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Probability Theory

1 Basic Definitions
Definition 1 A probability space (2, F, P) is a measure space such that P(2) = 1.

A probability space is a mathematical object that is used to model a random experiment. Each
w € N is a possible outcome of the random experiment and P(B), B € F is the probability that the
outcome belong to the event B.

Definition 2 A random variable X : Q@ — R is a (F, B(R))-measurable function.

A random variable is the mechanism we use to observe the random experiment. That is, we do
not observe w directly but for all B € B(R) we can decide if X (w) belong to B or not.

Definition 3 The law of a random wvariable X, denoted by L(X), is the image measure Px on
(R, B(R)), that is,
Px(B)=P(X™'B), BecBR).

Note that Px(B) < 1 for all B € B(R) and, therefore, Px is a Lebesgue-Stieltjes measure on
B(R).

Definition 4 The distribution function Fx(x) of a r.v. X is the following distribution function
associated to the Lebesgue-Stieltjes measure Px :

Fx(z) = Px((—o0,2]), z€R.

Definition 5 Let Px < A, then we define the density fx of X to be the Radon-Nikodym derivative

i = 455 and

Px(B) = /BdPX - /B fxd\, BeBR).
We have that fx(z) = & Fx(z).

Definition 6 Let g : R — R be a Borel measurable function. Then the expectation of g(X) is
defined to be

Bg(X)] = / goXdP — / odPy.
If Px < A, then
B[g(X)] = / ofxdA = / o) fx (2)da,

where the last integral is an improper Riemann integral.
Definition 7 For any p > 1 we say that a r.v. X € LP := L? (Q, F, P) iff B[| X "] < cc.

Using Holder inequality one can check that if X € LP then X € L4 for all ¢ < p.
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Definition 8 If X € L' then u = E[X], the mean of X is well defined. If X € L? then o? =
Var[X] = E[(X — E[X])?], the variance of X is well defined.

Definition 9 We say that a random variable X is Gaussian or normal with mean pu and variance
o2, and we denote it by X ~ N (u,0?), if Px < X\ and

fx(a) = DX () = L exp(—(””‘;‘)>, zER.

X V2mo? o

We say that a Gaussian random variable with mean u is degenerate if its law is given by the Dirac
delta function on p, that is, 6,(B) = 1 if p € B and zero otherwise, we denote it by X ~ N (p,0).
We say that X is a standard normal random variable if X ~ N(0,1).

The same kind of definitions can be given for random vectors X = (X7, ..., X4)’ that is measurable
transformations from (2, F, P) to (R, B(R?)). We shall use the column notation for vectors and the
symbol ’ is the transpose.

Definition 10 A random vector X : Q — R4 X = (Xy,..., Xy)" is a (F,B(R%))-measurable trans-
formation.

Definition 11 The (joint) law of a random vector X = (X1, ..., Xq), denoted by L(X), is the image
measure Px on (R, B(R?)), that is,

Px(B)=P(X~'B), BeB(RY.

In this context, the law of X is called the marginal law of X;. Note that Px is a Lebesgue-Stieltjes
measure on B(RY).

Definition 12 The (joint) distribution function Fx(x) of a random vector X is the following dis-
tribution function associated to the Lebesgue-Stieltjes measure Px :

Fx(z1,...,2q) = Px((—00,21] X -+ X (=00, 24])
:P({Xl lew-'de Sxd})a ($17...7$d) eRd'

We note that the joint law of X determines the marginal laws of X;, but not the othere way
around. Moreover,
Fx,(z;) = lim Fx(z1,....,24).

d
Definition 13 Let Py < A%, where A = A\ @ - ). ® A. Then, we define the density fx of X to be

the Radon-Nikodym derivative fx = Cg:ﬁ and

PX(B):/BdPX:/BfXd/\d, B € B(RY).

d
We have that f(z1,...,2q4) = WFX(M, ey L)

Definition 14 Let g : R? — R be a Borel measurable function. Then the expectation of g(X) is
defined to be

]E[g(X)]:/ngXdP:/RdgdPX.

If Px < X, then

Elg(X)] = /Rd gfxd\ = /JRd 9(x1, ey xq) fx (@1, .y xq)day - - - dag.

where the last integral s an improper Riemann integral.
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Definition 15 Let X = (X1,..,Xq) . If X; € L',i=1,...,d then u = (p1, ..., pa)’ = (B[X1], ..., B[X4])",
the mean vector of X, is well defined. If X; € L?,5=1,...,d then

% = Cov(X) = (Cov(Xi, X;)), iy, g = BIX = p)(X — p)']

E[(X1 — p1)?] Bl(X1 — ) (X2 —p2)] -+ B[(Xy — 1) (Xa — pa)]
Bl ) (G )] E[(Xe )] BI(Xe — ) (X0~ )]
BI(Xa — pta) (X1 — )] BI(Xa— pa) (X = piz)] - Bl(Xa - pa)?)

the covariance matriz of X, is well defined.

Remark 16 The covariance matriz of a random wvector X 1is a symmetric nonnegative definite
matriz, i.e. Li; = Xj;,0,7 = 1,..,d and y'Sy > 0 for all y # 0,y € R% If detE > 0 then
the probability distribution of X is a truly d-dimensional distribution in the semse that cannot be
concentrated on a lower dimensional subspace of R and we say that the distribution is nondegenerate
or reqular. If detX = 0 then the probability distribution of X is concentrated on such a lower
dimensional subspace of R? and we say that the distribution is degenerate or singular.

Proposition 17 Let X be a d-dimenstonal random vector with mean vector p and covartance matrix
.. Further, let B be an m x d matriz, let b be a constant m-dimensional vector, and setY = BX +b.
Then, Y is a m-dimensional random vector with mean vector and covariance matric given by

E[Y] =Bu+b,  Cov(Y)= BB

Theorem 18 Let S € B(R?) be partioned into disjoint measurable subsets Sy, Si, ..., Sy such that
S =um,S; and such that \%(Sg) = 0. Assume that for each i = 1,...,m, the mapping g : S; — R? is
injective (onme to one) and continuously differentiable with non-vanishing Jacobian. Let Y = g(X),
where X : Q — S is a random vector with density fx with respect to \*. Then, Y has density (with
respect to \?) given by

Fr(w) = 3 Fx(g7 @) |det T, ()| 105 (),

where g;l denotes the inverse map g;l :9(S;) — S; and Jg¢1 its corresponding Jacobian matrizx.

Definition 19 Let X be a d-dimensional random vector. The characteristic function px of X is
defined to be the Fourier transform of its law Px, that is,

ox(u) = / e rdPx = B[e™X], zeR%
R

Theorem 20 X and Y have the the same characteristic function if and only if they have the same
law,i.e., Px = Py.

Proposition 21 Let X be a d-dimenstonal random vector with mean vector p and covariance matrix
Y. Further, let B be an m x d matriz, let b be a constant m-dimensional vector, and setY = BX +b.
Then,

v (u) = ""ox (B').

2 Independence

Definition 22 Let (Q, F, P) be a probability space. A family of events {A;}ic; C F are independent

iff VJ C 1,J finite, one has that
P((4;) = []P(A)).
jeJ jeJ

Definition 23 Let {&;}icr, & C F, be a family of collections of events. We say that {&;}icr are
independent iff every family {A;},c;, with A; € &, is independent.
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Definition 24 Let {X; : Q — R}ier be a family of random variables. We say that {X;}ier is
independent iff the family of o-algebras {o(X;)}ier is independent.

Taking into account the previous definitions we have that {X;};c; is independent iff for all finite
subset {i1,...,7,} C I, and for all By,...B,, € B(R), one has that

P({le € Bl, '~~7Xin S Bn}) = P({X“ € Bl} n...N {Xln € Bn})
=P(X;, €By)----- P(X;, € B,).

The next proposition characterizes the independence of a finite number or r.v.

Proposition 25 Let {X;};=1,.. 4 be random variables with laws Px,,i = 1, ...,d, respectively, and
let X = (X4,...,Xq) be the random vector with law Px. Then,

1. {X;}i=1,...a are independent iff Px = Px, @ --- ® Px,.

2. {Xi}i=1,...a are independent iff Fx(z1,...,xq) = Fx,(z1) - - Fx,(zaq).

3. {Xi}i=1,...a are independent iff px (u1, ..., uq) = @x, (u1) - ox,(uq)

4. Assume that Px < \%. Then, {X;}i=1,...a are independent iff fx (x1,...,za) = fx,(x1) fx,(Ta).
The next proposition only gives necessary conditions for the independence.

Proposition 26 1. Let (E;,&)ier and (G;,G;) be two families of measurable spaces. Let {X; }ier
be a family of random elements X; : Q — FE;, and {gi}icr a family of measurable trans-
formations g; : E; — G;. Then, {g; o X;}icr is a family of independent random elements
gioX;: Q— G

2. Let {X;}i=1,.. 4 be independent random variables with finite expectation, i.e, B[|X;|] < 00,7 =
1,..,d, then Xy --- X4 has finite expectation and

E[X: - Xq4] = E[| X4|] - - B[] Xal]-

3. Let {X;}i=1,.. 4 be independent r.v. with E[|Xi\2] <oo,i=1,..,d, then
Var[X; + - -+ + X4] = Var[Xq] + - - - + Var[X].

3 The Multivariate Normal Distribution

Definition 27 A d-dimensional random vector X is Gaussian (or multivariate normal) iff every
linear combination o’ X = E?Zl a; X; has a (one dimensional) Gaussian distribution (possibly degen-
erate). The notation X ~ N (u,Y) is used to denote that X has a multivariate normal distribution
with mean vector p and covariance matriz ¥. We say that X is a standard multivariate normal
random vector if X ~ N(0, 1) where 1, is the d-dimensional identity matriz.

Theorem 28 Suppose that X ~ N(u,>) and set Y = BX +b. Then Y ~ N (Bu + b, BLBY).

The previous theorem is useful to obtain a random vector with X ~ N(u,¥) from an affine
transform of a random vector Z ~ N(0, I;). One has that X = 2%/2Z + u, where X'/? is a square
root of the covariance matrix X, that is, /2 is a matrix B such that BB = X.

Theorem 29 Theorem 30 Let X ~ N(u,X) and det X > 0. Then Px < \¢ and

dPx 1 1 fa
fX(I):W(JC):meXP <2(5€#)E l(xﬂ))y z e R%

Theorem 31 Let X ~ N (u,%). Then {X;}i=1,..a are independent iff ¥; ; = Cov(X;, X;) = 0. If,
i addition, det > > 0 then
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4 Conditional Expectation

The concept of conditional expectation is crucial in many areas of modern Probability Theory.
Important types of stochastic processes, like martingales and Markov processes, are defined using
conditional expectation. Its definition stems from the following proposition.

Definition 32 Let (Q, F, P) be a probability space, let G be a sub-o-algebra of F and X € L' (2, F, P).
The conditional expectation of X given the o-algebra G, denoted by B[X|G], is the (P-a.s unique)
G-measurable random variable satisfying

B[15X] :/ XdP :/ E[X|G]dP = B[15E[X|G], VB e€G.

Proposition 33 E[X|]] exists.
Proof. Assume first that X > 0. Then, define the measure i by

1(B) = / XdP, AcF.
B

The measure i < P. This property also holds when we restrict both measures to G. By the Radon-
Nikodym Theorem, there exists a density f measurable with respect to G such that

M(B):/deP, Aeg.

If we define B[X|G] := f the statement of the proposition is satisfied. The general case follows by
considering the decomposition X = X+ — X~ and using the hypothesis (included in the definition)
that X € LY(Q, F,P). m

The intuitive meaning of the conditional expectation is as follows. A random experiment has
been performed. The only information available to you regarding which sample point w has been
chosen is the set of values Z(w) for every G-measurable random variable Z. Then E[X|G](w) is the
expected value of X (w) given this information.

Lemma 34 (Properties of the conditional expectation) Assume that all the r.v. appearing
below are integrable.

1. Conservation of the expectation: E[E[X|F]] = E[X].
Linearity: BlaX + bY'|G] = aB[X|G] 4+ bE[Y|G], for all a,b € R.
Positivity: X > 0= E[X|G] > 0.

e

Conditional monotone convergence: If {X,, }n>1 is an increasing sequence of positive random

variables such that X, 1 X, a.s., then B[X,|G] T E[X]F], a.s..

&

Conditional Fatou lemma: If X,, > 0,Vn > 1, then E[liminf,,_ o, X, |G] < liminf,,_ -, B[X,|G].

6. Conditional dominated convergence: |X,| <Y € L*(Q, F,P),¥Yn > 1 and X, — X, a.s., then
E[X,|G] — E[X|G], a.s..

7. Conditional Jensen’s inequality: Let ¢ : R — R be a convex function, ¢(X) € L' (Q,F,P).
Then, o(B[X|G]) < Blp(X)|F].

8. Tower property: Let H C G be a sub-o-algebra of G. Then,

E[E[X|G]|H] = BE[X|H]|G] = B[X|H].

9. "What is measurable goes out": Assume that XY and X are integrable and that Y is G-
measurable. Then, BIXY|G] = YE[X|G]. In particular, if X is G-measurable then B[ X|G] = X.
10. "What is independent vanishes": If H is a o-algebra independent of o(G, 0(X)), then B[ X |o(G,0(X))] =
E[X|G]. In particular, if X is independent of G then B[X|G] = E[X].
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11. Substitution property: Let X and Y be two random variables and h : R x R — R be a
measurable function. If X is G-measurable and h(X,Y) is integrable, thenE[h(X,Y)|G] =
E[h(a,Y)|G]la=x -

Theorem 35 (Factorization Theorem) Let Q be a set. Let (E,£) a measurable space. Let X :
Q—=>RandY : Q — FE be two mappings. Then, X is o(Y)-measurable iff there exists a function
v: E— R, (£, B(R))-measurable such that

X =p(Y).

Corollary 36 IfY : Q — R% then X : Q — R is o(Y)-measurable iff there exists a measurable
function ¢ : R — R such that
X =p(Y).

5 Conditional Probability*

Definition 37 Let (2, F, P) be a probability space, G a sub-o-algebra of F and A € F. We call the
conditional probability of A given G, the r.v.

P(A|G) = E[14|G], P-a.s.

Using the properties of the conditional expectation one can see that P(-|G) has the same prop-
erties as those of a probability measure, with the exeception that they only hold a.s.. It is natural
to ask wether P(A|G)(w) as a function of A € F is a probability measure, at least P-a.s. w € Q.
Unfortunately the answer is negative in general because to find a version of such object we need
to consider an uncountable number of exceptional sets. However, when we add some topological
structure to 2 we have a positive result.

Definition 38 Let (Q,F, P) be a probability space, G a sub-o-algebra of F. A regular conditional
probability of P given G is a mapping
p QxF — [0,]]
(w,A) — pw,A)”’
such that

1. For each fized A € F,
p(,A) Q —  [0,1]
w — pw,A)’

is a version of the conditional probability of A given G,i.e.,

(a) p(-, A) is G-measurable.
(b)) VG € G, P(ANG) = [,14dP = [, p(w, A)P(dw).
2. P-a.s. we
plw,) :F — [0,1
A = pwA)’

is a probability in (Q, F).

In the previous definition we can change the "P-a.s. w € Q" in condition 2. by "Vw € Q".
The following is general positive result on the existence of conditional probabilities.

Theorem 39 Let (U, F, P) be a probability space and let Y : Q@ — E a measurable function from
(Q,F) to a measurable space (E,E), where E is a Polish space (i.e. metric, separable and complete)
and €& = B(E). Let G be sub-o-algebra of F. Then, there exists a regular conditional probability of
Y given G. That is: There exists a mapping

p :Qx&E — [0,]]
(w,A) — pw,A)”’

such that
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1. VA €€,

satisfies

(a) p(-, A) is G-measurable.
(b) VG € G
PHY € A}nG) = /G LiyeaydP = /Gp(-, {Y € A})(w)P(dw).
2. P-a.5. w € (),

[0,1

p(w,") :F
A p(w, A)’

is a probability in (E,E).

In particular if we choose (2, F) = (E,€) and Y being the identity we get that if (Q,F) is a
Polish space with its Borel o-algebra then there exists a conditional probability of P given G.

Theorem 40 Let X € LY(Q, F, P). Let p be a regular conditional probability of P given G a sub-o-
algebra of F. Then, P-a.s. w € Q, X is integrable with respect to p(w,-) and

/QX(w’)p(w,dw') = E[X|G](w).

Definition 41 We say that a o-algebra G is countably generated (or separable) if there exists a
sequence {Aptn>1 C G such that o ({An}n>1) =G.

Theorem 42 Let (2, F, P) be a probability space, G a countably generated sub-o-algebra of F. If a
reqular conditional probability of P given G exists, then we can choose a version of it such that

p(w,A) =14(w), YweQ,VAecq. (1)

Some authors require property (1) to hold when defining a regular conditional probability.
As a consequence of the previous arguments we have that there always exists a regular version
of the law of a random vector conditioned to other random vector.

6 Conditional Expectation and Random Variables
Definition 43 Let X,Y : Q — R be two random variables. We call law of Y conditioned by X any
transition probability measure p from (R, B(R)) to (R, B(R)) satisfying

P(XGA,YGB):/p(x,B)PX(dx), VA, B € B(R).
A

Sometimes one writes P(Y € B|X = x) := p(x,B), but one has to keep in mind that this
function is only defined Px-a.s. as the following proposition shows.

Proposition 44 Given two random variables X,Y there always exists a law of Y conditioned to X.
If p and pr are two of them then for all B € B(R),p(-, B) = p'(-, B), Px-a.s.

Example 45 Let (X,Y) be a random vector with Pix yy < A2. Then, we can take

)

fxvy(=y)
BY={ JIx@ if fx(z)#0
Pz, B) { QB) if fx(x)=0

where Q is any probability measure. Let’s check it:

PUXeAYeB) = [ fuyydody
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1
— T

(/B fxy(%y)l{fx(m)#o}dy) dx

/B fX,Y(xay)l{fx(r)—O}dy> dx

/B fx(ﬂr)wl{fm#o}dy) dzx

p(@, B) fx (2)dz — /A p(z, B)Px (dz).

Where we have used the image measure theorem,then Fubini’s Theorem and finally we take into
account that

/ (/ fX,Y($7y)1{fX(x)—0}dy> d:cS/ Lifx(@)=0} (/ fX,y(x,y)dy) de
A B " A
:/A]‘{fx(w):o}fX(JU)d:L‘:[)

Definition 46 Let X,Y : Q — R be two random variables. Let p be a law of Y conditioned to X.
Let g : R — R a Borel measurable function such that the integral of g with respect to p(x,-). One
defines

Elg(Y)|X = 2] iz/g(y)p(ﬂc,dy),
R
which is called the conditional expectation of g(Y) by {X = x}.

The previous definition is not precise because it depends on the particular version that we use of
the law of Y conditioned to X. That is, as p and p’ are only defined Px-a.s., it does not make sense
to talk about the value of such functions for a particular . For that reason, it is better to leave x as
a variable and require that exists the integral of g with respect to p(z, ), Px-a.e. « and think about
the function

2 Bg(Y)|X =a].

Definition 47 Given a r.v. X, the conditional expectation of a random wvariable Y with respect to
X is the conditional expectation of Y given o (X).

The connection of the latter definition with the previous one is as follows. By the Factorization
Theorem we know that exists ¢ : (R, B(R)) — (R, B(R)) such that E[Y |o(X)] = ¢(X). Therefore, we
may define E[Y|X = z] = ¢(z). However, the function ¢ is only defined outside sets of Px-measure
zero. Hence, we have to understand E[Y|X = z] as the function that satisfies

/x1<B)Y(w)P(dw) :/x1<3> E[Y|X](w)P(dw) :/)(I(B)(@ox)(w)p(dw)
Z/B@(QT)PX(dy)Z/BE[Y|X=9:}PX(dx), B € B(R),

by the Image Measure Theorem.

Theorem 48 Assume that B[g(Y)] exists. Then, E[g(Y)|X = ] exists Px-a.s. € R, and

Blo(V)] = | Blo(¥)IX =] Px(do).
In particular, if g(Y') is integrable with respect to P, then B[g(Y)|X = z] is finite Px-a.s.

Proof. We have that

Blo)] = [ 90 Pry (da.n)

:/R</Rg(y)p(x,dy)) Py (de)

8 Last updated: November 23, 2015



— /RE[g(Y)|X = z] Px (dz),

where in the first equality we have used the image measure theorem and in the second equality we
have used the product measure theorem. Note that the law Px y is the product measure constructed
from the probability Px and the transition probability p. m
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