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The Black-Scholes Model

1 Modeling Assumptions

The Black-Scholes (BS) model consists in a �nancial market where there are two assets, one risky
asset (the stock) and one riskless asset (the bank account). The investors in this model can trade
continuously in this market within an investment horizon [0; T�]: Assume that we introduce a third
asset, called contingent claim, that pays the owner H � 0 at a future time T � T � depends on the
risky asset. The goal is to give a "reasonable" price �t(H) for this new asset for any t 2 [0; T ]: We
will show that an investor can replicate the value of the contingent claim by continuously rebalancing
a certain type of portfolios involving the riskless and risky assets. This replicating portfolio naturally
gives the price of the contingent claim by non-arbitrage arguments.

1.1 Prices

The price of the riskless asset, denoted by B = fBtgt2[0;T ]; is modeled by a continuous time deter-
ministic process satisfying the following ODE.

dBt = rBtdt;

B0 = 1;

where r 2 R+ is called the risk-free interest rate. Note that, Bt = ert; 0 � t � T: The riskless asset
represents savings account, which continuously compound in value at rate r:
The price of the risky asset, denoted by S = fStgt2[0;T ]; is modeled by a continuous time

stochastic process satisfying the SDE

dSt = �Stdt+ �StdWt; t 2 [0; T ]; (1)

S0 = S0 > 0:

Applying Itô�s formula, one can check that the process

St = f(t;Wt) = S0 exp

��
�� �2

2

�
t+ �Wt

�
;

satis�es the SDE (1) : Therefore, St is a geometric Brownian motion with drift �� �2

2 and volatility
�: Let us summarize the underlying hypothesis of the BS model on the prices of assets.

� The assets are traded continuously and their prices have continuous paths.

� The risk-free interest rate r is constant.

� The logreturns of the risky asset St follows a Brownian motion with drift:

log

�
St
Su

�
=

�
�� �2

2

�
(t� u) + � (Wt �Wu) ;

and, hence, they are stationary.

� The risky asset does not give dividends.
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1.2 Trading Strategies

De�nition 1 A portfolio or trading strategy is a measurable and adapted stochastic process � =
f(�0t ; �1t )gt2[0;T ]; where �0t and �1t are the number of units invested at time t in the assets B and S;
respectively. The value of the portfolio is the stochastic process V (�) = fVt(�)gt2[0;T ] given by

Vt(�) = �0tBt + �
1
tSt = �0t e

rt + �1tSt: (2)

Note that a portfolio is adapted to the �ltration generated by the driving Brownian motion W ,
which for this model coincides with the �ltration generated by the price process S. Hence, the
investor is not allowed to have knowledge of future prices when taking its investment decisions.
Also note that if � = f�0; �1g is a portfolio, once we have set a value for �1; the value for �0 is
automatically determined by the expression

�0 = B�1t (Vt(�)� �1tSt) = e�rt(Vt(�)� �1tSt);

which is adapted. Finally, there is no positivity restriction on �0 and �1; which means that we can
borrow money or short-sell the risky asset.

De�nition 2 A portfolio is called self-�nancing if its value is an Itô process satisfying

dVt(�) = �0tdBt + �
1
tdSt (3)

or

Vt (�) = �00 + �
1
0S0 +

Z t

0

�0sdBs +

Z t

0

�1sdWs

=: �00 + �
1
0S0 +Gt(�);

where Gt(�) is called the gains process.

Formula (3) says that the instantaneous changes in the portfolio value are completely determined
by the price changes of the underlying assets. Financially, this means that we do not withdrawn or
add any funds to the portfolio during the trading period. We just set an initial investment �00+�

1
0S0

and from then on the portfolio value Vt(�) only changes due to the trading gains, given by the gains
process Gt(�):

De�nition 3 A self-�nancing trading strategy � is an arbitrage opportunity if V0(�) � 0 and
VT (�) � 0 with P (VT (�) > 0) > 0 (or equivalently E[VT (�)] > 0:)

Financially speaking an arbitrage is the opportunity of earning money from a zero (or even nega-
tive) investment without taking risk. In liquid markets such opportunities do not exist or only exist
temporarily, because market participants eliminate them by trading. Hence, we must ensure that
our mathematical model does not allow for arbitrages. If we just consider self-�nancing portfolios
there exists some portfolios, called doubling strategies, that produce arbitrage opportunities. The
following requirement eliminates these portfolios.

De�nition 4 A self-�nancing trading strategy � is called admissible if the discounted value of the
portfolio ~Vt(�) , e�rtVt(�) is a martingale under the measure Q de�ned by the following Radon-
Nykodim derivative with respect to P

dQ

dP
= exp

 
��� r

�
WT �

1

2

�
�� r
�

�2
T

!
:

In the next lecture, we will clarify this choice for the class of admissible portfolios as we will
prove that in the Black-Scholes market there are no arbitrage opportunities within this class.

Remark 5 Using Hölder�s inequality and the fact that a normal random variable has exponential
moments of all orders one can prove that a su¢ cient condition for �1 to be admissible is that
�1 2 L2+"a;T ; for some " > 0: That is, �

1 is measurable, adapted and

E

"Z T

0

���1t ��2+" dt
#
<1;

where the expectation is under the measure P:
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Let�s summarize some of the assumption of the Black-Scholes model regarding the trading strate-
gies:

� Trading is done continuously in time

� We can buy or sell any fraction of the riskless and risky assets.

� The portfolios are self-�nancing.

� The portfolios must satisfy some credit constraint.

� The market is arbitrage free.

� There are no transaction costs.

1.3 Contingent Claims

De�nition 6 A T -contingent claim is a �nancial contract that pays the holder a nonnegative random
amount H at time T; which is called the exercise time. The random variable H is assumed to be
FT -measurable, with E[H2+"] <1 for some " > 0:

De�nition 7 A contingent claim H is replicable or attainable if there exists a self-�nancing ad-
missible trading strategy � such that VT (�) = H;P -a.s.. We call such � the replicating or hedging
strategy of H:

Our goal is to give an arbitrage free price for T -contingent claims. The following result is crucial.

Theorem 8 (Arbitrage-free pricing) Assume that we can buy or sell in the market, at any time
0 � t < T; a replicable contingent claim H: Then, the only arbitrage free price of H at time t;
denoted by �t(H); is given by Vt(�); the value of the replicating portfolio at time t.

Proof. Suppose that �t(H) < Vt(�); then you can buy the contingent claim, sell the replicating
portfolio and invest the remaining amount on the risk-free asset. If �t(H) > Vt(�) you can sell
the contingent claim, buy the replicating portfolio and invest the remaining amount on the risk-free
asset. At time T you will have a risk-free pro�t of j�t(�)�Vt(�)jer(T�t): Hence, the only possibility
to avoid arbitrage is to have �t(H) = Vt(�),P -a.s.,0 � t � T:

De�nition 9 We say that a �nancial market is complete if any contingent claim is replicable.

It can be proved that the Black-Scholes model is a complete market. We will discuss further
on this issue the next lecture. Note also that in complete markets contingent claims are redundant
assets. This means that there is no economic reason to include them as an additional asset in
the market. Of course, they are redundant because one always can consider a replicating portfolio
instead of the contingent claim.
Let�s summarize the hypothesis on the Black-Scholes model regarding contingent claims:

� The market is complete.

2 The Black-Scholes PDE

We derive the partial di¤erential equation (PDE) that must satisfy the price process �t(H) of a
replicable contingent claim H of the form H = h(ST ). By Theorem 8, �t(H) must be equal to
Vt(�); the value of the replicating portfolio.

Theorem 10 Let H = h(ST ) be a replicable contingent claim and � = (�0; �1) its replicating
portfolio. Assume that the value of the portfolio takes the form Vt (�) = f(t; St) for some f 2
C1;2 ([0; T )� R+) : Then, the function f(t; x) satis�es the Black-Scholes PDE

@f

@t
(t; x) + rx

@f

@x
(t; x) +

1

2
�2x2

@2f

@x2
(t; x) = rf(t; x); (t; x) 2 [0; T )� R+ (4)

f(T; x) = h(x); x 2 R;
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and � is given by

(�0t ; �
1
t ) =

�
e�rt

�
f(t; St)� St

@f

@x
(t; St)

�
;
@f

@x
(t; St)

�
; t 2 [0; T ]:

Proof. First we �nd the representation of V (�) as an Itô process using the self-�nancing property.
We get that

dVt(�) = �0tdBt + �
1
tdSt = �0t rBtdt+ �

1
t (�Stdt+ �StdWt)

=
�
�0t re

rt + �1t�St
�
dt+ �1t�StdWt:

Secondly, we apply Itô�s formula to f(t; St) to get an alternative representation of V (�) as an Itô
process. We have that

df(t; St) =
@f

@t
(t; St)dt+

@f

@x
(t; St)dSt +

1

2

@2f

@x2
(t; St)(dSt)

2

=

�
@f

@t
(t; St) + �St

@f

@x
(t; St)dt+

1

2
�2S2t

@2f

@x2

�
dt+ �St

@f

@x
(t; St)dWt:

As the representation of a process as an Itô process is unique, we can identify the terms multiplying
dWt in the expressions for dVt(�) and df(t; St) to get that

�St
@f

@x
(t; St) = �1t�St;

which yields that �1t =
@f
@x (t; St); t 2 [0; T ]: Note that, given the previous expression for �

1
t ; we can

write �0t in terms of St; f(t; St) and
@f
@x (t; St), namely

�0t = B�1t
�
Vt(�)� �1tSt

�
= e�rt

�
f(t; St)� St

@f

@x
(t; St)

�
:

The next step is to identify the terms multiplying dt and using the previous expressions for �1t and
�0t in terms of St; f(t; St) and

@f
@x (t; St):We obtain that

@f

@t
(t; St) + �St

@f

@x
(t; St)dt+

1

2
�2S2t

@2f

@x2
= �0t re

rt + �1t�St

=
f(t; St)� St @f@x (t; St)

ert
rert +

@f

@x
(t; St)�St;

and carrying out the simpli�cations we get

@f

@t
(t; St) + rSt

@f

@x
(t; St)dt+

1

2
�2S2t

@2f

@x2
= rf(t; St): (5)

As the law of St is absolutely continuous with respect to the Lebesgue measure and its support is
(0;+1) we can conclude that equation (5) holds for all x 2 (0;+1):

3 Solution of the Black-Scholes PDE

At �rst sight, solving the Black-Scholes PDE (BS-PDE) seems a quite hard task. However, by a
suitable change of variables the BS-PDE can be reduced to the heat equation, possibly the most
well known PDE around. Nevertheless, our approach for solving the BS-PDE will be based on the
Feynman-Kac representation formula. This representation will reveal an interesting feature of the
solution, namely, that it can be obtained as an expectation of a geometric Brownian motion with
drift given by the riskless rate r instead of the drift �: This suggests the martingale approach or
risk-neutral pricing presented on the next lecture.
Consider the SDE

dZt = rZtdt+ �ZtdWt;

Z0 = S0;
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which has the characteristic operator

Atf(x) = Af(x) =
1

2
�2x2

@2f

@x2
(x) + rx

@f

@x
(x):

We can set the following Cauchy problem

�@f
@t
(t; x) + k(t; x)f(t; x) = Atf(x); (t; x) 2 [0; T )� R;

f(T; x) = h(x); x 2 R;

which setting k(t; x) = r and reordering terms yields the BS-PDE

@f

@t
(t; x) +

1

2
�2x2

@2f

@x2
(x) + rx

@f

@x
(x) = rf(t; x) on [0; T )� R

f(T; x) = h(x); for x 2 R;

Then, according to the Feynman-Kac representation theorem a good candidate for solving the BS-
PDE is

f(t; x) = E[e�r(T�t)h(Zt;xT )]:

As Zt;x is a geometric Brownian motion with drift r � �2

2 and volatility � starting at x at time t;
we have that

Zt;xs = x exp

��
r � �2

2

�
(s� t) + �(Ws �Wt)

�
; s 2 [t; T ]:

Therefore, logZt;xT is a N
�
log(x) +

�
r � �2

2

�
(T � t); �2(T � t)

�
and we can write

f(t; x) =

Z +1

�1
h (exp (z))�

�
z; log(x) +

�
r � �2

2

�
(T � t); �2(T � t)

�
dz; (6)

where �(z;�; �2) = 1p
2��2

exp(� (z��)2
2�2 ) or

f(t; x) =

Z +1

�1
h

�
exp

�
log(x) +

�
r � �2

2

�
(T � t) + �

p
T � tz

��
�(z)dz; (7)

where �(z) = 1p
2�
exp(� z2

2 ): The expression (7) is more convenient to compute f(t; x) for some
simple functions h (call and put options) because the solution can be expressed in terms of the
cumulative normal distribution function. As the normal distribution has exponential moments of
any order (Exercise 20, List 1) we get that if h has polynomial growth then f(t; x) has polynomial
growth. To show that f(t; x) is smooth in (t; x) is more delicate. To justify the interchange between
the derivative and the expectation one can use the dominated convergence theorem. However, to
compute derivatives with respect to t,x or other parameters, one must use expression (6) : This is
due to the fact that h does not need to be regular. This is known as the density approach for
computing the sensitivity parameters, because we have transferred the problem of di¤erentiating a
possibly non-smooth h to di¤erentiating the density of logZt;xT , which is smoother in this case, you
can compare with Exercise 23 in List 1. After some tedious computations one can show that f(t; x)
satis�es the BS-PDE. As an important example, let us compute the derivative of f(t; x) with respect
to x using the density approach. First, de�ne

 (z;x) := �

�
z; log(x) +

�
r � �2

2

�
(T � t); �2(T � t)

�

=
1p

2��2(T � t)
exp

0B@�
�
z � log(x)�

�
r � �2

2

�
(T � t)

�2
2�2(T � t)

1CA ;
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and note that

@ 

@x
(z;x) =  (z;x)

0@�z � log(x)�
�
r � �2

2

�
(T � t)

�2(T � t)

1A�� 1
x

�

=  (z;x)

0@z � log(x)�
�
r � �2

2

�
(T � t)

x�2(T � t)

1A
Therefore,

@

@x
f(t; x) =

@

@x
E[e�r(T�t)h(Zt;xT )]

=
@

@x

Z +1

�1
e�r(T�t)h (exp (z)) (z;x)dz

=

Z +1

�1
e�r(T�t)h (exp (z))

@

@x
 (z;x)dz

=

Z +1

�1
e�r(T�t)h (exp (z))

0@z � log(x)�
�
r � �2

2

�
(T � t)

x�2(T � t)

1A (z;x)dz

= E[e�r(T�t)h(Zt;xT )

0@ log(Zt;xT )� log(x)�
�
r � �2

2

�
(T � t)

x�2(T � t)

1A]
We have sketched the proof of the following theorem.

Theorem 11 The price process �t(H) of a contingent claim H = h(ST ) is given by

�t(H) = f(t; St);

and the hedging strategy is given by

(�0t ; �
1
t ) =

�
e�rt

�
f(t; St)� St

@f

@x
(t; St)

�
;
@f

@x
(t; St)

�
; t 2 [0; T ];

where

f(t; x) = e�r(T�t)E[h(Zt;xT )];

@f

@x
(t; x) = e�r(T�t)E

24h(Zt;xT )

0@ log(Zt;xT )� log(x)�
�
r � �2

2

�
(T � t)

x�2(T � t)

1A35 ; (8)

and logZt;xT � N
�
log(x) +

�
r � �2

2

�
(T � t); �2(T � t)

�
:

Remark 12 When one can obtain a explicit formula for f(t; x) in terms of functions that are di¤er-
entiable (for instance for call and put options), one usually computes @f@x (t; x) by usual di¤erentiation
instead of using formula (8) :

Remark 13 Note that we obtain the price of a contingent claim as

�t(H) = e�r(T�t)E[h(Zt;xT )];

where the dynamics of Zt;xT it is that of a geometric Brownian motion with parameters r and �
instead of � and �: Using the Girsanov�s theorem we have that under the probability measure

dQ

dP
= exp

 
�
Z T

0

�� r
�

dWs �
1

2

Z T

0

�
�� r
�

�2
dt

!

= exp

 
�WT �

1

2

�
�� r
�

�2
T

!
;
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the process

d ~Wt =
�� r
�

dt+ dWt

is a Q-Brownian motion. We can rewrite the dynamics of St in terms of the process ~W; that is,

dSt = �Stdt+ �StdWt

= �Stdt+ �St(d ~Wt �
�� r
�

dt)

= rStdt+ �Std ~Wt:

As ~W is a Brownian motion under Q; we get that S is a geometric Brownian motion with parameters
r and � under Q: Hence, we can write

�t(H) = e�r(T�t)EQ[h(St;xT )];

because St;x under Q has the same law as Zt;x under P: The probability measure Q is called the
risk-neutral pricing measure because we can obtain the price of a contingent claim as its discounted
expected payo¤ under this measure. The term risk-neutral is due to the fact that the risky asset
under Q has the same mean growth rate as the riskless asset r. So the price does not depend on �
the real rate at which the stock price S grows. So you can imagine that under Q we are in a world
where nobody values risk at all and all risky assets grow at the riskless rate on average. The quotient
��r
� is called the market price of risk and it is the return in excess of the riskless rate (risk adjusted)
that the market wants as a compensation for taking risk.

4 Pricing and Hedging of Call Options

One of the most traded contingent claims are call options with strike price K > 0: This claim has
payo¤ function

H = max(0; S(T )�K);

at exercise time T: We can prove the following result.

Theorem 14 The price of a call is given by

C(t; St) = St�(d1)�Ke�r(T�t)�(d2);

where

d1 =
log(St=K) + (r +

�2

2 )(T � t)
�
p
T � t

;

d2 =
log(St=K) + (r � �2

2 )(T � t)
�
p
T � t

;

and

�(x) =

Z x

�1
�(z)dz =

Z x

�1

1p
2�
exp

�
�z

2

2

�
dz:

Note also that d1 = d2 + �
p
T � t:

Proof. We have that

C(t; x) = E[max
�
0; Zt;xT �K

�
] = E[max

�
0; exp(logZt;xT )�K

�
];

where logZt;xT � N
�
log(x) +

�
r � �2

2

�
(T � t); �2(T � t)

�
: Hence,

C(t; x) = E[max
�
0; exp

�
log(x) + (r � �2

2
)(T � t) + �

p
T � tY

�
�K

�
];
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where Y � N (0; 1): The random variable inside the expectation is zero when

log(x) + (r � �2

2
)(T � t) + �

p
T � tY ` < log(K);

or, equivalently, when Y < �d2: Therefore,

C(t; x) =

Z +1

�d2

�
exp

�
log(x) + (r � �2

2
)(T � t) + �

p
T � tz

�
�K

�
�(z)dz

= xer(T�t)
Z +1

�d2
exp

�
(��

2

2
(T � t) + �

p
T � tz

�
�(z)dz

�K
Z +1

�d2
�(z)dz:

Note that, by the symmetry of �(z); we can writeZ +1

�d2
�(z)dz =

Z d2

�1
�(z)dz = �(d2):

Hence the second integral is equal to �K�(d2): For the �rst integral we do the change of variable
y = z � �

p
T � t; which yieldsZ +1

�d2
exp

�
(��

2

2
(T � t) + �

p
T � tz

�
�(z)dz

=

Z +1

�d2

1p
2�
exp

�
� (z � �

p
T � t)2
2

�
dz

=

Z +1

�d2��
p
T�t

�(y)dy = �(d2 + �
p
T � t):

After multiplying by the discounting factor e�r(T�t) we can conclude.

4.1 The Greeks

Note that the price of a call option C(t; St) actually depends on other variables (that we can consider
as parameters)

C(t; St) = C(t; St; r; �;K):

The derivatives with respect to these parameters are known as the Greeks and are relevant for
risk-management purposes.
Here, there is a list of the most important:

� Delta:
� =

@C

@S
(t; St) = �(d1):

� Gamma:
� =

@C

@S2
=

�0(d1)

�St
p
T � t

=
�(d1)

�St
p
T � t

� Theta:

� =
@C

@t
= ��St�

0(d1)

2
p
T � t

� rKe�r(T�t)�(d2)

= ��St�(d1)
2
p
T � t

� rKe�r(T�t)�(d2):

� Rho:
� =

@C

@r
= K(T � t)e�r(T�t)�(d2):

� Vega:
@C

@�
= St

p
T � t�0(d1) = St

p
T � t�(d1):
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