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Exercise 1

a These plots show the strength of the shrinkage for the following three
techniques as a function of the size of the correspondent parameter:

– left plot: variable selection (the estimate of the parameter is equal
to 0 if its effect is non statistically different from 0, non-shrunk if
it is statistically different from 0):

– centre plot: ridge regression (larger estimates are shrunk more);
– right plot: lasso (constant shrinkage, smaller estimates forced to

be equal to 0).

b The two plots above explain lasso (left) and ridge (right) as a con-
strained regression methods. In particular, in the two-dimension prob-
lem showed, the solution for lasso must be within a square (|β1|+|β2| ≤
t), that for ridge regression within the sphere (β21 + β22 ≤ t2). The for-
mer force some estimates of the parameters to be equal to 0, the latter
does not.

c

E[β̂ridge] = E[(XTX + λIp)
−1XT y]

= E[(Ip + λ(XTX)−1)−1(XTX)−1XT y]

=WλE[β̂OLS]

Since β̂OLS is unbiased, β̂ridge has larger bias but in the case Wλ = Ip,
i.e., if and only if λ = 0.

d The variance of β̂ridge is

Var[β̂ridge] = Var[Wλβ̂OLS]

=WλVar[β̂OLS]W
T
λ

= σ2Wλ(X
TX)−1W T

λ

and

Var[β̂OLS]−Var[β̂ridge] =σ
2
[
(XTX)−1 −Wλ(X

TX)−1Wλ

]
=σ2Wλ

[
(Ip + λ(XTX)−1)(XTX)−1(Ip+

+λ(XTX)−1)T − (XTX)−1
]
W T
λ

=σ2Wλ

[
2λ(XTX)−2 + λ2(XTX)−3

]
W T
λ > 0
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Exercise 2

a The procedure is incorrect because it does not use completely inde-
pendent samples to build the model (including the choice of the tuning
parameters) and to estimate the prediction error. In the first step, in
particular, the predictors are selected using all the samples.

b Dimension reduction (the first step), model construction and choice of
the tuning parameter should be performed only on the training part (K-
1 folds) of the cross-validation split. Alternatively, a split in training
and test sets should be made at the beginning, and the aforementioned
steps only performed on it. In this case, the prediction error should be
computed only on the test set.

Exercise 3

a The original idea of AdaBoost is to combine the results of a weak clas-
sifier applied to modifications of the data in order to obtain a good
classification. In particular, the modification is performed by itera-
tively applying a weighting scheme in which more weight is assigned
to the observations that are miss-classified in the previous iteration.

b We can rewrite the equation provided by the exercise,

(αm, Gm) = argminα,G
N∑
i=1

exp{−yi[fm−1(xi) +
α

2
G(xi)]},

as

(αm, Gm) =argminα,G
N∑
i=1

exp{−yi[
m−1∑
k=1

αk
2
Ĝ[k](xi) +

α

2
G(xi)]}

=argminα,G
N∑
i=1

w
(m)
i exp{yi

α

2
G(xi)]},

where

w
(m)
i = exp{−yif̂m−1(xi)} = exp{−yi

m−1∑
k=1

αk
2
Ĝ[k](xi)}.
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Then, focusing on G,

Gm =argminG
N∑
i=1

w
(m)
i exp{yi

α

2
G(xi)]}

=argminG

 ∑
G(xi)=yi

w
(m)
i exp{−α

2
}+

∑
G(xi)6=yi

w
(m)
i exp{α

2
}


=argminG

(
exp{−α

2
}

N∑
i=1

w
(m)
i +

+
(
exp{α

2
} − exp{−α

2
}
) ∑
G(xi)6=yi

w
(m)
i


=argminG

(
exp{−α

2
}

N∑
i=1

w
(m)
i +

+
(
exp{α

2
} − exp{−α

2
}
) N∑
i=1

w
(m)
i I(G(xi) 6= yi)

)

so Gm = argminG
∑N

i=1w
(m)
i I(yi 6= G(xi)). For the explanation of the

steps, see lecture 11 notes (page 4).

c Focusing on α, instead,

αm = argminα
N∑
i=1

w
(m)
i exp{yi

α

2
G(xi)]}

Deriving with respect to α

−
∑

G(xi)=yi

w
(m)
i exp{−α

2
}+

∑
G(xi) 6=yi

w
(m)
i exp{α

2
} = 0

−
∑

G(xi)=yi

w
(m)
i +

∑
G(xi)6=yi

w
(m)
i exp{α} = 0

exp{α}
∑

G(xi)6=yi w
(m)
i∑N

i=1w
(m)
i

=

∑
G(xi)=yi

w
(m)
i∑N

i=1w
(m)
i

and
αm = log

(
1− errm
errm

)
where

errm =

∑N
i=1w

(m)
i I(yi 6= Gm(xi))∑N

i=1w
(m)
i
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d Since
f̂m = f̂m−1 + αmĜm

then
w

(m+1)
i = w

(m)
i exp{−αm

2
yiGm(xi))}

Using the fact that

−yiGm(xi)) = 2I(G(xi) 6= yi)− 1,

the result follow.
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