UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK4030 — Statistical Learning: Advanced Regression and Classification
Day of examination:	Monday, December 11th, 2017
Examination hours:	9.00-13.00
This problem set consists of 3 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Penalized regression

Consider the following figure from the text book (Hastie, Tibshirani & Friedman, 2009, The Elements of Statistical Learning):

(Continued on page 2.)

а

Identify the techniques that the three top plots refer to and explain what these plots show.

\mathbf{b}

Explain what it is shown in the bottom two plots.

С

In the context of linear regression, show analytically that the ridge estimator has larger bias than the ordinary least square estimator.

d

In the context of linear regression, show analytically that the ridge estimator has smaller variance than the ordinary least square estimator.

Problem 2 Cross-validation

Consider a classification problem in which a large number of continuous predictors is available. The following procedure is applied:

- 1. reduce the number of predictors by selecting only those that are most correlated with the outcome;
- 2. build a multivariate classifier using the predictors selected in the previous step;
- 3. use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

а

Explain why this procedure is incorrect.

\mathbf{b}

Suggest an alternative procedure to derive a correct estimate of the prediction error of the final model.

Problem 3 Boosting

Consider the AdaBoost algorithm for classification, where the outcome is $y \in \{-1, 1\}$:

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$

3. Output
$$G(x) = \text{sign} \left| \sum_{m=1}^{M} \alpha_m G_m(x) \right|$$

а

Describe the original idea behind the AdaBoost algorithm.

b-c-d

Show that the AdaBoost algorithm reported above can be interpreted as a forward stagewise modelling procedure which minimizes the loss function $L(y, f(x)) = \exp\{-yf(x)\}$. Following this interpretation, the current estimate $f_{m-1}(x)$ is updated by adding the step-specific result of the classifier $G_m(x_i)$ to produce a new estimate $f_m(x)$. In particular, at each step m one must find G_m and α_m such that

$$(\alpha_m, G_m) = \operatorname{argmin}_{\alpha, G} \sum_{i=1}^N \exp\{-y_i [f_{m-1}(x_i) + \frac{\alpha}{2} G(x_i)]\}.$$

Show that:

 \mathbf{b}

$$G_m(x) = \operatorname{argmin}_G \sum_{i=1}^N w_i^{(m)} I(y_i \neq G(x_i)),$$

where
$$w_i^{(m)} = \exp\{-y_i f_{m-1}(x_i)\};$$

С

$$\alpha_m = \log \frac{1 - \operatorname{err}_m}{\operatorname{err}_m}$$

where
$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i}^{(m)} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}^{(m)}};$$

 \mathbf{d}

$$w_i^{(m+1)} \propto w_i^{(m)} \exp\{\alpha_m I(y_i \neq G_m(x_i))\}.$$

THE END