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Measure Theory

1 Measurable Spaces

Let E denote a set and P(E) denote the power set of E; that is, the set of all subsets of E: In what
follows we will use calligraphic letters to denote a class of subsets of E; that is, a subset of P(E):
Moreover, the reference set E will be called a space.

De�nition 1 A �-algebra on E is a nonempty class A of subsets of E satisfying:

1. E 2 A:

2. If B 2 A then Bc := EnB 2 A:(closed under the formation of complements)

3. If Bi 2 A; i = 1; 2; 3; :::; then
1[
i=1

Bi 2 A:(closed under the formation of countable unions)

De�nition 2 If condition 3. in the previous de�nition is only satis�ed when considering a �nite
number of sets we say that A is an algebra.

It is easy to show that an arbitrary intersection of �-algebras is a �-algebra again. This fact
motivates the following de�nition.

De�nition 3 Given G any class of subsets we de�ne �(G) the �-algebra generated by G as the
smallest �-algebra containing G; which coincides with the intersection of all �-algebras containing G:

De�nition 4 Let E be an space and E a �-algebra of E: The pair (E; E) is called a measurable
space. The elements of E are the measurable sets of (E; E):

To give trivial examples of the previous mathematical objects is easy.

Example 5 For any set E; both the power set P(E) and the class f?; Eg are �-algebras, the largest
and the smallest that can be de�ned on E; respectively.

Example 6 If E is a set such that #E := fnumber of elements of Eg < 1; we usually take the
�-algebra P(E) which has 2#E elements.

The following is a more interesting example that will be crucial when we introduce the concept
of random variable. We start by recalling the concept of metric space.

Example 7 Let (E; d) be a separable metric space. We de�ne the Borel �-algebra on E to be the
�-algebra generated by all open (or closed) sets and we denoted it by B(E). Consider the family T
of all open balls

Br(x) = fy 2 E : d(x; y) < rg; x 2 E; r 2 R+:
One has that B(E) = �(T ):

The previous example covers many interesting cases, in particular R and Rd with the usual
euclidean distance d(x; y) =

qPd
i=1(xi � yi)2 are separable metric spaces.
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2 Measurable Transformations and Functions

Let T : E ! F be a transformation/mapping from a space E to another space F: The inverse image
T�1B of a subset B � F is de�ned to be

T�1B = fx 2 E : T (x) 2 Bg:

De�nition 8 Let (E; E) and (F;F) be two measurable spaces. An mapping T : E ! F is called
(E ;F)-measurable if T�1B 2 E whenever B 2 F : If the �-algebras involved are clear from the context
it is called measurable.

Note that if E = P(E) then any transformation is measurable. The following theorem simpli�es
checking if a transformation is measurable.

Theorem 9 Let (E; E) and (F;F) be two measurable spaces and T : E ! F a transformation.
Let G be a class of subsets of F such that �(G) = F : Then, T is (E ;F)-measurable if and only if
T�1B 2 E for all B 2 G:

De�nition 10 Let (E; E) be a measurable space and E a space. A function f : E ! R is called
Borel measurable if it is (E ;B(R))-measurable.

De�nition 11 Let (F;F) be a measurable space, E a space and T : E ! F a transformation.
We de�ne �(T ); the �-algebra generated by T; as the �-algebra generated by the family of sets
fT�1(B) : B 2 Fg, which is a �-algebra on E.

�(T ) is the smallest �-algebra on E that makes the transformation T measurable.

Theorem 12 Let (E; E); (F;F) and (G;G) be measurable spaces and T : E ! F and S : F ! G,
two measurable transformations. Then S � T : E ! G is (E ;G)-measurable.

The following lemma simpli�es to check if a particular function is measurable.

Theorem 13 Let (E; E) be a measurable space and f : E ! R a function on E: Then, f is
measurable if and only if fx 2 E : f(x) � ag 2 E for all a 2 R:

Theorem 14 Let f; g measurable functions on (E; E): Then,

1. af + gf; a; b 2 R is a measurable function.

2. fg and f=g are measurable functions.

3. The functions f+ := max(0; f(x)) and f� := �min(0; f(x)) are positive measurable functions.
Note that f = f+ � f� and jf j = f+ + f�:

4. The sets fx 2 E : f(x) = g(x)g; fx 2 E : f(x) < g(x)g and fx 2 E : f(x) � g(x)g are
measurable.

Theorem 15 Let ffngn�1 be a sequence of measurable functions. Then, the following functions are
measurable

1. supn�1 fn(x):

2. infn�1 fn(x):

3. lim supn!1 fn(x) := infn�1 supk�n fk(x):

4. lim infn!1 fn(x) := supn�1 infk�n fk(x):
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3 Measure Spaces

De�nition 16 Let (E; E) a measurable space. A measure � on E is a mapping � : E ! [0;+1]
satisfying �(?) = 0 and

�(
1[
i=1

Bi) =
1X
i=1

�(Bi); (�-additivity);

whenever fBigi�1 is a sequence of elements of E that are disjoint (Bi \ Bj = ?; if i 6= j). If

�(E) < +1; we say that the measure � is �nite. If there exists fBigi�1 disjoint such that E =
1[
i=1

Bi

and �(Bi) < +1; i � 1; we say that the measure � is �-�nite.

De�nition 17 Let E be an space, E be a �-algebra of E and � be a measure on E : The triple
(E; E ; �) is called a measure space.

Example 18 Any measurable space with the measure � � +1 or � � 0 are measure spaces.

Example 19 If #E < 1; then we can de�ne a measure � by assigning a positive number �(x) to
each element x of the set E; that is,

�(B) =
X
x2B

�(x); B 2 P(E);

and (E;P(E); �) is a measure space.

The following result shows how to induce a measure on a measurable space from a measure space
through a measurable transformation.

De�nition 20 Let (E; E ; �) be a measure space, (F;F) be a measurable space and T : E ! F be a
measurable transformation. Then, the set function

�T (B) := �(T
�1B); B 2 F ;

is a measure in F : The measure �T is called the image measure induced by T on F or the pushforward
measure.

3.1 Carathéodory Theorems�

When E is an uncountable set, to �nd a measure is much more di¢ cult. To construct measures
one makes use of the so called Carathéodory Theorems. These results allow to extend �-additive
positive set functions, de�ned on some families of sets, to measures on the �-algebras generated by
these families.

De�nition 21 Let E be a space. An exterior (or outer) measure on P(E) is a mapping �� : P(E)!
[0;+1] such that

1. ��(?) = 0;

2. �� is increasing: A � B ) ��(A) � ��(B);

3. �� is �-subadditive: fAngn�1 � P(E)) ��(
[
n�1

An) �
P

n�1 �
�(An):

De�nition 22 Let E be a space and �� an exterior measure on P(E): A set A � E is ��-measurable
i¤

��(B) � ��(A \B) + ��(Ac \B); 8B 2 P(E):

Theorem 23 (First Carathéodory Theorem) Let E be a space and �� an exterior measure on
P(E): We denote by E�� the collection of ��-measurable sets. Then, E�� is a �-algebra and ��jE��
(the restriction of �� to E��) is a measure.
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De�nition 24 An algebra on E is a nonempty class U of subsets of E satisfying:

1. E 2 U :

2. If B 2 U then Bc := EnB 2 U :(closed under the formation of complements)

3. If B1; B2 2 U ; then B1 [B2 2 U :(closed under the formation of �nite unions)

Theorem 25 Let E be a space and U an algebra on E: If �1 and �2 are two measures de�ned on
�(U) which coincide on U and they are �-�nite on U , then �1 � �2:

Theorem 26 (Second Carathéodory Theorem or Carathéodory Extension Theorem) Let
E be a space and U an algebra on E: Let � : U ! [0;+1] be a �-additive set function, � 6� +1:
We de�ne the mapping

�� : P(E) �! [0;+1]

B 7�! inf
B � [1n=1An
fAngn�1 � U

1X
n=1

�(An)

Then,

1. �� is an exterior measure.

2. U � E�� :

3. ��jU = �:

The previous theorem states that if the set function � is �-additive on the algebra U ; then � can
be extended to a certain �-algebra E�� that contains the �-algebra generated by U : The question
is: E�� = �(U)? The answer is no, in general. However, if we want a measure on �(U) is enough
to consider ��j�(U) : Also, Theorem 25 ensure that if the set function � is �-�nite on U ; then the
extension on �(U) is unique.
The relationship between �(U) and E�� is quite simple and it is explained in the next section

3.2 Complete Measure Spaces

De�nition 27 Let (E; E ; �) be a measure space and N � P(E): We say that N is negligible if there
exists A 2 F such that N � A and �(A) = 0:

De�nition 28 A measure space (E; E ; �) is complete if all negligible sets are measurable.

The next proposition shows that one always can construct a complete measure from one that is
not complete in a consistent way.

Proposition 29 Let (E; E ; �) be a measure space. We de�ne E := fA [ N : A 2 E ; N negligibleg
and the set function

�� : E �! [0;+1]
A [N 7�! �(A)

:

Then, (E; E ; ��) is a complete measure space and its called the completion of (E; E ; �):

The next theorem explains the relationship between E�� and �(U) in the Carathéodory extension
theorem

Theorem 30 Let E be a space and U an algebra on E: Let � : U ! [0;+1] be a �-additive and
�-�nite set function. Then, the measure space (E; E�� ; ��) is the completion of (E; �(U); ��) :
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3.3 Measures on (R;B(R))
A relevant measurable space where we would like to to construct measures is (R;B(R)) : A non
straightforward application of Carathéodory theorems yields the following result.

Theorem 31 Let J be the family of half-closed and bounded intervals on R; that is, the sets of the
following form

fx 2 R : x 2 (a; b]g; a � b:

and let � : J ! [0;+1] be a �-additive and �-�nite set function on R: Then � extends to an unique
measure on (R;B(R)).

The previous theorem is interesting because we have reduced the determination of a measure on
B(R) to the determination of a set function (satisfying certain requirements) on a smaller family
of sets J : It does not follow directly from Carathéodory extension theorem because J is not an
algebra.
We can proceed even further with the so called Lebesgue-Stieltjes measures on (R;B(R)):

De�nition 32 A Lebesgue-Stieltjes measure � on (R;B(R)) is a measure such that

8B 2 B(R) bounded, �(B) <1:

De�nition 33 A distribution function F is a function F : R! R nondecreasing and right contin-
uous,i.e.,

x � y ) F (x) � F (y) and lim
x!a+

F (x) = F (a):

Theorem 34 Let F be a distribution function. Then, there exists a unique (�-�nite) measure �F
on B(R) such that

�F ((a; b]) := F (b)� F (a); �1 < a < b <1:

Conversely, if � is a Lebesgue-Stieltjes measure on (R;B(R)) then there exists a distribution function
F such that � = �F : F is unique up to an additive constant.

Example 35 If we take F (x) = x we get the Lebesgue measure �:

The previous theorem just states that to determine a Lebesgue-Stieltjes measure on R we only
need to provide a distribution function, which is a considerably simpler object than a set function.
A similar theory also holds for (Rd;B(Rd)) but the conditions on F are more involved.

3.4 Properties Almost Everywhere "a.e." and Completeness

De�nition 36 Let (E; E ; �) be a measure space and suppose that some property hold at all point
of B 2 E where �(Bc) = 0: Then, this property is said to hold almost everywhere (abbreviated a.e.
or �-a.e.). The set Bc is called the exceptional set for that property. If �(E) = 1; we say that the
property holds almost surely (abbreviated a.s. or �-a.s.).

For example, if f is a function on E the statement f � 0; a.e. means that there is a set
B 2 E ; �(Bc) = 0; such that f(x) � 0 for all x 2 B: Note that the set where f(x) < 0 is to be a
subset of Bc; but this set does not need to be the whole Bc: The precise set where the property does
not hold is not necessarily measurable unless, of course, � is a complete measure.
One often has several properties withe each hold a.e. and it is desired to say that they hold

a.e. as a group. This is, one seeks one exceptional set, rather than several. This is clearly possible
for �nite or countable in�nite set of properties since countably many zero sets can be combined to
get a zero measure set. This of course cannot be done in general if there are uncountably many
conditions.
Next, suppose that f = g; a.e.. Suppose f is known to be measurable. It is then not necessarily

true that g is measurable. However, we have the following result.

Theorem 37 Let (E; E ; �) be a measure space, and f; g functions de�ned on E: If f is measurable
and � is complete, and f = g; a.e., then g is measurable.
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Pursuing this line a little further, suppose that (E; E ; �) is a measure space and �� is the completion
of �; on the completed �-algebra E : Suppose that f is E-measurable. Then, it can be shown that
there is an E-measurable function g such that f = g; �-a.e.
Finally, note the important notion of convergence a.e.. Speci�cally "fn ! f; a.e." means that

fn(x) ! f(x) for all x 2 A; where A 2 E ; �(Ac) = 0: This does not necessarily imply that f is
measurable, even though the function limn!1 fn(x) is a measurable function if all fn are measurable
functions. Of course, f is measurable if � is complete. From the previous discussion though, we
have that we always can choose a measurable version of f; that is, we can choose g measurable such
that f = g; a.e..
In integration theory, many hypothesis can be relaxed to hold only a.e. because it does not

matter how the functions are de�ned in sets of measure 0: Sometimes we will not add the "a.e." to
economize the writing.

4 Integration Theory

Assume that we have a measure space (E; E ; �):

De�nition 38 Let f(x) =
Pn

i=1 ai1Bi
(x) be a nonnegative simple function de�ned on E, where

fBigi=1;:::;n � E are disjoint and E =
n[
i=1

Bi: Then, the integral of f with respect to � is

Z
E

fd� =

nX
i=1

ai�(Bi):

De�nition 39 Let f a nonnegative measurable function. The integral of f with respect to � is
de�ned to be Z

E

fd� = lim
n!1

Z
E

fnd�;

where ffngn�1 is the sequence of measurable simple functions de�ned by

fn(x) =

�
i�1
2n if i�1

2n � f(x) < i
2n ; i = 1; :::; n2n

n if f(x) � n :

Note that fn(x) is an increasing sequence that converges to f(x):

De�nition 40 Let f be a measurable function. We say that the integral of f with respect to � exists
if
R
E
f+d� <1 or

R
E
f�d� <1 and it is de�ned to beZ

E

fd� =

Z
E

f+d��
Z
E

f�d�:

We say that f is integrable if
R
E
fd� exists and it is �nite and we say that f 2 L1(E; E ; �):

Note that f is integrable if and only if
R
E
jf j d� <1:

Theorem 41 Let f; g be measurable functions such that f = g, a.e.. Then, if the integral of f exists
then the integral of g also exists and they coincide. In particular, if f is integrable then g is also
integrable.

From the previous theorem one deduces that f only need to be de�ned a.s. to consider its integral
with respect to �. That is, it may be a set N 2 E with �(N) = 0 such that f is not de�ned on N .
De�ne g = f1Nc + 01N : The function g is measurable and de�ned for all x 2 E: We can de�ne, in
a consistent manner, the integral of f with respect to � byZ

E

fd� :=

Z
E

gd�:

Theorem 42 Let f; g 2 L1(E; E ; �). We have that
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1. ����Z
E

fd�

���� � Z
E

jf j d�:

2. af + bg 2 L1(E; E ; �) and Z
E

(af + bg) d� = a

Z
E

fd�+ b

Z
E

gd�;

3. If f � g; a.e. then Z
E

fd� �
Z
E

gd�:

4. If f = g; a.e. then Z
E

fd� =

Z
E

gd�:

5. If B 2 E, then f1B is measurable and we may de�neZ
B

fd� =

Z
E

f1Bd�:

Moreover, if
R
B
fd� = 0 for all B 2 E then f = 0; a.e.

De�nition 43 For p � 1; we de�ne the space Lp(E; E ; �) := ff being (E ; B(R))-measurable :R
E
jf jp d� <1g; abbreviated by Lp whenever is clear the underlying space of measure.

By the previous theorem, Lp is a vector space. Moreover, in Lp we can de�ne a norm k�kLp by

kfkLp :=
�Z

E

jf jp d�
�1=p

:

Theorem 44 The normed vector space (Lp; k�k) is complete, i.e., every Cauchy sequence is conver-
gent to an element of Lp: That means, if limn;m!1 kfn � fmkLp = 0 then there exist f 2 Lp such
that limn!1 kfn � fkLp = 0:

Theorem 45 L2(E; E ; �) is also a Hilbert space with the inner product (f; g) :=
R
E
fgd�:

The following results relate the operation of taking limits and integration.

Theorem 46 (Monotone convergence) Let ffngn�1 be an a.e. increasing sequence of measur-
able functions such that Z

E

f1d� exists and
Z
E

f1d� 6= �1:

Then, the integrals of fn; n � 1 and limn!1 fn(x) exist andZ
E

lim
n!1

fn(x)d� = lim
n!1

Z
E

fnd�:

In particular, if limn!1
R
E
fnd� < +1 then fn; n � 1 and limn!1 fn(x) are integrable.

The Monotone convergence theorem is usually applied when the sequence ffngn�1; in addition
of being increasing, is also positive, i.e., f1 � 0; a.e.

Theorem 47 (Fatou�s lemma) Let ffngn�1 be a sequence of measurable functions such thatZ
E

inf
n�1

fnd� exists and
Z
E

inf
n�1

fnd� 6= �1:

Then, the integrals of fn; n � 1 and lim infn!1 fn(x) exist andZ
E

lim inf
n!1

f(x)d� � lim inf
n!1

Z
E

fnd�:

In particular, if lim infn!1
R
E
fnd� < +1 then lim infn!1 f(x) is integrable.
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Theorem 48 (Dominated convergence) Let ffngn�1 be a sequence of measurable functions such
that jfn(x)j � g(x); a.e., where g is an integrable function. Then, f is integrable andZ

E

lim
n!1

fn(x)d� = lim
n!1

Z
E

fnd�:

The following is a general change of variable formula.

Theorem 49 (Image measure Theorem) Let (E; E ; �) be a measure space, (F;F) a measurable
space, T : E ! F a measurable transformation and f : F ! R a measurable function. Then, the
integral of f as a function on (F;F ; �T ) exists if and only if the integral of f � T as a function on
(E; E ; �); and if this is the case Z

E

f � Td� =
Z
F

fd�T :

In particular, f is integrable if and only f � T is integrable in their respective spaces.

The previous theorem is a powerful tool to compute integrals of functions de�ned on an arbitrary
measure space (E; E ; �): The idea is to �nd an equivalent integral on (R;B(R); �) : Assume that we
have a measurable function g de�ned on a measure space (E; E ; �) and we want to compute its
integral with respect to �: Applying the image measure theorem with T = g and f = Id (the
identity function) we get thatZ

E

gd� =

Z
E

Id � gd� =
Z
R
Id d�g =

Z
R
x�g(dx):

We end this section by stating some results comparing the Riemann and Lebesgue integral on
R. This is important because it will allow us to use the machinery of classical integral calculus to
compute Lebesgue integrals. The Lebesgue integral is an extension of the Riemann integral when
where are integrating over a bounded interval [a; b]: However, there are functions that are Riemann
integrable in the improper sense that are not Lebesgue integrable.

Theorem 50 (Lebesgue characterization of Riemann integrable functions) Let f be a bounded
real-valued function de�ned on a bounded interval [a; b]: Then, f is Riemann integrable i¤ the set

D = fx 2 [a; b] : f is not continuous at xg;

has Lebesgue measure zero. If this is the case, one can �nd a Borel measurable function g = f; �-a.s.
such that the Riemann integral of f coincides with the Lebesgue integral of g:

Theorem 51 Let f : [a;+1)! R be a Borel measurable function, where a 2 R. Suppose that

1. f is Riemman integrable on [a; b] for every b � a:

2. There exists a constant M such that
R b
a
jf(x)j dx �M; for all b � a:

Then f and jf j are improper Riemann integrable on [a; b): Furthermore, f 2 L1([a;1);B([a;1)); �)
and Z

[a;+1)

fd� =

Z 1

a

f(x)dx:

5 The Radon-Nykodim Theorem

De�nition 52 Let (E; E ; �) be a space of measure. Let f : E ! R+ be a measurable function. We
de�ne on E the measure

�(B) =

Z
B

fd� :=

Z
E

1Efd�; B 2 E :

We say that f is the density of � with respect to � and it is written f = d�
d� : We also say that f is

the Radon-Nikodym derivative of � with respect to �:
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De�nition 53 Let � and � be two measures on a measurable space (E; E):We say that � is absolutely
continuous with respect to � if and only if

8B 2 E ; �(A) = 0) �(A) = 0;

and we write � � �: If �� � and � � � we say that the two measures are equivalent and we write
� � �:

Theorem 54 (Radon-Nikodym) Let � and � be two measures on a measurable space (E; E) and
� being �-�nite. Then, the following statements are equivalent:

1. � � �:

2. There exists a measurable function f : E ! R+ such that f = d�
d� :

Proposition 55 Let (E; E ; �) be a space of measure. Let � � � with density f = d�
d� : Let g : E ! R

measurable. Then the integral of g with respect to � exists if and only if the integral of gf exists and,
if this is the case, Z

E

gd� =

Z
E

gfd�:

In particular, f is integrable with respect to � if and only if gf is integrable with respect to �:

6 Measures on Product Spaces

De�nition 56 Let f(Ei; Ei)gi2I a family of measurable spaces. Let E := �
i2I
Ei the Cartesian product

of the family fEigi2I . Let �i : E ! Ei; i 2 Ei; the projection of E into its factors. We call the
product �-algebra of fEigi2I the �-algebra generated by f�igi2I and we will denote it by E = 


i2I
Ei:

Equivalently, 

i2I
Ei = �(

�
��1i (Ai) : Ai 2 Ei; i 2 I

	
): A set of the form ��1i (Ai) is called a cylinder

of base Ai: (E; E) is called the measurable product space of f(Ei; Ei)gi2I :

Observe that if (
;F) is another measurable space, then g : 
 ! E is measurable i¤ 8i 2 I;
�i � f : 
! Ei is measurable.
When we have �nite product of measurable spaces the product �-algebra can be de�ned, equiv-

alently, in terms of rectangles.

De�nition 57 Let (E; E) the measurable product space of f(Ei; Ei)gi=1;:::;n: A measurable rectangle
is a subset of E of the form Ai � � � � �An with Ai 2 Ei:

We have that the �-algebra generated by the measurable rectangles coincides with E :
We are interested in constructing measures on �nite product spaces from measures on its factors.

The basic tool are the transition measures.

De�nition 58 A transition measure from a measurable space (E1; E1) to a measurable space (E2; E2)
is a mapping

� : E1 � E2 ! R+;

such that

1. 8e1 2 E1; �(e1; �) : E2 ! R+ is a measure on (E2; E2):

2. 8A2 2 E2; �(�; A2) : E1 ! R+ is (E1;B(R+))-measurable.

De�nition 59 A family of measures f�igi2I on a measurable space (E; E) is uniformly �-�nite

i¤ there exists a decomposition E =
1[
n=1

An; with An 2 E ; and constants Kn 2 R+ such that

8n 2 N;8i 2 I; �i(An) � Kn:
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Theorem 60 (Product measure) Let (E1; E1; �) be a measure space with � being �-�nite. Let
(E2; E2) be a measurable space. Let � : E1 � E2 ! R+ be a transition measure such that the family
of measures f�(e1; �)ge12E1 is uniformly �-�nite. Then:

1. There exists an unique measure � on (E1 � E2; E1 
 E2) such that

�(A1 �A2) =
Z
A1

�(e1; A2)d� =

Z
A1

�(e1; A2)�(de1):

2. If g : E1�E2 ! R is a function (E1
E2;B(R))-measurable and the integral of g with respect
to � exists, then the function

e1 !
Z
E2

g(e1; e2)�(e1; de2)

is well de�ned �-a.e., it is measurable and its integral with respect to � exists and is equal toZ
E1�E2

gd� =

Z
E1

�Z
E2

g(e1; e2)�(e1; de2)

�
�(de1): (1)

Note that in the previous theorem we assume that the function g is integrable with respect to �:
A very useful result is the so called Tonelli-Hobson integrability criterion.

Theorem 61 (Tonelli-Hobson) Assume the same notation as in the product measure theorem.
Then, if g is (E1 
 E2;B(R))-measurable andZ

E1

�Z
E2

jg(e1; e2)j �(e1; de2)
�
�(de1) < +1;

then g is integrable with respect to � and the formula (1) holds.

A particular important case is when �(�; A2) = �(A2) is a constant for every A2 2 E2: Then, the
product measure � is denoted by �
 � andZ

E1�E2
gd� =

Z
E1

�Z
E2

g(e1; e2)�(de2)

�
�(de1)

=

Z
E2

�Z
E1

g(e1; e2)�(de1)

�
�(de2);

whenever the function g is �-integrable (which can be checked using Tonelli-Hobson). This result is
known as Fubini�s Theorem.
The Product Measure and Tonelli-Hobson�s Theorems are easily extended to any �nite product

of measurable spaces.
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