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Brownian Motion and Related Processes

1 Brownian Motion

De�nition 1 A stochastic process W = fWtgt2R+ is a Brownian motion (or Wiener process) with
variance �2 starting at x0 2 R if its family of �nite dimensional distributions is given by

P (W0 2 B0;Wt1 2 B1; :::;Wtn 2 Bn)

= �x0(B0)

Z
B1�����Bn

nY
i=1

1p
2��2 (ti � ti�1)

exp

 
� (xi � xi�1)2

2�2(ti � ti�1)

!
dx1 � � � dxn;

where 0 = t0 < t1 < � � � < tn; n 2 N and Bi 2 B(R):

The Dirac�s delta in the previous formula tell us that W0 = x0; P -a.s.. One can check the
previous family of �nite dimensional distributions is consistent and, hence, we can use the Daniell-
Kolmogorov theorem to prove that Brownian motion always exists. That is, we can construct a
probability space and a process de�ned on it such that its �nite dimensional distributions coincide
with the ones given in the de�nition. Moreover, Brownian motion is a Gaussian process.

Proposition 2 If W is a Brownian motion there exists a modi�cation ~W that has continuous paths.

Proof. By the properties of the normal law and as Wt �Ws � N (0; �2(t� s)); we have that

E
h
jWt �Wsj4

i
= 3�4(t� s)2;

and applying Kolmogorov�s continuity criterion r = 4;K = �2 and � = 1 the result follows.

Remark 3 Our �rst de�nition of Brownian motion only uses the minimal properties that provide
certain consistent family of �nite dimensional distributions. Then, using the Daniell-Kolmogorov�s
extension theorem we have proved that there exists a process having this family of �nite dimensional
distributions. Finally, using Kolmogorov�s continuity criterion we have proved that there is a version
of the process having continuous sample paths with probability one. From now on we will always
assume that we are working with a continuous modi�cation of a Brownian motion and, hence, we
will include this property in the de�nition.

Remark 4 Using the results in the previous lecture regarding the existence of processes satisfying
some sample path properties (Lecture 4, section 3.1), one can consider the canonical construction of
a Brownian motion on the the space of continuous functions starting at zero (or some x 2 R). In
this way we have a Brownian motion with all the paths being continuous not only P -a.s.

Proposition 5 Brownian motion can be de�ned as a stochastic process W = fWtgt2R+ satisfying

1. W has continuous paths P -a.s.,

2. W0 = x; P -a.s.,

3. W has independent increments,
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4. For all 0 � s < t; the law of Wt �Ws is a N (0; �2(t� s)):

Proof. The law of the vector
�
Wt1 �Wt0 ;Wt2 �Wt1 ; :::;Wtn �Wtn�1

�
is determined by the condi-

tions of the proposition (independent increments plus law of a generic increment) and by a change of
variable one can compute the law of (Wt0 ;Wt1 ; :::;Wtn) ; which coincides with the law in the previous
de�nition.
Note that property 4: in the previous proposition not only says that Brownian motion has

Gaussian increments but also that has stationary increments.

De�nition 6 When �2 = 1; we say that W is a standard Brownian motion. If the starting point
is not especifed we understand the the process starts at 0: Hence, a standard Brownian motion is a
process satisfying

1. W has continuous paths P -a.s.,

2. W0 = 0; P -a.s.,

3. W has independent increments,

4. For all 0 � s < t; the law of Wt �Ws is a N (0; (t� s)):

Remark 7 From now on, when we say Brownian motion we are considering a standard Brownian
motion.

Let F = fFtgt2R+ be a �ltration. In stochastic analysis is useful the concept of Brownian motion
with respect to a �ltration F = fFtgt2R+ :

De�nition 8 A F-Brownian motion W is a real stochastic process adapted to F satisfying

1. W has continuous paths P -a.s.,

2. W0 = 0; P -a.s,

3. For all 0 � s < t; the random variable Wt �Ws is independent of Fs:

4. For all 0 � s < t; the law of Wt �Ws is a N (0; (t� s)):

Remark 9 To have a F-Brownian motion is a stronger statement that to only have a Brownian
motion. If Wt �Ws is independent of Fs then it is independent from Wu �Wv; 0 � v � u � s and
W is a process with independent increments. If we only have a Brownian motion then we also have
a FW= fFWt gt2R+-Brownian motion but W does not need to be a F-Brownian motion where F is an
enlargement of F; i.e., FWt � Ft; t 2 R+:

De�nition 10 A d-dimensional Brownian motion W = f(W 1
t ; :::;W

d
t )gt2R+ is a stochastic process

with values in Rd such that each component W i; i = 1; :::; d is a real Brownian motion independent
of each other.

For instance the �rst component W 1 of a d-dimensional Brownian motion is a FW 1

-Brownian
motion but it is also a FW -Brownian motion. In general, if we have a F-Brownian motion and we
enlarge the �ltration F with some events independent from F we still have a Brownian motion with
respect to the enlarged �ltration.
We end this section by introducing some processes that can be obtained from Brownian motion

using simple transformations.

1.1 Brownian Motion with Drift

De�nition 11 A process Y is a Brownian motion with drift � and volatility � if it can be written
as

Yt = �t+ �Wt; t 2 R+;

where W is a standard Brownian motion.
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This process has almost all the properties of Brownian motion. It starts at zero, has independent
increments and the increments have Gaussian laws. However, the Gaussian law of Yt � Ys; s < t is
not centered but has mean �(t� s): Brownian motion with drift is also a Gaussian process.
This process was used in the �rst attempt to model stock prices behaviour by Bachelier. Many

people consider Bachelier�s PhD dissertation entitled Théorie de la Espéculation (1900) the beginning
of Mathematical Finance. Browian motion with drift, as a model for stock prices, allows for negative
prices with positive probability, which is major pitfall.

1.2 Geometric Brownian motion

De�nition 12 A process S is a geometric Brownian motion (or exponential Brownian motion) with
drift � and volatility � if it can be written as

St = exp (�t+ �Wt) ; t 2 R+;

where W is a standard Brownian motion.

The law of a geometric Brownian motion is not Gaussian. Actually, the random variable St has
lognormal distribution with mean �t and variance �2t, see exercise 21 in List 1. It does not have
independent and stationary increments like Brownian motion or Brownian motion with drift. On
the other hand, its relative increments

Stn � Stn�1
Stn�1

;
Stn�1 � Stn�2

Stn�2
; ::::;

St1 � St0
St0

; 0 � t0 < t1 < � � � < tn;

are independent and stationary. Equivalently,

Stn
Stn�1

;
Stn�1
Stn�2

; ::::;
St1
St0
; 0 � t0 < t1 < � � � < tn;

and

log

�
Stn
Stn�1

�
; log

�
Stn�1
Stn�2

�
; ::::; log

�
St1
St0

�
; 0 � t0 < t1 < � � � < tn;

are also independent and stationary. Moreover, the law of StSs ; s < t is a lognormal distribution with

parameters �(t�s) and �2(t�s) or, equivalently, the law of log
�
St
Ss

�
; s < t is N (�(t�s); �2(t�s)):

This process is the standard model for stock prices. Note that in this case the prices are always
positive. The model was �rst used by Samuelson (1964) and later on by Black-Scholes (1973) in
their theory of option pricing.

1.3 Brownian Bridge

De�nition 13 Let W be a standard Brownian motion. A process X = fXtgt2[0;1] is a standard
Brownian bridge if it can be written as

Xt =Wt � tW1; t 2 [0; 1];

where W is a standard Brownian motion.

This process starts at zero and ends at zero, that is, P (X0 = 0) = P (X1 = 0) = 1: The law of
this process can be deduced from its relation with respect to Brownian motion and is given by

P
�
X0 2 B0; Xt1 2 B1; :::; Xtn 2 Bn; Xtn+1 2 Bn+1

�
= �0(B0)�0(Bn+1)

Z
B1�����Bn

n+1Y
i=1

1p
2� (ti � ti�1)

exp

 
� (xi � xi�1)

2

2(ti � ti�1)

!
dx1 � � � dxn;

where 0 = t0 < t1 < � � � < tn < tn+1 = 1; n 2 N; x0 = xn+1 = 0 and Bi 2 B(R):
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Note that the family of �nite dimensional distributions is Gaussian, like Brownian motion. How-
ever the increments cannot be independent because the process must end at zero at time t = 1 and,
hence, we must have for any t 2 (0; 1) that

0 =W1 =W1 �Wt +Wt �W0;

which yields that
W1 �Wt = � (Wt �W0) :

Moreover, one can check that the law of a Brownian bridge coincides with the law of a Brownian
motion on [0; 1] conditioned to end at W1 = 0; i.e.,

P (Xt1 2 B1; :::; Xtn 2 Bn) = P (Wt1 2 B1; :::;Wtn 2 BnjW1 = 0) :

Besides the importance of Brownian bridge in statistics (the Kolmogorov-Smirnov distribution is
the law of the maximum of Bridge) it is also used in simple models of �nancial markets with inside
or privileged information.

2 Poisson process

De�nition 14 A stochastic process N = fNtgt2R+ is a Poisson process with variance � and starting
at x 2 Z if its law is given by

P (N0 = x0; Nt1 = x1; :::; Ntn = xn)

= �x (fx0g)
nY
i=1

e��(ti�ti�1) (� (ti � ti�1))xi�xi�1

(xi � xi�1)!
;

if xi 2 Z; x0 � x1 � � � � � xn (and zero otherwise), and on 0 = t0 < t1 < � � � < tn; n 2 N:

We are imposing that N0 = x0; P -a.s.. On the other hand, if we compute the law of the random
vector (Nt1 �Nt0 ; Nt2 �Nt1 ; :::; Ntn �Ntn�1) we get that

nY
i=1

e��(ti�ti�1) (� (ti � ti�1))xi

xi!
; xi 2 Z;

and we deduce that is composed of independent random variables with Poisson law with parameter
�(ti � ti�1): Hence, the Poisson process has independent increments.

Proposition 15 The Poisson process can be de�ned as a stochastic process N satisfying:

1. N0 = x; P -a.s.,

2. N has independent increments,

3. For all 0 � s < t; the law of Nt �Ns has law Pois(t� s):

De�nition 16 When � = 1, we say that N is a standard Poisson process. If the starting point
is not especifed we understand the the process starts at 0: Hence, a standard Poisson motion is a
process satisfying

1. N0 = 0; P -a.s.,

2. N has independent increments,

3. For all 0 � s < t; the law of Nt �Ns is a Pois((t� s)):

One can show that the Poisson process exists using the Daniell-Kolmogorov theorem. However,
it is not possible to use the Kolmogorov�s continuity criterion to show that there exists a continuous
modi�cation. Actually, the the paths of the Poisson process are discontinuous almost surely. Given
a �ltration F one can also de�ne a F-Poisson process analogously to F-Brownian motion, see remark
9.
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3 Levy processes

The Brownian motion and the Poisson process are particular cases of a more general type of process.

De�nition 17 A stochastic process X = fXtgt2R+ is a Lévy process starting at zero if it satis�es:

1. X0 = 0; P -a.s.,

2. X has independent increments,

3. X has stationary increments, i.e., for all 0 � s < t; the law of Xt �Xs coincides with the law
of Xt�s:

4. X is stochastically continuous, i.e., lims!t P (jXt �Xsj > ") = 0;8" > 0; t 2 R+:

Condition 4 : in De�nition 17 serves to exclude processes with jumps at �xed (nonrandom) times.
Given a
Lévy process we can choose a unique modi�cation whose paths are right continuos and with

left limits. This property is satis�ed by the Brownian motion and the Poisson process. Obviously,
conditions 3 : and 4 : strongly restrict the possible laws of the process X and its family of �nite
dimensional distributions. Actually, a Lévy process X is determined by the law of X1 but this
law cannot be arbitrary, it must be in�nitely divisible. We recall that a distribution F is in�nitely
divisible i¤ for any n 2 N there exists a sequencefZni gi=1;::;n of i.i.d. random variables such that
the law of Zn1 + � � �+ Znn is given by F:
Given a �ltration F one can also de�ne a F-Lévy process analogously to the F-Brownian motion,

see remark 9.

4 Martingales

The following type of processes will be essential in the theory of stochastic integration and option
pricing.

De�nition 18 A stochastic proces X is a martingale if E[jXtj] <1; t 2 R+ and

E [Xtj� (Xu : 0 � u � s)] = Xs; 0 � s � t:

We can also de�ne a martingale with respect to a �ltration F and this is de�nition that we will
use the most.

De�nition 19 Let X be a stochastic process de�ned on a �ltered probability space (
;F ;F; P ): The
process X is a F-martingale if E[jXtj] <1; t 2 R+; X is F-adapted and

E [XtjFs] = Xs; 0 � s � t:

The martingale property essentially says that the best prediction of the value (or the expected
value) of the process at some future time t given the information up to time s is precisely the value
of the process at time s:

Example 20 A F-Brownian motion is a F-martingale: by de�nition W is F-adapted, as Wt �
N (0; t) has �nite moments of all orders and

E [Wt �WsjFs] = E [Wt �Ws] = 0;

where we have used that Wt �Ws is independent from Fs, that if Z is independent from G we have
that E[ZjG] = E[Z] and that E [Wt] = 0; for all t 2 R+: From the previous equality and using that
Ws is Fs-measurable and, hence, E [WsjFs] =Ws; we can conclude.

The following result will be needed in the development of the stochastic integral.

Theorem 21 (Doob�s maximal inequalities) If fMtgt�0 is a martingale with almost surely con-
tinuous paths then we have that:
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1. For all T � 0; � > 0 and p � 1

P

�
sup
0�t�T

jMtj > �
�
� 1

�p
E[jMT jp]:

2. For all T � 0; p > 1

E[jMT jp] � E[ sup
0�t�T

jMtjp] �
�

p

p� 1

�p
E[jMT jp]:

5 Markov processes

De�nition 22 A real stochastic process X = fXtgt2R+ is a Markov process if

P (Xt 2 Bj�(Xs1 ; Xs2 ; :::; Xsn)) = P (Xt 2 Bj�(Xsn)) ;

for all 0 � s1 < s2 < � � � < sn � t and B 2 B(R):

A Markov process is the stochastic analogous of what happens in a system governed by a di¤eren-
tial equation with unique solution: A value given at some time determines what happens after that
time, we do not need more information from the past. Essentially, a Markov process is independent
of the past given the present.
We can also consider the Markov property with respect to a �ltration F:

De�nition 23 Let X be a stochastic process de�ned on a �ltered probability space (
;F ;F; P ): The
process X is a Markov process with respect to F if X is F-adapted and

P (Xt 2 BjFs) = P (Xt 2 Bj�(Xs)) ;

for all 0 � s < t and B 2 B(R):

The following proposition provides an alternative (and more useful for our goals) characterization
of the Markov property.

Proposition 24 Under the assumptions of the previous de�nition the following two statements are
equivalent:

1. For all 0 � s < t and B 2 B(R);

P (Xt 2 BjFs) = P (Xt 2 Bj�(Xs)) :

2. For all g : R! R Borel measurable such that E[ jg(Xt)j] <1; t 2 R+ and for all 0 � s � t

E [g(Xt)jFs] = E [g(Xt)jXs] :

Note that if a process X is Markov with respect to a �ltration F then it is Markov with respect
to its natural �ltration.
Let X be a Markov process and for each 0 � s � t <1; A 2 B(R); x 2 R; de�ne

ps;t(x;A) = P (Xt 2 AjXs = x) :

By the properties of conditional probability, we can choose ps;t(x;A) to be a transition probability
measure from (R;B(R) to (R;B(R). They give the probabilities of �transitions�of the process from
the point x at time s to the set A at time t.

Theorem 25 (The Chapman-Kolmogorov equations) If X is a Markov processes then for
each 0 � r � s � t; x 2 R; A 2 B(R);

pr;t(x;A) =

Z
R
ps;t(y;A)pr;s(x; dy):

6 Last updated: November 23, 2015



De�nition 26 Let fps;t; 0 � s � t <1g be a family of mappings from R� B(R)! [0; 1]. We say
that they are a family of Markov transition probabilities if, for each 0 � s � t:

1. the maps x 7�! ps;t(x;A) are measurable for each A 2 B(R);

2. ps;t(x; �) is a probability measure on B(R) for each x 2 R:

3. they satisfy the Chapman-Kolmogorov equations.

Theorem 27 If fps;t; 0 � s � t <1g is a family of Markov transition probabilities and � is a �xed
probability measure on (R;B(R)); there exists a probability space (
;F ; P�) and a Markov process
X = fXtgt2R+ de�ned on that space such that:

1. P (Xt 2 AjXs = x) = ps;t(x;A) for each 0 � s � t; x 2 R and A 2 B(R):

2. X0 has law �:

De�nition 28 A Markov process is said to be (time-) homogeneous if

ps;t(x;A) = p0;t�s(x;A);

for each 0 � s � t; x 2 R and A 2 B(R): For homogeneous Markov processes we will always write
the transition probabilities p0;t as pt:

Example 29 A F-Brownian motion is a F-Markov process with homogeneous transition probabilities
given by

ps (x;A) =

Z
A

1p
2�s

exp

�
� (y � x)

2

2s

�
dy;

and initial distribution the Dirac�s delta distribution �0:
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