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Probability Theory

1 Basic De�nitions

De�nition 1 A probability space (
;F ; P ) is a measure space such that P (
) = 1:

A probability space is a mathematical object that is used to model a random experiment. Each
! 2 
 is a possible outcome of the random experiment and P (B); B 2 F is the probability that the
outcome belong to the event B.

De�nition 2 A random variable X : 
! R is a (F ;B(R))-measurable function.

A random variable is the mechanism we use to observe the random experiment. That is, we do
not observe ! directly but for all B 2 B(R) we can decide if X(!) belong to B or not.

De�nition 3 The law of a random variable X; denoted by L(X); is the image measure PX on
(R;B(R)), that is,

PX(B) = P (X
�1B); B 2 B(R):

Note that PX(B) � 1 for all B 2 B(R) and, therefore, PX is a Lebesgue-Stieltjes measure on
B(R):

De�nition 4 The distribution function FX(x) of a r.v. X is the following distribution function
associated to the Lebesgue-Stieltjes measure PX :

FX(x) = PX((�1; x]); x 2 R:

De�nition 5 Let PX � �; then we de�ne the density fX of X to be the Radon-Nikodym derivative
fX =

dPX
d� and

PX(B) =

Z
B

dPX =

Z
B

fXd�; B 2 B(R):

We have that fX(x) = d
dxFX(x).

De�nition 6 Let g : R ! R be a Borel measurable function. Then the expectation of g(X) is
de�ned to be

E [g(X)] =
Z



g �XdP =
Z
R
gdPX :

If PX � �; then

E [g(X)] =
Z
R
gfXd� =

Z
R
g(x)fX(x)dx;

where the last integral is an improper Riemann integral.

De�nition 7 For any p � 1 we say that a r.v. X 2 Lp := Lp (
;F ; P ) i¤ E[jXjp] <1:

Using Hölder inequality one can check that if X 2 Lp then X 2 Lq for all q � p:
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De�nition 8 If X 2 L1 then � = E[X]; the mean of X is well de�ned. If X 2 L2 then �2 =
Var[X] = E[(X � E[X])2]; the variance of X is well de�ned.

De�nition 9 We say that a random variable X is Gaussian or normal with mean � and variance
�2; and we denote it by X � N (�; �2); if PX � � and

fX(x) =
dPX
d�

(x) =
1p
2��2

exp

 
� (x� �)

2

�2

!
; x 2 R:

We say that a Gaussian random variable with mean � is degenerate if its law is given by the Dirac
delta function on �; that is, ��(B) = 1 if � 2 B and zero otherwise, we denote it by X � N (�; 0).
We say that X is a standard normal random variable if X � N (0; 1):

The same kind of de�nitions can be given for random vectorsX = (X1; :::; Xd)
0 that is measurable

transformations from (
;F ; P ) to (Rd;B(Rd)):We shall use the column notation for vectors and the
symbol 0 is the transpose.

De�nition 10 A random vector X : 
 ! Rd; X = (X1; :::; Xd)
0 is a (F ;B(Rd))-measurable trans-

formation.

De�nition 11 The (joint) law of a random vector X = (X1; :::; Xd)
0; denoted by L(X); is the image

measure PX on (Rd;B(Rd)), that is,

PX(B) = P (X
�1B); B 2 B(Rd):

In this context, the law ofXi is called the marginal law ofXi: Note that PX is a Lebesgue-Stieltjes
measure on B(Rd):

De�nition 12 The (joint) distribution function FX(x) of a random vector X is the following dis-
tribution function associated to the Lebesgue-Stieltjes measure PX :

FX(x1; :::; xd) = PX((�1; x1]� � � � � (�1; xd])
= P (fX1 � x1; :::; Xd � xdg); (x1; :::; xd) 2 Rd:

We note that the joint law of X determines the marginal laws of Xi; but not the othere way
around. Moreover,

FXi
(xi) = lim

xj!1
FX(x1; :::; xd):

De�nition 13 Let PX � �d; where �d = � 

d)
� � � 
 �: Then, we de�ne the density fX of X to be

the Radon-Nikodym derivative fX = dPX
d�d

and

PX(B) =

Z
B

dPX =

Z
B

fXd�
d; B 2 B(Rd):

We have that f(x1; :::; xd) = @d

@x1���@xdFX(x1; :::; xd):

De�nition 14 Let g : Rd ! R be a Borel measurable function. Then the expectation of g(X) is
de�ned to be

E [g(X)] =
Z



g �XdP =
Z
Rd
gdPX :

If PX � �d; then

E [g(X)] =
Z
Rd
gfXd�

d =

Z
Rd
g(x1; :::; xd)fX(x1; ::; xd)dx1 � � � dxd:

where the last integral is an improper Riemann integral.
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De�nition 15 Let X = (X1; :::; Xd)
0
: If Xi 2 L1; i = 1; :::; d then � = (�1; :::; �d)0 = (E[X1]; :::;E[Xd])0 ;

the mean vector of X; is well de�ned. If Xi 2 L2; i = 1; :::; d then

� = Cov(X) = (Cov(Xi; Xj))i;j=1;:::;d = E[(X � �)(X � �)0]

=

0BBB@
E[(X1 � �1)2] E[(X1 � �1) (X2 � �2)] � � � E[(X1 � �1) (Xd � �d)]

E[(X2 � �2) (X1 � �1)] E[(X2 � �2)2] � � � E[(X2 � �2) (X1 � �1)]
...

...
...

E[(Xd � �d) (X1 � �1)] E[(Xd � �d) (X2 � �2)] � � � E[(Xd � �d)2]

1CCCA ;
the covariance matrix of X; is well de�ned.

Remark 16 The covariance matrix of a random vector X is a symmetric nonnegative de�nite
matrix, i.e. �ij = �j;i; i; j = 1; :::; d and y0�y � 0 for all y 6= 0; y 2 Rd: If det� > 0 then
the probability distribution of X is a truly d-dimensional distribution in the sense that cannot be
concentrated on a lower dimensional subspace of Rd and we say that the distribution is nondegenerate
or regular. If det� = 0 then the probability distribution of X is concentrated on such a lower
dimensional subspace of Rd and we say that the distribution is degenerate or singular.

Proposition 17 Let X be a d-dimensional random vector with mean vector � and covariance matrix
�. Further, let B be an m�d matrix, let b be a constant m-dimensional vector, and set Y = BX+b.
Then, Y is a m-dimensional random vector with mean vector and covariance matric given by

E[Y ] = B�+ b; Cov(Y ) = B�B0:

Theorem 18 Let S 2 B(Rd) be partioned into disjoint measurable subsets S0; S1; :::; Sm such that
S = [mi=0Si and such that �d(S0) = 0: Assume that for each i = 1; :::;m, the mapping g : Si ! Rd is
injective (one to one) and continuously di¤erentiable with non-vanishing Jacobian. Let Y = g(X);
where X : 
! S is a random vector with density fX with respect to �d: Then, Y has density (with
respect to �d) given by

fY (y) =
mX
i=1

fX(g
�1(y))

���det Jg�1i
(y)
���1g(Si)(y);

where g�1i denotes the inverse map g�1i : g(Si)! Si and Jg�1i
its corresponding Jacobian matrix.

De�nition 19 Let X be a d-dimensional random vector. The characteristic function 'X of X is
de�ned to be the Fourier transform of its law PX ; that is,

'X(u) =

Z
Rd
eiu

0xdPX = E[eiu
0X ]; x 2 Rd:

Theorem 20 X and Y have the the same characteristic function if and only if they have the same
law,i.e., PX = PY :

Proposition 21 Let X be a d-dimensional random vector with mean vector � and covariance matrix
�. Further, let B be an m�d matrix, let b be a constant m-dimensional vector, and set Y = BX+b.
Then,

'Y (u) = e
iu0b'X(B

0u):

2 Independence

De�nition 22 Let (
;F ; P ) be a probability space. A family of events fAigi2I � F are independent
i¤ 8J � I; J �nite, one has that

P (
\
j2J
Aj) =

Y
j2J
P (Aj):

De�nition 23 Let fEigi2I ; Ei � F , be a family of collections of events. We say that fEigi2I are
independent i¤ every family fAigi2I ; with Ai 2 Ei; is independent.
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De�nition 24 Let fXi : 
 ! Rgi2I be a family of random variables. We say that fXigi2I is
independent i¤ the family of �-algebras f�(Xi)gi2I is independent.

Taking into account the previous de�nitions we have that fXigi2I is independent i¤ for all �nite
subset fi1; :::; ing � I; and for all B1; :::Bn 2 B(R); one has that

P (fXi1 2 B1; :::; Xin 2 Bng) := P (fXi1 2 B1g \ ::: \ fXin 2 Bng)
= P (Xi1 2 B1) � � � � � P (Xin 2 Bn):

The next proposition characterizes the independence of a �nite number or r.v.

Proposition 25 Let fXigi=1;:::;d be random variables with laws PXi
; i = 1; :::; d; respectively, and

let X = (X1; :::; Xd) be the random vector with law PX : Then,

1. fXigi=1;:::;d are independent i¤ PX = PX1

 � � � 
 PXd

.

2. fXigi=1;:::;d are independent i¤ FX(x1; :::; xd) = FX1
(x1) � � �FXd

(xd):

3. fXigi=1;:::;d are independent i¤ 'X(u1; :::; ud) = 'X1
(u1) � � �'Xd

(ud)

4. Assume that PX � �d: Then, fXigi=1;:::;d are independent i¤ fX(x1; :::; xd) = fX1
(x1) � � � fXd

(xd):

The next proposition only gives necessary conditions for the independence.

Proposition 26 1. Let (Ei; Ei)i2I and (Gi;Gi) be two families of measurable spaces. Let fXigi2I
be a family of random elements Xi : 
 ! Ei; and fgigi2I a family of measurable trans-
formations gi : Ei ! Gi: Then, fgi � Xigi2I is a family of independent random elements
gi �Xi : 
! Gi:

2. Let fXigi=1;:::;d be independent random variables with �nite expectation, i.e, E[jXij] <1; i =
1; ::; d; then X1 � � �Xd has �nite expectation and

E[X1 � � �Xd] = E[jX1j] � � �E[jXdj]:

3. Let fXigi=1;:::;d be independent r.v. with E[jXij2] <1; i = 1; ::; d; then

Var[X1 + � � �+Xd] = Var[X1] + � � �+Var[Xd]:

3 The Multivariate Normal Distribution

De�nition 27 A d-dimensional random vector X is Gaussian (or multivariate normal) i¤ every
linear combination a0X =

Pd
i=1 aiXi has a (one dimensional) Gaussian distribution (possibly degen-

erate). The notation X � N (�;�) is used to denote that X has a multivariate normal distribution
with mean vector � and covariance matrix �. We say that X is a standard multivariate normal
random vector if X � N (0; Id) where Id is the d-dimensional identity matrix.

Theorem 28 Suppose that X � N (�;�) and set Y = BX + b. Then Y � N (B�+ b; B�B0):

The previous theorem is useful to obtain a random vector with X � N (�;�) from an a¢ ne
transform of a random vector Z � N (0; Id): One has that X = �1=2Z + �; where �1=2 is a square
root of the covariance matrix �; that is, �1=2 is a matrix B such that BB = �:

Theorem 29 Theorem 30 Let X � N (�;�) and det� > 0: Then PX � �d and

fX(x) =
dPX
d�d

(x) =
1q

(2�)
d
det�

exp

�
�1
2
(x� �)0��1(x� �)

�
; x 2 Rd:

Theorem 31 Let X � N (�;�): Then fXigi=1;:::;d are independent i¤ �i;j = Cov(Xi; Xj) = 0: If,
in addition, det� > 0 then

fX(x) =
dY
i=1

1p
2��i;i

exp

 
� (x� �i)

2

�i;i

!
:
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4 Conditional Expectation

The concept of conditional expectation is crucial in many areas of modern Probability Theory.
Important types of stochastic processes, like martingales and Markov processes, are de�ned using
conditional expectation. Its de�nition stems from the following proposition.

De�nition 32 Let (
;F ; P ) be a probability space, let G be a sub-�-algebra of F and X 2 L1 (
;F ; P ) :
The conditional expectation of X given the �-algebra G; denoted by E[XjG], is the (P -a.s unique)
G-measurable random variable satisfying

E[1BX] =
Z
B

XdP =

Z
B

E[XjG]dP = E[1BE[XjG]]; 8B 2 G:

Proposition 33 E[XjG] exists.
Proof. Assume �rst that X � 0: Then, de�ne the measure � by

�(B) =

Z
B

XdP; A 2 F :

The measure � � P: This property also holds when we restrict both measures to G: By the Radon-
Nikodym Theorem, there exists a density f measurable with respect to G such that

�(B) =

Z
B

fdP; A 2 G:

If we de�ne E[XjG] := f the statement of the proposition is satis�ed. The general case follows by
considering the decomposition X = X+ �X� and using the hypothesis (included in the de�nition)
that X 2 L1(
;F ; P ):

The intuitive meaning of the conditional expectation is as follows. A random experiment has
been performed. The only information available to you regarding which sample point ! has been
chosen is the set of values Z(!) for every G-measurable random variable Z: Then E[XjG](!) is the
expected value of X(!) given this information.

Lemma 34 (Properties of the conditional expectation) Assume that all the r.v. appearing
below are integrable.

1. Conservation of the expectation: E[E[XjG]] = E[X]:

2. Linearity: E[aX + bY jG] = aE[XjG] + bE[Y jG]; for all a; b 2 R:

3. Positivity: X � 0) E[XjG] � 0:

4. Conditional monotone convergence: If fXngn�1 is an increasing sequence of positive random
variables such that Xn " X; a.s., then E[XnjG] " E[XjG]; a.s..

5. Conditional Fatou lemma: If Xn � 0;8n � 1; then E[lim infn!1XnjG] � lim infn!1 E[XnjG]:

6. Conditional dominated convergence: jXnj � Y 2 L1(
;F ; P );8n � 1 and Xn ! X; a.s., then
E[XnjG]! E[XjG]; a.s..

7. Conditional Jensen�s inequality: Let ' : R ! R be a convex function, '(X) 2 L1(
;F ; P ):
Then, '(E[XjG]) � E['(X)jG]:

8. Tower property: Let H � G be a sub-�-algebra of G: Then,

E[E[XjG]jH] = E[E[XjH]jG] = E[XjH]:

9. "What is measurable goes out": Assume that XY and X are integrable and that Y is G-
measurable. Then, E[XY jG] = Y E[XjG]: In particular, if X is G-measurable then E[XjG] = X:

10. "What is independent vanishes": If H is a �-algebra independent of �(G; �(X)); then E[Xj�(G; �(X))] =
E[XjG]: In particular, if X is independent of G then E[XjG] = E[X]:
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11. Substitution property: Let X and Y be two random variables and h : R � R ! R be a
measurable function. If X is G-measurable and h(X;Y ) is integrable, thenE[h(X;Y )jG] =
E[h(a; Y )jG]ja=X .

Theorem 35 (Factorization Theorem) Let 
 be a set. Let (E; E) a measurable space. Let X :

 ! R and Y : 
 ! E be two mappings. Then, X is �(Y )-measurable i¤ there exists a function
' : E ! R; (E ;B(R))-measurable such that

X = '(Y ):

Corollary 36 If Y : 
 ! Rd; then X : 
 ! R is �(Y )-measurable i¤ there exists a measurable
function ' : Rd ! R such that

X = '(Y ):

5 Conditional Probability�

De�nition 37 Let (
;F ; P ) be a probability space, G a sub-�-algebra of F and A 2 F : We call the
conditional probability of A given G; the r.v.

P (AjG) = E[1AjG]; P -a.s.

Using the properties of the conditional expectation one can see that P (�jG) has the same prop-
erties as those of a probability measure, with the exeception that they only hold a.s.. It is natural
to ask wether P (AjG)(!) as a function of A 2 F is a probability measure, at least P -a.s. ! 2 
.
Unfortunately the answer is negative in general because to �nd a version of such object we need
to consider an uncountable number of exceptional sets. However, when we add some topological
structure to 
 we have a positive result.

De�nition 38 Let (
;F ; P ) be a probability space, G a sub-�-algebra of F : A regular conditional
probability of P given G is a mapping

p : 
�F ! [0; 1]
(!;A) ! p(!;A)

;

such that

1. For each �xed A 2 F ;
p(�; A) : 
 ! [0; 1]

! ! p(!;A)
;

is a version of the conditional probability of A given G;i.e.,

(a) p(�; A) is G-measurable.
(b) 8G 2 G; P (A \G) =

R
G
1AdP =

R
G
p(!;A)P (d!):

2. P -a.s. ! 2 
;
p(!; �) : F ! [0; 1]

A ! p(!;A)
;

is a probability in (
;F) :

In the previous de�nition we can change the "P -a.s. ! 2 
" in condition 2: by "8! 2 
".
The following is general positive result on the existence of conditional probabilities.

Theorem 39 Let (
;F ; P ) be a probability space and let Y : 
 ! E a measurable function from
(
;F) to a measurable space (E; E); where E is a Polish space (i.e. metric, separable and complete)
and E = B(E): Let G be sub-�-algebra of F . Then, there exists a regular conditional probability of
Y given G: That is: There exists a mapping

p : 
� E ! [0; 1]
(!;A) ! p(!;A)

;

such that
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1. 8A 2 E,
p(�; A) : 
 ! [0; 1]

! ! p(!;A)
;

satis�es

(a) p(�; A) is G-measurable.
(b) 8G 2 G

P (fY 2 Ag \G) =
Z
G

1fY 2AgdP =

Z
G

p(�; fY 2 Ag)(!)P (d!):

2. P -a.s. ! 2 
;
p(!; �) : F ! [0; 1]

A ! p(!;A)
;

is a probability in (E; E) :

In particular if we choose (
;F) = (E; E) and Y being the identity we get that if (
;F) is a
Polish space with its Borel �-algebra then there exists a conditional probability of P given G:

Theorem 40 Let X 2 L1(
;F ; P ): Let p be a regular conditional probability of P given G a sub-�-
algebra of F . Then, P -a.s. ! 2 
; X is integrable with respect to p(!; �) andZ




X(!0)p(!; d!0) = E[XjG](!):

De�nition 41 We say that a �-algebra G is countably generated (or separable) if there exists a
sequence fAngn�1 � G such that � (fAngn�1) = G:

Theorem 42 Let (
;F ; P ) be a probability space, G a countably generated sub-�-algebra of F . If a
regular conditional probability of P given G exists, then we can choose a version of it such that

p(!;A) = 1A(!); 8! 2 
;8A 2 G: (1)

Some authors require property (1) to hold when de�ning a regular conditional probability.
As a consequence of the previous arguments we have that there always exists a regular version

of the law of a random vector conditioned to other random vector.

6 Conditional Expectation and Random Variables

De�nition 43 Let X;Y : 
! R be two random variables. We call law of Y conditioned by X any
transition probability measure p from (R;B(R)) to (R;B(R)) satisfying

P (X 2 A; Y 2 B) =
Z
A

p (x;B)PX(dx); 8A;B 2 B(R):

Sometimes one writes P (Y 2 BjX = x) := p (x;B) ; but one has to keep in mind that this
function is only de�ned PX -a.s. as the following proposition shows.

Proposition 44 Given two random variables X;Y there always exists a law of Y conditioned to X:
If p and p0 are two of them then for all B 2 B(R); p(�; B) = p0(�; B); PX-a.s.

Example 45 Let (X;Y ) be a random vector with P(X;Y ) � �2: Then, we can take

p(x;B) =

(
fX;Y (x;y)
fX(x)

if fX(x) 6= 0
Q(B) if fX(x) = 0

;

where Q is any probability measure. Let�s check it:

P (fX 2 A; Y 2 Bg) =
Z
A�B

fX;Y (x; y)dxdy
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=

Z
A

�Z
B

fX;Y (x; y)1ffX(x) 6=0gdy

�
dx

+

Z
A

�Z
B

fX;Y (x; y)1ffX(x)=0gdy

�
dx

=

Z
A

�Z
B

fX(x)
fX;Y (x; y)

fX(x)
1ffX(x) 6=0gdy

�
dx

=

Z
A

p(x;B)fX(x)dx =

Z
A

p(x;B)PX(dx):

Where we have used the image measure theorem,then Fubini�s Theorem and �nally we take into
account thatZ

A

�Z
B

fX;Y (x; y)1ffX(x)=0gdy

�
dx �

Z
A

1ffX(x)=0g

�Z
R
fX;Y (x; y)dy

�
dx

=

Z
A

1ffX(x)=0gfX(x)dx = 0

De�nition 46 Let X;Y : 
 ! R be two random variables. Let p be a law of Y conditioned to X:
Let g : R ! R a Borel measurable function such that the integral of g with respect to p(x; �): One
de�nes

E [g(Y )jX = x] :=

Z
R
g(y)p(x; dy);

which is called the conditional expectation of g(Y ) by fX = xg:

The previous de�nition is not precise because it depends on the particular version that we use of
the law of Y conditioned to X: That is, as p and p0 are only de�ned PX -a.s., it does not make sense
to talk about the value of such functions for a particular x: For that reason, it is better to leave x as
a variable and require that exists the integral of g with respect to p(x; �); PX -a.e. x and think about
the function

x 7�! E [g(Y )jX = x] :

De�nition 47 Given a r.v. X; the conditional expectation of a random variable Y with respect to
X is the conditional expectation of Y given � (X) :

The connection of the latter de�nition with the previous one is as follows. By the Factorization
Theorem we know that exists ' : (R;B(R))! (R;B(R)) such that E[Y j�(X)] = '(X): Therefore, we
may de�ne E[Y jX = x] = '(x): However, the function ' is only de�ned outside sets of PX -measure
zero. Hence, we have to understand E[Y jX = x] as the function that satis�esZ

X�1(B)

Y (!)P (d!) =

Z
X�1(B)

E[Y jX](!)P (d!) =
Z
X�1(B)

(' �X)(!)P (d!)

=

Z
B

'(x)PX(dy) =

Z
B

E[Y jX = x]PX(dx); B 2 B(R);

by the Image Measure Theorem.

Theorem 48 Assume that E [g(Y )] exists. Then, E [g(Y )jX = x] exists PX-a.s. x 2 R; and

E [g(Y )] =
Z
R
E [g(Y )jX = x]PX(dx):

In particular, if g(Y ) is integrable with respect to P; then E [g(Y )jX = x] is �nite PX-a.s.

Proof. We have that

E [g(Y )] =
Z
R2
g(y)PX;Y (d(x; y))

=

Z
R

�Z
R
g(y)p(x; dy)

�
PX(dx)
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=

Z
R
E [g(Y )jX = x]PX(dx);

where in the �rst equality we have used the image measure theorem and in the second equality we
have used the product measure theorem. Note that the law PX;Y is the product measure constructed
from the probability PX and the transition probability p:
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