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Stochastic Calculus

1 Itô Processes

Let (
;F ; P ) be a complete probability space. Throughout this lecture W will denote a Wiener
process (possibly dW -dimensional) de�ned on (
;F ; P ) : The reference �ltration F will be the mini-
mal augmented �ltration generated by W , i.e. FW :

De�nition 1 A stochastic process X = fXtgt2[0;T ] that can be written as

Xt = X0 +

Z t

0

gsds+

Z t

0

hsdWs; (1)

where h; g 2 L2a;T and X0 2 L2(
;F0; P ) is called a L2-Itô process.

Remark 2 Note that, actually, as F0 = f?;
g the random variable X0 is a constant. Moreover,
one can prove that the representation (1) is unique, in the sense that if X can also be written as

Xt = X 0
0 +

Z t

0

g0sds+

Z t

0

h0sdW;

where h0; g0 2 L2a;T and X
0
0 2 L2(
;F0; P ); then ht(!) = h0t(!) and gt(!) = g0t(!); � 
 P -a.e and

X0 = X 0
0:

An obvious extension of the previous de�nition is whenW is a dW -dimensional Brownian motion,
X0 is a dX -dimensional random vector with components in L2(
;F0; P ); h is a dX �dW matrix and
g is a dX vector with components in L2a;T . Then, X is a dX -dimensional vector with components
given by

Xi
t = Xi

0 +

Z t

0

gisds+

dWX
j=1

Z t

0

hi;js dW
j
s ; i = 1; :::; dX : (2)

From a notational point of view, sometimes it is convenient to write the previous expressions in
di¤erential form

dXi
t = gisds+

dWX
j=1

hi;js dW
j
s ; i = 1; :::; dX :

However, keep in mind that the di¤erential form is only a handy notation for the the integral form,
which is the one with a sound mathematical meaning.

Remark 3 The de�nition of an L2-Itô process can be extended to X0 2 L0(
;F0; P ); h 2 L0a;T and
g measurable and adapted process such that

R T
0
jgtjdt < 1; P -a.s.. We call such a process an Itô

process.
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2 The Itô Formula

If we only could compute Itô integrals using their de�nition, the concept will be of limited applica-
bility. The Itô integral has been a success because one can develop a calculus for it. That is, given
an Itô process X and a regular function f; one can prove that the process Yt = f(t;Xt) is still an
Itô process and we can �nd the explict representation of Y as an Itô process.

Theorem 4 (Itô Formula) Let f 2 C1;2 ([0; T ]� R) ; that is, f : R+ � R!R such that @f
@t ;

@f
@x

and @2f
@x2 are continuous functions and

Xt = X0 +

Z t

0

gsds+

Z t

0

hsdWs; 0 � t � T:

an L2-Itô process. Assume that

E

"Z T

0

(�
@f

@t
(t;Xt)

�2
+

�
gt
@f

@x
(t;Xt)

�2
+

�
h2t
@2f

@x2
(t;Xt)

�2)
dt

#
<1; (3)

and

E

"Z T

0

�
ht
@f

@x
(t;Xt)

�2
dt

#
<1: (4)

Then,

f (t;Xt) = f(0; X0) +

Z t

0

�
@f

@t
(s;Xs) + gs

@f

@x
(s;Xs) +

1

2
h2s
@2f

@x2
(s;Xs)

�
ds+

Z t

0

hs
@f

@x
(s;Xs)dWs;

for 0 � t � T and it is also an L2-Itô process.

Proof. We just give the heuristics for the case Xt = Wt: Let �n = f0 = t0 < t1 < � � � < tn�1 <
tn = tg be a sequence of partitions of the interval [0; t]: From a Taylor expansion of f around the
points in the partition �n we get

f(Wt)� f(W0) =
n�1X
i=0

f(Wti+1)� f(Wti)

=

n�1X
i=0

f 0(Wti)(Wti+1 �Wti) +
1

2

n�1X
i=0

f 00(Wti)(Wti+1 �Wti)
2

+
1

2

n�1X
i=0

(f 00(�i)� f 00(Wti)) (Wti+1 �Wti)
2

=: A1 +A2 +A3:

where �i is a random variable in the random interval [min(Wti ;Wti+1);max(Wti ;Wti+1)]: The term
A1 converges in L2 to the Itô integral, the term A2 converges in L2 to

R t
0
f 00(Ws)ds and the term

A3 converges in L2 to zero.
Some remarks are in order:

Remark 5 1. Sometimes we will write the Itô formula in di¤erential form, which reads

df(t;Xt) =

�
@f

@t
(t;Xt) + gt

@f

@x
(t;Xt) +

1

2
h2t
@2f

@x2
(t;Xt)

�
dt+ ht

@f

@x
(t;Xt)dWt

=:
@f

@t
(t;Xt)dt+

@f

@x
(t;Xt)dXt +

1

2

@2f

@x2
(t;Xt) (dXt)

2
;

where to write the last line we have used the so called Itô�s product rule

� dt dWt

dt 0 0
dWt 0 dt

:

This last expression is useful for mnemonic reasons and can be given a rigourous meaning
using the concept of covariation between processes.
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2. If we consider the stochastic integral for processes in L0a;T ; that is, for an Itô process the
previous theorem holds without requiring the integrability conditions (3) and (4) :

Example 6 Let f(x) = xn; n � 2 and Xt =Wt. Then, we obtain

Wn
t = n

Z t

0

Wn�1
s dWs +

n(n� 1)
2

Z t

0

Wn�2
s ds:

Theorem 7 Let W be a dW -dimensional Brownian motion and X a dX-dimensional Itô process
such as in (2). Let f be a RdY - valued function with components in C1;2([0; T ];RdX ): Then the
process Yt = f(t;Xt) has the following di¤erential expression

dY kt = f i(0; X0)+
@fk

@t
(t;Xt)dt+

dXX
i=1

@f

@xi
(t;Xt)dX

i
t+

1

2

dXX
i;j=1

@2f

@xi@xj
(t;Xt)dX

i
tdX

j
t ; k = 1; :::; dY ;

with the Itô product rules dW i
t dW

j
t = �ijdt and (dt)

2
= dW i

t dt = dtdW i
t = 0:

As a consequence of this multidimensional Itô formula we can deduce the following useful result.

Proposition 8 (Integration by parts formula) Let X and Y be two Itô processes.Then,

d(XtYt) = XsdYs + YsdXs + dXsdYs:

Example 9 Let�s �nd the Itô expression for the process tWt: Thanks to the integration by parts
formula we get

d(tWt) = tdWt +Wtdt+ dtdWt = tdWt +Wtdt;

which written in integral form reads

tWt = 0W0 +

Z t

0

sdWs +

Z t

0

Wsds =

Z t

0

sdWs +

Z t

0

Wsds:

3 The Martingale Representation Theorem

We assume that the sigma algebra F is equal to FT = FWT : This assumption is crucial and the results
presented in this section do not hold true, in general, if we allow F to contain more information
that the one generated by W up to time T: The martingale representation theorem is one of the
cornerstones of stochastic calculus and essentially says that any martingale, having enough integra-
bility, with respect to the Brownian �ltration can be expressed in an unique way as an stochastic
integral with respect to this Brownian motion. This result paves the way of the martingale methods
in option pricing.
The following is a technical lemma that we state without proof.

Lemma 10 The linear span of random variables of the Dóleans exponential (or stochastic exponen-
tial) type, i.e., random variables of the form

exp

 Z T

0

htdWt �
1

2

Z T

0

h2tdt

!
;

for a deterministic process h 2 L2 ([0; T ]) ; is dense in L2(
;FT ; P ):

Theorem 11 (Itô Representation Theorem) Let F 2 L2(
;FT ; P ): Then, there exists a unique
h 2 L2a;T such that

F = E[F ] +
Z T

0

htdWt: (5)
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Proof. The idea is to prove �rst the result for F being of Dóleans exponential type and then extend
it to any square integrable F by a density argument. Let h 2 L2 ([0; T ]) deterministic. Assume that

F = exp

 Z T

0

htdWt �
1

2

Z T

0

h2tdt

!
;

and consider the process

Xt = exp

�Z t

0

hsdWs �
1

2

Z t

0

h2sds

�
:

Applying Itô�s formula to the exponential function we obtain

dXt = YthtdWt +

�
�1
2
Yth

2
t +

1

2
Yth

2
t

�
dt = YthtdWt;

or

Xt = 1 +

Z t

0

XshsdWs; t 2 [0; T ]:

In particular,

F = 1 +

Z T

0

XthtdWt;

and taking expectations we get that E[F ] = 1 because

E

"Z T

0

jXthtj2 dt
#
=

Z T

0

E
h
jXtj2

i
jhtj2 dt =

Z T

0

exp

�Z t

0

jhsj2 ds
�
jhtj2 dt

� exp
�Z t

0

jhsj2 ds
�Z T

0

jhtj2 dt <1:

and, therefore, the expectation of the Itô integral is zero (note that we have used that E
h
jXtj2

i
=

exp
�R t

0
jhsj2 ds

�
; see exercises of List 2). For arbitrary F let fFngn�1 be a sequence of linear

combinations of Dóleans exponentials approximating F in L2(
;FT ; P ). By linearity, the property
(5) also holds for fFngn�1: Then, for each n we have that there exists hn 2 L2a;T such that

Fn = E[Fn] +
Z T

0

hnt dWt: (6)

Using (6) ; the linearity of the expectation, that the integrals has zero mean and the Itô isometry
we get that

E[(Fn � Fm)2] = E

24 E[Fn]� E[Fm] + Z T

0

(hnt � hmt ) dWt

!235
= E[Fn � Fm]2 + E

"Z T

0

jhnt � hmt j
2
dt

#

� E
"Z T

0

jhnt � hmt j
2
dt

#
;

As fFngn�1 is a convergent sequence in L2(
;FT ; P ) we have that fFngn�1 is Cauchy and, hence,"Z T

0

jhnt � hmt j
2
dt

#
� E[(Fn � Fm)2] �!

n;m!1
0;

Therefore, we have proved that the sequence fhngn�1 is a Cauchy sequence in L2 (
� [0; T ]) which
is a complete metric space. Consequently, it will converge to a process h 2 L2 (
� [0; T ]). We can
choose a version of h which is adapted, because there exists a subsequence hn which converges to h
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for almost all (!; t) 2 
 � [0; T ]. Therefore, ht(�) is Ft-measurable for a.e. t 2 [0; T ] (that is true
because the �ltration satis�es the usual conditions) and changing h in set of measure zero on [0; T ]
we can get h adapted. Finally, using Itô�s isometry again we get that

F = L2- limFn = L2- lim

 
E[Fn] +

Z T

0

hnt dWt

!
= E[F ] +

Z T

0

htdWt:

The uniqueness is also an easy consequence of Itô isometry and the fact that a positive process, say
u; such that E[

R T
0
usds] = 0 must be P 
 � -a.e. zero.

From the Itô�s representation theorem one can show the martingale representation theorem.

Theorem 12 (Martingale Representation Theorem) Let M = fMtgt2[0;T ] be a square inte-
grable F-martingale. Then, there exists a unique h 2 L2a;T such that

Mt = E[M0] +

Z t

0

hsdWs:

Proof. Note thatMt = E[MT jFt]: Applying Itô�s representation theorem to MT 2 L2(
;FT ; P ) we
have that there exists a unique h 2 L2a;T such that MT = E[M0] +

R T
0
hsdWs: Hence,

Mt = E[MT jFt] = E
"
E[M0] +

Z T

0

hsdWsjFt

#

= E[M0] + E

"Z T

0

hsdWsjFt

#

= E[M0] +

Z t

0

hsdWs;

where in the last equality we have used that the stochastic integral, as a process, is an F-martingale.

Example 13 Consider the random variable W 3
T : Then, by example (6) we have that

W 3
T = 3

Z T

0

W 2
t dWt + 3

Z T

0

Wtdt:

Moreover, by example (9) we have thatZ T

0

Wtdt = TWT �
Z T

0

tdWt =

Z T

0

(T � t) dWt:

Therefore, we can conclude that

W 3
T =

Z T

0

3
�
W 2
t + (T � t)

�
dWt

All the results of this section also hold when the �ltration is generated by a multidimensional
Brownian motion. They can even be extended to random variables that are not square integrable
using the Itô integral for processes in L0a;T ; but then we loss the unicity in the representation.

4 Girsanov�s Theorem

Girsanov�s theorem basically states that if we add a drift term to a Brownian motion then the
new process does not change much in the sense that it is a Brownian motion but under a di¤erent
probability measure.
The prof of Girsanov�s theorem is based on the following characterization of Brownian motion

that we state without proof.
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Theorem 14 (Lévy�s characterization of Brownian motion) Let X = fXtgt2R+ be a real
valued process with continuous paths and F = FX the minimal augmented �ltration generated by
X. The following two statements are equivalent:

1. X is a F-Brownian motion.

2. X and X2 � t are both F-martingales.

The following lemma is a version of the Bayes� theorem. The proof is similar to the proof of
exercise 32. in List 1.

Lemma 15 Let Q and P be two probability measures on some measurable space (
;F) such that
Q� P: Let X 2 L1 (
;F ; Q) and H � F a sub-�-algebra of F : Then,

EQ[XjH]EP
�
dQ

dP
jH
�
= EP

�
X
dQ

dP
jH
�
:

Theorem 16 (Girsanov) Let Y be an Itô process of the form

dYt = gtdt+ dWt; Y0 = 0; 0 � t � T:

Set

Mt = exp

�
�
Z t

0

gsdWs �
1

2

Z t

0

g2sds

�
; 0 � t � T

Assume that M is a martingale with respect to P and de�ne the measure Q on FT by dQ
dP = MT :

Then Q is a probability measure on FT and Y is a Brownian motion under Q:

Proof. The idea is to use Lévy�s characterization theorem. We have to check that Y and Y 2 � t
are martingales under Q. De�ne Kt =MtYt: By the integration by parts formula we have that

dKt =MtdYt + YtdMt + dMtdYt

=Mt(gtdt+ dWt)� Yt (MtgtdWt)� dWt (MtgtdWt)

=Mt(1� Ytgt)dWt:

Hence, Kt is a martingale under P . By Lemma 15, we get that

EQ[YtjFs] =
EP [MtYtjFs]
EP [MtjFs]

=
EP [KtjFs]

Ms
=
Ks

Ms
= Ys;

so we have proved that Y is a martingale under Q: The proof that Y 2 � t is a martingale under Q
is similar.
The delicate point in Girsanov�s Theorem is the assumption that M is a martingale. In order to

check this assumption one can use the following result.

Lemma 17 (Novikov�s) Let M be as in Girsanov�s theorem. If

E

"
exp

 
1

2

Z T

0

jgtj2 dt
!#

<1;

then M is a martingale and E[Mt] = E[M0] = 1:

5 Stochastic Di¤erential Equations (SDEs)

A particularly useful type of Itô processes are solutions of SDEs. Let bi(t; x); �ij(t; x); i = 1; :::; dX ; j =
1; :::; dW ; be Borel measurable functions from R+ � RdX to R: De�ne the drift vector b(t; x) =
fbi(t; x)gi=1;:::;dX and the dispersion matrix �(t; x) = f�ij(t; x)gi=1;:::;dX ;j=1;:::;dW : The goal of this
section is to give a meaning to the stochastic di¤erential equation

dXt = b(t;Xt)dt+ �(t;Xt)dWt; (7)
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written componentwise as

dXi
t = bi(t;Xt)ds+

dWX
j=1

�ij(t;Xt)dW
j
t ; i = 1; :::; dX ;

where W = fW 1
t ; :::;W

dW
t g is Brownian motion and X = fX1

t ; :::; X
dX
t g is a suitable stochastic

process with continuous process with continuous sample paths, the "solution" of the equation. The
drift vector b(t; x) and the dispersion matrix �(t; x) are the coe¢ cients of the equation and the
dX � dX -matrix a(t; x) := �(t; x)�T (t; x) with elements

aij(t; x) =

dWX
k=1

�ik(t; x)�jk(t; x);

is called the di¤usion matrix.

De�nition 18 Let (
;F ; P ) be a probability space with a dW -dimensional Brownian motion W
de�ned on it and consider F the augmented �ltration of W: A strong solution, on (
;F ; P ) and
with respect to the �xed Brownian motion W; of the equation (7) is a process X = fXtgt2[0;T ] with
continuous sample paths and satisfying

1. X is F-adapted.

2. X0 = x 2 Rd:

3. P
�R t

0

��bi(s;Xs)
��+ j�ij(s;Xs)j2 ds <1

�
= 1 holds for every i = 1; :::; dX ; j = 1; :::; dW and

t 2 [0; T ]:

4. The integral version of (7) holds, i.e,

Xt = x+

Z t

0

b(s;Xs)ds+

Z t

0

�(s;Xs)dWs; P -a.s.,.

The following theorem gives su¢ cient conditions on b and � to guarantee the existence and
uniqueness of a solution of equation (7) : From now on k�k will denote the euclidean norm of
the the appropriate dimension.

Theorem 19 (Existence and Uniqueness) Let the coe¢ cients b and � be continuous functions
satisfying

1. (Lipschitz coe¢ cients) kb(t; x)� b(t; y)k+ k�(t; x)� �(t; y)k � K kx� yk ;

2. (Linear growth) kb(t; x)k2 + k�(t; x)k2 � K2(1 + kxk2); for all x 2 R;

for all t 2 R+; x; y 2 RdX and a constant K > 0 (where k�k denotes the Euclidean norm of
suitable dimension). Then, for any T > 0 there exists a (unique up to indistinguishability) strong
solution X of (7) in the interval [0; T ]: Moreover, this solution X satis�es for �xed m � 1

E
�
sup
0�s�t

kXsk2m
�
< CeCt

�
1 + kxk2m

�
;

for all t 2 [0; T ] and a suitable constant C.

5.1 The Markov Property of the Solution of a SDE

We shall denote by Xs;x = fXs;x
t gt2[s;T ] the unique solution of equation (7) starting from x at time

s: That is, Xs;x satis�es

Xs;x
t = x+

Z t

s

b(u;Xs;x
u )du+

Z t

s

�(u;Xs;x
u )dWu; t 2 [s; T ]:
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Moreover, we will denote by X = Xx = X0;x the solution of equation (7) starting from x at time 0.
Using the uniqueness of the solution of equation (7) one can deduce the following �ow property of
the solution

Xx
t = X

s;Xx
s

t ; P -a.s. t 2 [s; T ]:

From the �ow property one can prove the following theorem.

Theorem 20 (Markov property of SDEs) Assume that the hypothesis of Theorem 19 hold. Then,
X is a Markov process with respect to the �ltration F: Furthermore, for any Borel measurable function
f such that E[jf(Xt)j] <1; t 2 [0; T ] we have

E[f(Xt)jFs] =  (Xs);

where s � t and  (x) = E[f(Xs;x
t )]: The previous equality is often written as

E [f(Xt)jFs] = E [f(Xs;x
t )] jx=Xs :

Remark 21 If X is time homogenous, that is, the coe¢ cients b(t; x) = b(x) and �(t; x) = �(x) do
not depend on time, then the markov property can be written as

E[f(Xt)jFs] = E
�
f(Xx

t�s)
�
jx=Xs

:

5.2 The Feynman-Kac Representation

Associated to the coe¢ cients (b; �) of an SDE we can de�ne the following second order di¤erential
operator

Atf(x) =
1

2

dXX
i=1

dXX
j=1

aij(t; x)
@2f

@xi@xj
(x) +

dXX
i=1

bi(t; x)
@f

@xi
(x); f 2 C2(RdX );

where the matrix a is the di¤usion matrix a = �(t; x)�T (t; x):We call this operator the characteristic
operator of (b; �): We now consider the following Cauchy problem corresponding to At:

Problem 22 Find a function v(t; x) : [0; T ]� RdX ! R with

�@v
@t
(t; x) + k(t; x)v(t; x) = Atv(t; x); on [0; T )� RdX

v(T; x) = f(x); for x 2 RdX ;

where k : [0; T ]� RdX ! R+ is continuous and f : RdX ! R is also continuous and satisfy

jf(x)j � L(1 + kxk2�); L > 0; � � 1 or f(x) � 0:

Theorem 23 (Feynman-Kac Representation) Let v : [0; T ]�RdX ! R be a continuous solution
of the Cauchy problem (22) with v 2 C1;2

�
[0; T )� RdX

�
and satisfying the following polynomial

growth condition
sup
0�t�T

jv(t; x)j �M(1 + kxk2�) with M > 0; � � 1:

Assume that At is the characteristic operator of (b; �) satisfying the hyphotesis of Theorem 19. Then
v(t; x) admits the following stochastic representation

v(t; x) = E

"
f(Xx

T ) exp

 
�
Z T

t

k(s;Xx
s )ds

!�����Ft
#
= E

"
f(Xt;x

T ) exp

 
�
Z T

t

k(s;Xt;x
s )ds

!#

on [0; T ]� RdX : In particular, such a solution is unique.
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Proof. We sketch the main idea. As v(t; x) is C1;2 we can apply Itô�s formula to

exp

�
�
Z t

0

k(s;Xs)ds

�
v(t;Xt)

to get that the process

Mt := exp

�
�
Z t

0

k(s;Xs)ds

�
v(t;Xt)

�
Z t

0

exp

�
�
Z s

0

k(r;Xr)dr

��
@v

@t
(s;Xs) +Asv(s;Xs)� k(s;Xs)v(s;Xs)

�
ds;

is equal to the stochastic integral

dWX
j=1

Z t

0

exp

�
�
Z s

0

k(r;Xr)dr

� dXX
i=1

@v

@xi
(s;Xs)�ij(s;Xs)dW

j
s :

As a consequence, if

E

"Z T

0

����exp��Z s

0

k(r;Xr)dr

�
@v

@xi
(s;Xs)�ij(s;Xs)

����2 ds
#
<1; i = 1; :::; dX ; j = 1; :::; dW ;

then Mt is a martingale and if v(t; x) satis�es the Cauchy problem we get that

Mt = exp

�
�
Z t

0

k(s;Xs)ds

�
v(t;Xt);

is a martingale. Hence, by the martingale property of Mt we can write

exp

�
�
Z t

0

k(s;Xs)ds

�
v(t;Xt) = E

"
exp

 
�
Z T

0

k(s;Xs)ds

!
v(T;XT )

�����Ft
#
;

which yields

v(t;Xt) = E

"
exp

 
�
Z T

t

k(s;Xs)ds

!
v(T;XT )

�����Ft
#

= E

"
f(Xt;x

T ) exp

 
�
Z T

t

k(s;Xt;x
s )ds

!#
;

by the Markov property of X = Xx:

Remark 24 Note that in the previous theorem we have assumed that there exists a solution to
the Cauchy problem satisfying certain regularity conditions and polynomial growth. If we can show
that such solution exists then it is given by the above expectation and it is unique. This is done
by calculating the above expectation, which depends on the parameters (t; x); and showing that it
solves the PDE and it satis�es the required regularity and growth conditions. However, the previous
theorem does not resolve, in general, wether or not a solution to the Cauchy problem actually exists
because the previous approach may fail, that is, the above expectation may fail to have the required
regularity or growth condition. Another interesting use of this stochastic representation formula is
to numerically compute the solution (when it does exist) by Monte Carlo methods.
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