
Introduction and Techniques Lecture 4
in Financial Mathematics
UiO-STK4510
Autumn 2015
Teacher: S. Ortiz-Latorre

Stochastic Processes

1 Stochastic Processes

De�nition 1 Let (E; E) be a measurable space and I a set. An E-valued stochastic process X
indexed by I is a family of E-valued random variables X = fXtgt2I de�ned on the same probability
space (
;F ; P ) :

We can think of a stochastic process as a function

X : I � 
 �! E
(t; !) 7! Xt(!)

:

For every ! 2 
 �xed, the process X de�nes a function

X� (!) : I �! E
t 7! Xt(!)

;

which is called a trajectory or a sample path of the process. Hence, we can look at X as a mapping

X : 
 �! EI

! 7! X�(!)
;

where EI is the cartesian product of I copies of E; which is the set of all functions from I to E:
That is, we can see X as a mapping from 
 to a space of functions.

Remark 2 In this course we will usually take E = R or E = Rd: Moreover, we wil usually take
I = R+; I = N or I = [0; T ]; where T 2 R+:

2 Law of a Stochastic Process

If we think of a stochastic process as a mapping X : 
! RR+ and we put on RR+ a �-algebra such
that X is measurable, we will have an RR+ -valued random variable and we can talk about the law of
the process X. We expect the law of the process X to be related to the laws of the random variables
Xt: For instance, what is the value of P (Xt 2 B) should make sense as a question on the r.v. Xt as
well as a question on the law of X: Moreover, the answer must coincide.
We will consider in RR+ the product �-algebra of R+ copies of B(R), denoted by B(R)R+ : Recall

that this �-algebra is the smallest �-algebra that makes the projections f�tgt2R, that is,

�t : RR+ �! R
f 7! f(t)

;

is a Borel function for all t 2 R+. It is also characterized as the �-algebra generated by the cylinders
with one dimensional base, i.e, �(f��1t (B) : B 2 B(R); t 2 R+g): More interestingly, it coincides
with the �-algebra generated by the �-cylinders, that is,

�
��
��1J (B) : B 2 B(R)#J ; J � R+ countable

	�
;

where B(R)#J is the product of #J (cardinal of J) copies of B(R) and �J is the natural projection
from RR+ on R#J :
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Proposition 3 If X = fXtgt2R+ is a real stochastic process and we consider in R
R+ the product

�-algebra B(R)R+ , then the application X : 
! RR+ is measurable.

De�nition 4 The law of real stochastic process X = fXtgt2R+ de�ned on a probability space

(
;F ; P ) is the law of the random variable X : 
! RR+ ; where the �-algebra on RR+ is B (R)R+ :

Let � be a probability measure on (RR+ ;B (R)R+): We can consider, for each J � R+ �nite, the
image measure of � by the projection �J ; which we will denote by �J : That is, �J is the probability
measure on (R#J ;B(R)#J) de�ned by �J(B) := �(��1J (B)); B 2 B(R)#J :

De�nition 5 The family of probabilities f�J : J � R+;#J < +1g is called the family of �nite
dimensional distributions of �:

This family satis�es that if K � J then

�K(B) = �J(�
�1
J;K(B)); B 2 B(R)#K ; (1)

where �J;K is the natural projection of R#J on R#K :

Theorem 6 (Daniell-Kolmogorov) Let f�J : J � R+;#J < +1g be a family of probabili-
ties satisfying the consistency property (1). Then there exists an unique probability measure � on
(RR+ ;B (R)R+) such that the family of its �nite dimensional distributions coincides with the ini-
tially given family. The probability measure � is called the projective limit probability measure of the
family.

Corollary 7 The law of a stochastic process it is completely determined by the associated family of
�nite dimensional distributions, that is, by

�X;t1;:::;td(B) := P ((Xt1 ; :::; Xtd) 2 B); B 2 B(Rd); t1; :::; td 2 R; d 2 N:

The previous theorem shows that provided we have a reasonabe (consistent) family of �nite
dimensional distributions we can construct a real stochastic process (actually a probability space
containing it) such that its law has as family of �nite dimensional distributions this family. Note
that we can always realize the process on (
;F ; P ) = (RR+ ;B (R)R+ ; �) where � is the projective
limit probability measure and the process is X(f) = f; where f 2 RR+ :
The following set of de�nitions only depend on the law of a process X:

De�nition 8 1. A process X is called Gaussian if its family of �nite dimensional distributions
are multivariate Gaussian distributions.

2. A process X has independent increments from the past if

8s � t; Xt �Xs is independent of fXrg0�r�s:

When we talk about independent increments we understand that Xt � Xs is independent of
Xr �Xu; for all u � r � s � t:

3. A process X is stationary if for all h > 0 and for all t1; :::; tn 2 R+; n 2 N; we have that

L(Xt1 ; :::; Xtn) = L(Xt1+h; :::; Xtn+h):

4. A process X is stationary in wide sense if E[X2
t ] <1 and for all h > 0

E [Xt] = E [Xt+h] ;

Cov (Xt; Xs) = Cov (Xt+h; Xs+h) ; t; s 2 R+:

5. A process X has stationary increments if for all s � t 2 R+ we have that

L (Xt �Xs) = L(Xt�s):

Note that, as the multivariate Gaussian distributions are characterized by the moments of �rst
and second orde, the law of a Gaussian process X is characterized by E [Xt] and Cov (Xt; Xs) ; s; t 2
R+:
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3 Properties with Probability 1

Suppose that we have two processes X and Y de�ned on the same probability space and with the
same law. As application from 
 to RR+ ; X and Y may be very di¤erent. For instance, Let Xt
be Unif[0; 1], independent and we de�ne Yt = 1 � Xt: Then, X and Y have the same law, but
P (Xt = Yt) = 0 for all t 2 R+: We need stronger concepts of equality for processes than equality in
law.

De�nition 9 Let X and Y be two processes de�ned on the same probability space (
;F ; P ) : We
say that Y is a modi�cation or a version of X if

8t 2 R+; P (Xt = Yt) = 1:

De�nition 10 Let X and Y be two processes de�ned on the same probability space (
;F ; P ) : We
say that Y is indistinguishable of X if the set

f! : Xt(!) 6= Yt(!); 8t 2 R+g ;

is a negligible set.

If X and Y are indistinguishable then one is a version of the other. If X is a version of Y then
X and Y have the same law.

3.1 Path Properties

Let � � RR+ : The following question does not make much sense: Given a process X determine,
using only the law �X ; if P (X 2 �) = 1 or not. The law of the process does not give us much
information about the properties of its paths. In addition, if � =2 B(R)R+ (for instance � is the set
of all continuous paths) we can not answer the question by looking at �X : On the other hand, it
makes sense to ask the following questions:

1. Given a law on (R;B(R)R+); determine if there exists some stochastic process X with this law
and such that P (X 2 �) = 1:

2. Given a process X; determine, from the law of the process X; if there exists a modi�cation ~X
of X such that P ( ~X 2 �) = 1:

To answer the �rst question we have the following result.

Theorem 11 Let � be a probability measure on (R;B(R)R+): Let � � RR+ : Then, there exists a
process X; de�ned on some probability space (
;F ; P ); with law � such that P (X 2 �) = 1 i¤
��(�) = 1; where �� is the exterior measure associated to �; that is a set function de�ned by

��(B) = inf
�
�(A) : B � A; A 2 B(R)R+

	
; B � RR+ :

In the proof of the previous theorem one construct a probability space and a process X that will
be "canonical" for the given situation. One sets 
 = �;F = B(R)R+j� := fA � � : A = B \ �; B 2
B(R)R+g and we de�ne P to be �j�;i.e., P (A) = �(B) if A = B \ �: Finally, one sets Xt(!) = !(t):
In this way, one constructs a canonical process X on a canonical probability space (�;B(R)R+j� ; �j�)
such that all the sample paths of the processes are in � � RR+ :
To answer the second question, when � = C (R+) ; we have the Kolmogorov continuity criterion.

Theorem 12 (Kolmogorov�s continuity criterion) Let X be a stochastic process de�ned in
some probability space (
;F ; P ) : Assume that for every T > 0; there exist � > 0; r > 0 and
K > 0 such that

E [jXt �Xsjr] � K jt� sj1+� ; 0 � s < t � T:

Then, there exists a modi�cation ~X of X with all the paths being continuous.

Regarding path regularity properties the most important classes of processes are the following.
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De�nition 13 Let X = fXtgt2R+ be a real valued stochastic process.

1. We say that X is continuous if its sample paths are continuous.

2. We say that X is càdlàg or RCLL if its sample paths are continuous from the right and have
limits from the left. That is Xt = lims#tXs and lims"tXs exists and is �nite.

3. We say that X is càglàd or LCRL if its sample paths are continuous from the left and have
limits from the right. That is Xt = lims"tXs and lims#tXs exists and is �nite.

The properties in the previous de�nition may hold only P -a.s and then we will say that a proces
P -a.s continuous or P -a.s. RCLL, etc... Finally, if we have a process Y that is version of a process
X and both are P -a.s. RCLL (or P -a.s. LCRL) then X and Y are indistinguishable. In particular,
if X and Y are P -a.s. continuous and Y is a version of X then X and Y are indistinguishable.

4 Measurability Properties of Stochastic Processes

Note that from the measurability of each Xt is not possible to deduce the measurability of X as a
function from R+ � 
 to R:

De�nition 14 We say that a process X is measurable when it is (B(R+)
F ;B(R))-measurable,
that is, it is measurable as a function X : R+ � 
! R:

Theorem 15 Let X be a measurable stochastic processes. IfZ
R+�


jX(t; !)j�(dt)
 P (d!) <1;

where � is the Lebesgue measure, thenZ
R+�


X(t; !)�(dt)
 P (d!) =
Z
R+
E [Xt] dt = E

"Z
R+
Xtdt

#
<1:

De�nition 16 Let (
;F ; P ) be a probability space. A �ltration on (
;F ; P ) is a family F =
fFtgt2R+ of sub-�-algebras of F such that Fs � Ft if s � t: We say that (
;F ;F; P ) is a �ltered
probability space.

De�nition 17 A �ltration F = fFtgt2R+ is called right continuous if Ft = Ft+ for every t 2 R+;
where Ft+ = \">0Ft+": The �-algebra Ft+ represents what we know if we look ahead an in�nitesimal
amount of time.

De�nition 18 A �ltered probability space (
;F ;F; P ) is said to satisfy the "usual conditions" if
(
;F ; P ) is complete and

1. F0 contains all negligible sets in F :

2. F is right continuous.

De�nition 19 A stochastic process X is F-adapted if for all t 2 R+ the r.v. Xt is Ft-measurable.

Note that we can always �nd a �ltration with respect to which a process X is adapted. We can
consider the natural �ltration generated by X; denoted by FX and de�ned by

FX = fFXt := �(Xs; s � t)gt2R+ :

The natural �ltration FX represents the information revealed by the process X as time evolves. For
instance, the process Y = fYt := X2

t gt2R+ is FX -adapted while the process Z = fZt = X1+X2
t gt2R+

is not FX -adapted.
Given a process X; the �ltration FX does not need to satisfy the usual conditions. However, we

can always consider (and we do it) the minimal augmented (also know as the usual augmentation
of the) �ltration generated by X; which is the smallest �ltration satisfying the usual conditions
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and with respect to which the process X is adapted. This is done by enlarging FX with N ; the
P -negligible sets in F ; and then taking its limit from the right, that is, considering the �ltration(\

">0

�(FXt+" [N )
)
t2R+

:

We will use the same notation to denote the natural �ltration generated by X and the minimal
augmented �ltration generated by X; that is, FX : Moreover, many (but not all) of the processes
that we will be dealing with in this course are examples of the so called strong Markov processes:
Brownian motion, solutions of stochastic di¤erential equations, Lévy processes... For these processes,
it su¢ ces to augment their natural �ltration with the P -negligible sets of F to automatically get
a right continuous �ltration. Many results that we will see in this course need the �ltration under
consideration to satisfy the usual conditions to be true, but not all. That the �ltration F contains
all the P -negligible sets ensure, for instance, that if a process X is F-adapted and Y is a version of
X; then Y is also F-adapted.
Stopping times are one of the most useful concepts in stochastic analysis as they are the basic

tool for localisation procedures.

De�nition 20 A random variable � : 
 ! [0;+1] is a stopping time with respect to the �ltration
F if f� � tg 2 Ft for all t 2 R+:

De�nition 21 Let � be a F-stopping time. Then, the �-algebra of events ocurring up to time � can
be de�ned by

F� := fA 2 F : for each t > 0; A \ f� � tg 2 Ftg:

One can check that if � = t; P -a.s. then F� = Ft and that if �1 � �2; P -a.s. then F�1 � F�2 :
Therefore, one can use stopping times to randomize the �ow of information, that is, to randomize a
�ltration.
The right continuity of the �ltration ensure that some random times, for instance the �rst time

that a F-adapted process with right continuous paths X hits a open set A 2 B(R); mathematicall
de�ned by �A(!) = infft 2 R+ : Xt(!) 2 Ag; are actually stopping times.

De�nition 22 A stochastic process X is progressively measurable or progressive with respect to F
if, for all t 2 R+; the restriction

Xj[0;t]�
 : [0; t]� 
 �! R
(s; !) 7! Xs(!)

;

is (B ([0; t])
Ft;B(R)-measurable.

The notion of progressive measurability is useful to ensure that some processes are adapted. For
instance, if X is progressive then the process Yt =

R t
0
Xsds is adapted. Moreover, if X is progressive

and � is a stopping time with respect to the same �ltration, then the random variableX� := X�(!)(!)
is F� -measurable and the process stopped at X; de�ned by X� := Xmin(t;�) is also progressive.

Proposition 23 1. If X is progressive, then it is measurable and adapted.

2. If X is adapted and has right continuous paths (or left continuous paths) then it is progressive.

3. There are adapted processes that are not measurable.

4. There are measurable processes that are not adapted.

5. There are adapted and measurable processes that are not progressive, but one can always �nd
a modi�cation that it is progressive.
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5 Random Analysis

In this brief section we will look at a stochastic processes as a function from R+ to an space of
random variables.
Assume that we have a stochastic process X = fXtgt2R+ such that each Xt is a random variable

without any additional conditions,i.e.,

X : R+ �! L0(
;F ; P )
t 7! Xt

;

where L0(
;F ; P ) is the space of all random variables de�ned on probability space (
;F ; P ) :
This space is a metric space when considering the convergence in probability. Moreover, the

metric can be given by the following distance

d(X;Y ) = E

�
jX � Y j

1 + jX � Y j

�
;

which yields a complete metric space.

De�nition 24 A stochastic process X = fXtgt2R+ is continuous in probability (or stochastically
continuous) at t0 2 R+ if

lim
t!t0

P (jXt �Xt0 j > ") = 0; 8" > 0:

It is continuous in probability if it is continuous in probability at every t0 2 R+: Equivalently, if the
application t 7�! Xt is continuous from R+ to (L0(
;F ; P ); d):

Note that a process can be stochastically continuous and all its paths be discontinuous functions.
Assume now that all the random variables Xt of a process belong to the space Lp := Lp(
;F ; P )

of p-integrable random variables, i.e., E [jXtjp] < 1;8t 2 R+: The number p can be any number
0 � p <1: When p � 1; Lp is a Banach space with norm

kXkLp = E [jXj
p
]
1=p
:

De�nition 25 A stochastic process X = fXtgt2R+ is in Lp if Xt 2 Lp for all t 2 R+.

De�nition 26 Let p � 1: A stochastic process X = fXtgt2R+ in Lp is continuous in Lp (or con-
tinuous in p-th mean) at t0 2 R+ if the application

X : R+ �! Lp(
;F ; P )
t 7! Xt

;

is continuous at t0; that is, if
lim
t!t0

kXt �Xt0k = 0:

It is continuous in Lp if it is continuous in Lp at every t0 2 R+:

The most interesting case is when p = 2 because the space L2 is a Hilbert space with scalar
product

hX;Y i := E [XY ] :

De�nition 27 Let X = fXtgt2R be a stochastic process in L2:

1. The mean function of X is the function from R+ to R given by

m(t) := E [Xt] :

2. The covariance function of X is the function from R+ � R+ to R given by

K(t; s) := Cov(Xt; Xs) = E[XtXs]� E[Xt]E[Xs]:

Proposition 28 If the mean function is continuous then the process X is continuous in L2 at
t0 2 R+ i¤ the covariance function K(t; s) is continuous in (t0; t0):
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