Probability and Measure Theory

1. Is the family \mathcal{F} consisting of all finite subsets of Ω and their complements always a σ-algebra?
2. Is the family \mathcal{F} consisting of all countable subsets of Ω and their complements always a σ algebra?
3. Let \mathcal{F} be a σ-algebra on $\Omega=[0,1]$ such that $\left[\frac{1}{n+1}, \frac{1}{n}\right] \in \mathcal{F}$ for $n \in \mathbb{N}$. Show that:
(a) $\{0\} \in \mathcal{F}$.
(b) $\left\{\frac{1}{n}: n=2,3,4 \ldots\right\} \in \mathcal{F}$.
(c) $\left(\frac{1}{n}, 1\right] \in \mathcal{F}$ for all $n \in \mathbb{N}$.
(d) $\left(0, \frac{1}{n}\right] \in \mathcal{F}$ for all $n \in \mathbb{N}$.
4. Let \mathcal{F} be a σ-algebra. Demonstrate that if $\left\{A_{n}\right\}_{n \geq 1} \subset \mathcal{F}$, then

$$
\bigcap_{n=1}^{\infty} A_{n} \in \mathcal{F}
$$

5. Let Ω and $\tilde{\Omega}$ be arbitrary sets and $X: \tilde{\Omega} \rightarrow \Omega$ be any mapping. Show that if \mathcal{F} is a σ-algebra on Ω, then $\tilde{\mathcal{F}}=\left\{X^{-1}(A): A \in \mathcal{F}\right\}$ is a σ-algebra on $\tilde{\Omega}$.
6. Let \mathcal{F} be a σ-algebra on Ω and let $A \subset \mathcal{F}$. Show that $\mathcal{F}_{A}:=\{A \cap B: B \in \mathcal{F}\}$ is a σ-algebra on Ω.
7. Show that if $\left\{\mathcal{F}_{i}\right\}_{i \in I}$ is any collection of σ-algebra defined on the same set Ω, then their intersection $\cap_{i \in I} \mathcal{F}_{i}$ is also a σ-algebra on Ω.
8. Let (Ω, \mathcal{F}) be a measurable space. We define the upper limit or limit superior of a sequence of sets $\left\{A_{n}\right\}_{n \geq 1} \subset \Omega$ by

$$
\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k},
$$

and the lower limit or limit inferior by

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}
$$

Show that if $\left\{A_{n}\right\}_{n \geq 1} \subset \mathcal{F}$, then

$$
\limsup _{n \rightarrow \infty} A_{n} \in \mathcal{F}, \quad \liminf _{n \rightarrow \infty} A_{n} \in \mathcal{F}
$$

Show that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} A_{n} & =\left\{A_{n} \text { occurs for infinitely many } n\right\} \\
\liminf _{n \rightarrow \infty} A_{n} & =\left\{A_{n} \text { occurs for all but finitely many } n\right\} .
\end{aligned}
$$

and that $\liminf _{n \rightarrow \infty} A_{n} \subset \limsup _{n \rightarrow \infty} A_{n}$.
9. Let $\Omega=\mathbb{N}$, and let \mathcal{F} be the family of all subsets of Ω. Put $P(\{i\})=\alpha_{i}, i=1,2, \ldots$ Extend P to a probability measure defined on \mathcal{F}. What conditions have to be imposed on the numbers α_{i} ? Can they all be chosen the same?
10. Let (Ω, \mathcal{F}, P) be a probability space. Show that:
(a) P is mononotone, that is, if $A, B \in F$ satisfies $B \subset A$ then $P(B) \leq P(A)$.
(b) P is finitely subadditive, that is, for any $\left\{A_{n}\right\}_{n=1, \ldots, N} \subset \mathcal{F}$ where $N \in \mathbb{N}$, one has that

$$
P\left(\bigcup_{n=1}^{N} A_{n}\right) \leq \sum_{n=1}^{N} P\left(A_{n}\right)
$$

11. Let (Ω, \mathcal{F}, P) be a probability space and $\left\{A_{n}\right\}_{n \geq 1} \subset \mathcal{F}$ be a sequence of events. Show that:
(a) If $A_{1} \subset A_{2} \subset A_{3} \subset \cdots$ (that is, the sequence $\left\{A_{n}\right\}_{n \geq 1}$ is increasing) then

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

(b) If $A_{1} \supset A_{2} \supset A_{3} \supset \cdots$ (that is, the sequence $\left\{A_{n}\right\}_{n \geq 1}$ is decreasing) then

$$
P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

(c) We have that

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} P\left(A_{n}\right)
$$

(d) If $P\left(A_{n}\right)=0, n \geq 1$, then $P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=0$.
(e) If $P\left(A_{n}\right)=1, n \geq 1$, then $P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=1$.
(f) First Borel-Cantelli lemma. If $\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$, then $P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0$.
12. Show that if X is a constant function, then it is a random variable with respect to any σ algebra.
13. Le X be a discrete random variable, that is, X only can take a countable number of values. Describe how is the σ-algebra $\sigma(X)$. Describe how are the $\sigma(X)$ measurable functions.
14. Let $\Omega=\{1,2,3,4\}$ and $\mathcal{F}=\{\varnothing, \Omega,\{1\},\{2,3,4\}\}$. Is $X(\omega)=1+\omega$ a random variable with respect to the σ-algebra \mathcal{F} ? If not give an example of a non-constant function which is.
15. Let X be a random variable and $Y=X^{2}$. Show that Y is also a random variable. Is X measurable with respect to $\sigma(Y)$?
16. Let X be a random variable such that $X \geq 0, P$-a.s.. Prove that if $\mathbb{E}[X]=0$ then $X=0, P$-a.s..
17. Let $X \in L^{1}(\Omega, \mathcal{F}, P)$. Prove that if $\mathbb{E}\left[X \mathbf{1}_{A}\right]=0, \forall A \in \mathcal{F}$ then $X=0, P$-a.s..
18. Let P and Q be two probability measures defined on the same measurable space (Ω, \mathcal{F}). Show that $P \sim Q$ iff $Q \ll P$ and $P\left(\frac{d Q}{d P}=0\right)=0$. What is the relationship between $\frac{d Q}{d P}$ and $\frac{d P}{d Q}$?
19. Let Q be the distribution on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ given by

$$
Q((a, b])=\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) d z, \quad a<b \in \mathbb{R}
$$

Construct a probability space and a random variable Z defined on it such that the law of Z is given by Q. We say that the random variable Z is a standard Normal (or Gaussian) random variable. Compute its mean and variance. Let $X=\sigma Z+\mu$, where $\mu \in \mathbb{R}$ and $\sigma>0$. Check that X is a random variable, find its distribution function and compute $\mathbb{E}[X]$ and $\operatorname{Var}[X]$. We say that X is normal random variable with mean μ and variance σ^{2} and we denote it by $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
20. Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ defined on some probability space (Ω, \mathcal{F}, P). Compute $\psi(\theta)=\mathbb{E}\left[e^{\theta X}\right]$ for $\theta \in \mathbb{R}$. Define $L(X ; \theta):=e^{\theta X} / \psi(\theta)$ and show that $Q_{\theta}(A)=\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{A}\right], A \in \mathcal{F}$ defines a probability measure on (Ω, \mathcal{F}). Show that $Q_{\theta} \ll P$. Find the law of X under Q_{θ}, that is, the law of X as a random variable defined on $\left(\Omega, \mathcal{F}, Q_{\theta}\right)$.
21. Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Define $Y=\exp (X)$. Show that Y is a random variable. The law of Y is called lognormal with mean μ and variance σ^{2}, show that $P_{Y} \ll \lambda$ and find its density function $\frac{d P_{Y}}{d \lambda}$. Compute $\mathbb{E}\left[Y^{n}\right], n \geq 1$ and $\operatorname{Var}[Y]$.
22. (Markov inequality). Let X be a random variable and $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$an increasing, Borel measurable function. Let $a \in \mathbb{R}$ such that $f(a)>0$. Prove that

$$
P(X \geq a) \leq \frac{\mathbb{E}[f(X)]}{f(a)}
$$

23. Let (Ω, \mathcal{F}, P) be a probability space. Let $I \subset \mathbb{R}$ be an open interval and $t_{0} \in I$. Let $\left\{X_{t}\right\}_{t \in I}$ be a family of random variables satisfying:
(a) $X .(\omega): I \rightarrow \mathbb{R}$ is differentiable on I, P-a.s.
(b) There exists a random variable Y such that $\left|X_{t}\right|+\left|\frac{d}{d t} X_{t}\right| \leq Y, P$-a.s., $\forall t \in I$.

Show that the function

$$
\begin{array}{cccc}
F: & I & \rightarrow & \mathbb{R} \\
& t & \mapsto & \mathbb{E}\left[X_{t}\right]
\end{array},
$$

is well defined, differentiable at t_{0} with $F^{\prime}\left(t_{0}\right)=\mathbb{E}\left[\left.\frac{d}{d t} X_{t}\right|_{t=t_{0}}\right]$.
24. Let X and Y be two independent random variables that are absolutely continuous with respect to λ. Show that $X+Y$ is absolutely continuous with respect to λ and find its density.
25. Let X and Y be two independent and identically distributed (i.i.d.) random variables with law $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Find the density of $(U, V)=(X+Y, X-Y)$. Under which conditions on μ and σ^{2} are U and V independent?
26. Let X and Y be two i.i.d. random variables with law $\mathcal{N}\left(0, \sigma^{2}\right)$ independent random variables. Find the density of $(U, V)=\left(\sqrt{X^{2}+Y^{2}}, X / Y\right)$, where V is defined as zero if $Y=0$. Are U and V independent?
27. Let (X, Y) be a Gaussian random vector with mean $\left(\mu_{X}, \mu_{Y}\right)$ and covariance matrix

$$
Q=\left(\begin{array}{cc}
\operatorname{Var}[X] & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}[Y]
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{X}^{2} & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(X, Y) & \sigma_{Y}^{2}
\end{array}\right),
$$

with $\sigma_{X} \sigma_{Y}>0$. Let ρ be the correlation coeficient

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}} .
$$

Show that if $|\rho|<1$ the density of (X, Y) exists and it is equal to

$$
f_{X, Y}(x, y)=\frac{\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left\{\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-\frac{2 \rho\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right\}\right\}}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}}
$$

Show that if $|\rho|=1$, then the density of (X, Y) does not exist. In the case $|\rho|<1$ show that the law of Y conditioned to X has density an it is equal to the density of a univariate Gaussian r.v. with mean $\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)$ and variance $\sigma_{Y}^{2}\left(1-\rho^{2}\right)$.
28. Let $Y \sim \mathcal{N}(0,1)$ and for $a>0$ define $Z=Y \mathbf{1}_{\{|Y| \leq a\}}-Y \mathbf{1}_{\{|Y|>a\}}$. Show that Z is Gaussian r.v. but (Y, Z) is not multivariate Gaussian.
29. Let $Y \in L^{2}(\Omega, \mathcal{F}, P)$. Show that if $\mathbb{E}[Y \mid X]=X$ and $\mathbb{E}\left[Y^{2} \mid X\right]=X^{2}$ then $X=Y, P$-a.s..
30. Prove that if $X, Y \in L^{1}(\Omega, \mathcal{F}, P)$ and \mathcal{G} is a sub- σ-algebra of \mathcal{F} then:
(a) $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E}[X]$.
(b) If $X \geq 0 \Rightarrow \mathbb{E}[X \mid \mathcal{G}] \geq 0, P$-a.s.
(c) If \mathcal{H} is a sub- σ-algebra of \mathcal{G}. Then,

$$
\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] \mid \mathcal{H}]=\mathbb{E}[\mathbb{E}[X \mid \mathcal{H}] \mid \mathcal{G}]=\mathbb{E}[X \mid \mathcal{H}], P \text {-a.s. }
$$

(d) Assume that $X Y \in L^{1}(\Omega, \mathcal{F}, P)$ and that Y is \mathcal{G}-measurable. Then, $\mathbb{E}[X Y \mid \mathcal{G}]=Y \mathbb{E}[X \mid \mathcal{G}], P$ a.s.. In particular, if X is \mathcal{G}-measurable then $\mathbb{E}[X \mid \mathcal{G}]=X, P$-a.s..
31. Let (Ω, \mathcal{F}, P) be a probability space, let $\left\{A_{n}\right\}_{n \geq 1} \subset \mathcal{F}$ be a partition of Ω, (i.e., $\left\{A_{n}\right\}_{n \geq 1}$ are pairwise disjoint and its union is Ω) and let \mathcal{G} be the σ-algebra generated by $\left\{A_{n}\right\}_{n \geq 1}$. Assume that $X \in L^{1}(\Omega, \mathcal{F}, P)$ and $P\left(A_{n}\right)>0$. Show that

$$
\mathbb{E}[X \mid \mathcal{G}]=\sum_{n \geq 1} \frac{\mathbb{E}\left[X \mathbf{1}_{A_{n}}\right]}{P\left(A_{n}\right)} \mathbf{1}_{A_{n}}, \quad P \text {-a.s. }
$$

32. In the setup of Exercise 20, let \mathcal{G} be a sub- σ-algebra of \mathcal{F}. Show that for any $Y \in L^{1}\left(\Omega, \mathcal{F}, Q_{\theta}\right)$ one has that

$$
\mathbb{E}_{Q_{\theta}}[Y \mid \mathcal{G}]=\frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]}, \quad Q_{\theta} \text {-a.s. }
$$

33. Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $K>0$. Compute

$$
\mathbb{E}\left[\max \left(0, e^{X}-K\right)\right]
$$

You can express the solution in terms of the cumulative distribution function of a standard normal random variable

$$
\Phi(x):=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) d z .
$$

