.3. Binding all these expectations together yields

E(X − λξz)
3 = E(B1) + 3E(B2) + 3E(B3) + E(B4) = λ(ζzσ

3
z + 3σ2

zξz + ξ3
z )

which is ν3(X ).

Section 10.5
Statistical properties of X̄. The first part of this section derives the linear credibility estimate
and verifies its statistical properties. Three auxiliary results are

E(X̄) = ζ, var(X̄) = υ2 + τ2/K cov{X̄, π(ω} = υ2. (1.26)

The expectation follows from E(X̄) = E(X1) = ζ. To derive the variance note that

E(X̄ |ω) = E(X1|ω) = π(ω) and var(X̄ |ω) = var(X1|ω)/K = σ2(ω)/K,

and the rule of double variance yields

var(X̄) = var{E(X̄ |ω)}+ E{var(X̄|ω)} = var{π(ω)}+ E{σ2(ω)/K} = υ2 +
τ2

K
,

as asserted. Finally for the covariance

E{(X̄ − η)(π(ω) − η)|ω} = E{X̄ − η}{π(ω) − η} = {π(ω) − η}2,

and by the rule of double expectation

E{(X̄ − η)(π(ω) − η)} = E{π(ω) − η}2 = υ2,

and the term on the left is cov{X̄, π(ω)}. In the following we shall write π = π(ω).

Linear credibility Let π̂K be the estimate in (1.10). Then

π̂K − π = b0 + bX̄ − π = b0 − (1− bζ) + b(X̄ − ζ)− (π − ζ)

after a little reorganization. Hence

{π̂K − π}2 = {b0 − (1− bζ)}2 + b2(X̄ − ζ)2 + (π − ζ)2

+2{b0 − (1− bζ)}(X̄ − ζ) + 2{b0 − (1− bζ)}(π − ζ)− 2b(X̄ − ζ)(π − ζ),

and Q = E{π̂K − π}2 is calculated by taking expectation on both sides. Since E(X̄) = ζ and
E(π) = ζ, this yields

Q = (b0 − (1− bζ)2 + b2var(X̄) + var(π) + 0 + 0− 2bcov{X̄, π(ω)}
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and after inserting (1.26) (middle and right) and υ2 = var(π), we obtain

Q = (b0 − (1− b)ζ)2 + b2(υ + τ2/K) + υ2 − 2bυ2

This is minimized by taking

b0 = 1− bζ and b = w =
υ2

υ + τ2/K
,

the solution of b0 being obvious and that for b being found by differentiation afterwards. This
yields the credibility estimate π̂K defined in (1.11).

The statistical properties Unbiasedness is a consequence of

E(π̂K) = E{(1 − w)ζ + wX̄} = (1− w)ζ + wE(X̄) = (1− w)ζ + wζ = ζ = E(π).

The variance of the error is calculated by inserting b0 = 1 − wξ and b = w in the expression for
Q. This yields

Q =

(

υ2

υ2 + τ2/K

)2

(υ2 + τ2/K) + υ2 − 2
υ2

υ2 + τ2/K
υ2 =

υ2τ2/K

υ2 + τ2/K
,

so that

E(π̂K − π)2 = Q =
υ2

1 + Kυ2/τ2

as asserted in (1.12).

Optimal credibility We must determine the distribution of µ given N1, . . . ,NK . The prior
density function assumed for µ is

f(µ) = Cµα−1e−µα/ξµ

where C is a constant whereas the the claim numbers are conditionally independent and Poisson
given µ. Their joint density function is

f(n1, . . . , nK |µ) =
K
∏

k=1

(

(µT )nk

nk!
e−µT

)

= Cµn1+...+nKe−µKT

where C (another constant) is an expression not depending on µ. Multiplying the pair of density
functions together yields the posterior density function p(µ|n1, . . . , nK) up to a constant. In other
words,

p(µ|n1, . . . , nK) = C
(

µα−1e−µα/ξµ

)

·
(

µn1+...+nKe−µKT
)

= Ceα+Kn̄−1e−µ(α/ξ+KT )

where n̄ = (n1 + . . . + nK)/K. This is another Gamma density function with expectation

E(µ|n1, . . . , nK) =
α + Kn̄

α/ξµ + KT
= ξµ

n̄ + α/K

ξµT + α/K
.
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Multiply with Tξz, and you get

π̂K = ζ
n̄ + α/K

ξµT + α/K
.

which is the credibility estimate (1.14).

Optimal credibility: Error
Note that

π̂K − π = ζ
n̄ + α/K

ξµT + α/K
− µTξz = ζ

(

n̄ + α/K

ξµT + α/K
− µ

ξµ

)

.

Since E(n̄|µ) = µT and var(n̄|µ) = µT/K, this implies that

E(π̂K − π|µ) = ζ

(

µT + α/K

ξµT + α/K
− µ

ξµ

)

and var(π̂K − π|µ) = ζ2 µT/K

(ξµT + α/K)2
,

and by the rule of double variance

var(π̂K − π) = ζ2

(

T

ξµT + α/K
− 1

ξµ

)2

σ2
µ + ζ2 ξµT/K

(ξµT + α/K)2
.

Under the model assumed σµ = ξµ/
√

α, and when this is inserted, the preceding expression
reduces to

var(π̂K − π) =
ζ2

α + KξµT
.

which is (1.15).

The estimates of ξ, τ and υ.
We shall examine the estimates (1.18) and (1.19). The principal part of the argument is to verify
unbiasedness. Firstly, since E(x̄j) = ζ and K1 + . . . + KJ = K we have

E(ζ̂) =
J
∑

j=1

Kj

K E(x̄j) =
J
∑

j=1

Kj

K ζ = ζ.

For τ we must utilize that s2
j is the ordinary empirical variance. Thus

E(s2
j |ω) = σ2(ω),

and by the rule of double expectation

E(s2
j ) = E{E(s2

j |ω)} = E{σ2(ω)} = τ2.

Now (1.18) right yields

E(τ̂2) =
J
∑

j=1

Kj − 1

K − J
E(s2

j) =
J
∑

j=1

Kj − 1

K − J
τ2 = τ2.
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Finally, note that

ζ̂ − ζ =
J
∑

j=1

Kj

K (x̄j − ζ),

so that

Qυ =
J
∑

j=1

Kj

K (x̄j − ζ̂)2 =
J
∑

j=1

Kj

K (x̄j − ζ)2 − (ζ̂ − ζ)2,

and from (1.26) middle

E(x̄j − ζ)2 = υ2 +
τ2

Kj
.

Since

E(ζ̂ − ζ)2 = var(ζ̂) =
J
∑

j=1

(

Kj

K

)2

var(xj) =
J
∑

j=1

(

Kj

K

)2

(υ2 +
τ2

Kj
),

it now follows that

E(Qυ) =
J
∑

j=1

Kj

K (υ2 +
τ2

Kj
)−

J
∑

j=1

(

Kj

K

)2

(υ2 +
τ2

Kj
)

or since K1 . . . + KJ = K

E(Qυ) = υ2 +
J

Kτ2 − υ2
J
∑

j=1

(

Kj

K

)2

− τ2

K .

Thus

E(Qυ) = 1−
J
∑

j=1

(

Kj

K

)2

υ2 +
J − 1

M
τ2,

and the the estimate υ̂2 is determined by solving the equation

Qυ =
J
∑

j=1

Kj

K (x̄j − η̂)2 = 1−
J
∑

j=1

(

Kj

K

)2

υ̂2 +
J − 1

K τ̂2.

This yields the estimate (1.19) for υ̂, and the argument has also shown that υ̂ is unbiased.
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of application of the ordinary normal a little). The Panjer recursion (Section 3.8) and other
recursive methods are reviewed in Chapter 4 of Dickson (2005). Those might have been impor-
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1.9 Exercises

Section 10.2
Exercise 10.2.1 Consider a portfolio of identical risks where the standard deviation of the claim size
model is σz = θξz where θ is a parameter. a) Show that the normal approximation for the reserve can be
written

qNo

ǫ = E(X )(1 + γ) where γ =

√

1 + θ2

µTJ
φǫ.

Let Z be Gamma-distributed so that θ = 1/
√

α where α is the shape parameter. b) Compute γ when
µ = 5%, T = 1, α = 1, ǫ = 1% (so that φǫ = 2.33) and J = 100 and J = 10000. For which of the two

24



values of J is the approximation most reliable?

Exercise 10.2.2 This is an extension of the preceding exercise. a) Show that the normal power ap-
proximation can be expressed as

qNP
ǫ = E(X )(1 + γ) where γ =

√

1 + θ2

µTJ
φǫ +

(ζzθ
3 + 3θ2 + 1)(φ2

ǫ − 1)

6(1 + θ2)µTJ

For a Gamma distribution θ = 1/
√

α and ζz = 2/
√

α. b) Insert those into the preceding expression for γ.
c) Investigate the impact of the NP-term on γ numerically under the same conditions as in Exercise 10.2.1b).

Section 10.3
Exercise 10.3.1 For a portfolio of identical risks suppose Z = ξzG where G ∼ Gamma(α). a). Compute
the normal and normal power approximation to the reserve at level ǫ = 1% when α = 1 and Jµ = 10, 100
and 1000. b) Repeat the computations in a) by means of simulations using m = 10000. c) Compare the
results in a) and b) and comment on how the discrepancies depend on Jµ.

Exercise 10.3.2 Suppose you want to plan a simulation experiment for the reserve so that Monte Carlo
error is less than a certain fraction γ of the final result. One strategy is to run B batches of m1 simulations.
For each batch b sort the simulations in descending order and compute q∗ǫb = X ∗

(m1ǫ) as the reserve. That
gives you B assessments q∗ǫ1, . . . , q

∗

ǫB from which you may compute their mean q̄∗ǫ and standard deviation
s∗ǫ . a) Carry out B = 10 rounds of such experiments when Jµ = 10 and Z is exponentially distributed
with mean one. Use ǫ = 1% and m1 = 10000. b) Compute mean and standard deviation q̄∗ǫ and s∗ǫ of
q∗ǫ1, . . . , q

∗

ǫB. For large m there is the approximation sd(q∗ǫ )
.
= aǫ/

√
m where aǫ doesn’t depend on m; see

Section 2.2. c) Estimate aǫ as the value a∗

ǫ = s∗ǫ
√

m1 and argue that

m = m1

(

s∗ǫ
γq̄∗ǫ

)2

is approximately the number of simulations you need. d) Compute it for the values you found in b) when
γ = 1%.

Section 10.4
Exercise 10.4.1 A quick way to explore statistical significance is the Wald test. Let θ̂ be an estimate of
a parameter θ and σ̂θ its estimated standard deviation. Then pronounce the underlying θ different from
zero if |θ̂/σ̂θ| > 2. The significance level is close to 5% under the normal approximation which is a fair
assumption in many applications of regression methodology. a) Apply this test to the second age category
in Table 10.4. Can we from this information be sure that age has real impact on claim frequency and size?
b) Examine the two other explanatory variables in Table 10.4 (distance limit and geographical region) in
the same way. Which of the categories deviate significantly from the first one?

Exercise 10.4.2 The estimate of the pure premium for a customer with a given set of explanatory vari-
ables is π̂ = Teη̂ where mathematical expressions for η̂ and its estimated standard deviation τ̂ were given
in Section 10.4. Let π = π̂e−2τ̂φǫ and π̄ = π̂e2τ̂φǫ where φǫ is the 1 − ǫ percentile of the standard normal
distribution. a) Argue using the normal approximation that π < π < π̄ is 1− 2ǫ confidence interval for π.
b) Compute 95% condifence intervals for the pure premia in Table 10.5 utilizing that φǫ

.
= 2 when ǫ = 2.5%.

Exercise 10.4.3 Consider a portfolio where regression models for claim intensity and claim size have
been fitted. Then log(µj) = bµ1xj0 + . . . + bµvxjv and log(ξzj) = bξ1xj0 + . . . + bξvxjv are known rela-
tionships for policy holder j. If σzj = σz is the common standard deviation for all j, use the central limit
theorem to compute the approximate reserve for the portfolio at level ǫ.
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Section 10.5
Exercise 10.5.1 Consider the linear credibility estimate π̂K = (1−w)ζ +wX̄K where w = υ2/(υ2 +τ2/K)
and ζ = E{π(ω)}, υ2 = var{π(ω)} and τ2 = E{σ2(ω)} are the three structural parameters. Explain and
interprete why the credibility set-up yields a weight w which is increasing in K and υ and decreasing in τ .

Exercise 10.5.2 The accuracy of the group credibility estimate Π̂K may be examined by calculating
relative error. a) Use the standard deviation formula (1.17) to verify that

sd(Π̂K −Π)

E(Π)
=

υ/ζ
√

(1 + KJυ2/τ2
,

b) What happens to the ratio as J → ∞? Explain what this tells us about the accuracy of credibility
estimation on group level.

Exercise 10.5.3 Exercise 10.5.2 enables us to re-analyse the accuracy of credibility estimation. The
following conditions are those of Table 10.7 with µ being a common, random factor influencing the entire
portfolio. Then, ζ = ξµξz , υ2 = σ2

µξ2
z and τ2 = ξµ(ξ2

z + σ2
z) if T = 1; see Section 10.5. Suppose µ = 5.6%,

σµ = 2%, and σz = 0.1ξz as in Table 10.7. a) Show that the standard deviation/mean ratio in Exrecise
10.5.2 doesn’t depend on ξz. b) Compute it for K = 0, 10 and 20 both when J = 1 (single polices) and
when J = 10000. c) What conclusions do you draw from these computations?

Exercise 10.5.4 The optimal credibility estimate π̂K = ζ(n̄ + α/K)/(ξµT + α/K) is an adjustment
of the average, pure premium ζ of the population. Clearly π̂K > ζ if n̄ > ξµT and π̂K ≤ ζ in the opposite
case. a) What is the intuition behind this? b) Show that the adjustment increases with K and decreases
with α. Why must the credibility set-up lead to these results?

Exercise 10.5.5 Let Π = E(X|µ) be the average claim against a portfolio when claim intensity µ is
a common random factor with prior distribution µ = ξG with G ∼ Gamma(α). Suppose n̄ is the average
number of claims against the portfolio over K years. a) Explain why Π̂K = Jζ(n̄ + α/K)/(JξµT + α/K)
is the optimal credibility estimate of Π. b) Use the standard deviation formula (1.15) right to deduce that

sd(Π̂K −Π)

E(Π)
=

1
√

α + JξµKT
.

c) What is the limit as J →∞? Comment on the potential of optimal credibility estimation on group level.

Section 10.6
Exercise 10.6.1 Consider J independent portfolios where the total claim Xj against portfolio j is ap-
proximately normally distributed with mean ξj and standard deviation σj , j = 1, . . . , J . A re-insurer has
taken partial responsibility for all the portfolios through proportional re-insurance. This means that the
re-insurer share for portfolio j is X re

j = cjXj where 0 < cj < 1 is a fixed coefficient. a) Explain why the
total re-insurance obligation Yre = X re

1 + . . . + X re
J is approximately normally distributed and identify the

mean and standard deviation. b) The normal approximation is arguably better than for the portfolios
individually. Why is that? c) Compute the 99% reserve for the re-insurer when J = 20 and all ξj = 1,
σj = 0.2 and all cj = 1/3.

Exercise 10.6.2 The situation is the same as in the preceding exercise except that the contracts are
of the a×b type so that X re

j = 0 if Xj < aj, X re
j = Xj−aj if aj ≤ Xj < aj +bj and X re

j = bj if Xj ≥ aj +bj.
Suppose J = 20 and all ξj = 1 and σj = 0.2. a) Use Monte Carlo to compute the re-insurer 99% reserve
when when all aj = 0.9 and bj = 1.2 b) Repeat a) when aj = 1.1 and bj = 1.4. c) Why is more money
required in a)?

26



Exercise 10.6.3 Suppose claims against a portfolio is log-normally distributed of the form Z = e−τ2/2+τε

where ε ∼ N(0, 1). Upper responsibility per claim is b = 4. The portfolio is re-insured through a a × b
contract where b coincides with the maximum claim against the cedent. The average number of claims
annually is 20. a) Use Monte Carlo to determine the pure premium of the re-insurance when τ = 1 and
a = 1, a = 2 and a = 3. b) Compute the 99% reserve of the cedent under the same conditions as in a),
again using Monte Carlo. Suppose τ increases from τ = 1 and that the other conditions are the same as
before. c) Is the cedent reserve and re-insurance premium now going to go up or down? It is possible to
answer this through intuition!
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