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Martingale Approach to Pricing and Hedging

1 Risk Neutral Pricing

Assume that we are in the basic Black-Scholes model. We have one riskless asset and one risky asset
with prices given, respectively, by B = fBt = ertgt2[0;T ] and St = fStgt2[0;T ] satisfying

dSt = �St + �SdWt; S0 > 0:

We can setup strategies � = f�0t ; �1tg with value Vt(�) = �0tBt + �
1
tSt and that satisfy the self-

�nancing condition
dVt(�) = �

0
tdBt + �

1
tdSt = re

rt�0tdt+ �
1
tdSt;

or equivalently

Vt(�) = V0(�) +

Z t

0

�0sdBs +

Z t

0

�1sdSs:

1.1 Change of Numeraire

As the price processes are strictly positive, in particular Bt > 0; one can always normalize the market
by considering

~Bt = B
�1
t Bt = 1 and ~St = B

�1
t St = e

�rtSt:

Thus normalization corresponds to regarding the price Bt of the safe investment (riskless asset) as
the unit of price (the numeraire) and computing the other prices in terms of this unit. Alternatively,
one can look at the normalized market as a discounted market where all assets are quoted (priced)
in terms of its the present value. Moreover, we can consider the discounted portfolio

~Vt(�) = B
�1
t Vt(�) = e

�rt ��0tBt + �1tSt� = �0t + �1t ~St;
and, applying integration by parts, one has that

d ~Vt(�) = B
�1
t dVt(�)� re�rtVt(�)dt+

�
dB�1t

�
(dVt(�))| {z }
=0

= e�rtdVt(�)� r ~Vt(�)dt: (1)

If we assume that dVt(�) = �0tdBt + �
1
tdSt; i.e., � is self-�nancing, then

d ~Vt(�) = e
�rtfr�0t ertdt+ �1tdStg � r

n
�0t + �

1
t
~St

o
dt

= �1t e
�rtdSt � r�1t e�rtStdt = �1t

�
e�rtdSt + d(e

�rt)St
	
= �1td ~St;

which yields that ~Vt(�) is self-�nancing because d ~Bt = d(1) = 0: Using formula (1) and assuming
that d ~Vt(�) = �1td ~St (i.e. � is self-�nancing in the normalized market) one gets that � is self-
�nancing in the unnormalized market. Hence, self-�nancing portfolios are invariant by a change of
numeraire or discounting, in other words, a portfolio is self-�nancing if and only if is self-�nancing
in the normalized market. From a �nancial point of view this makes sense because the self-�nancing
property, that is, the fact that changes in the value of the portfolio are due only to changes in the
asset prices, does not depend on which unit we measure the prices. Note that, in the discounted
market, a self-�nancing portfolio is written in integral form as

~Vt(�) = V0(�) +

Z t

0

�1sd ~Ss:
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1.2 Equivalent Martingale Measures and Arbitrage

The process

Mt = exp

 
�
Z t

0

�� r
�

dWs �
1

2

Z t

0

�
�� r
�

�2
ds

!

= exp

 
��� r

�
Wt �

1

2

�
�� r
�

�2
t

!
;

is a martingale with respect to P . By Girsanov�s theorem, we can de�ne a probability measure Q
by setting dQ

dP =MT and the process

~Wt =
�� r
�

t+Wt;

is a Brownian motion under Q: In addition, asMT > 0; we have that Q � P: In the previous lecture,
we showed that the dynamics of S under Q is that of a geometric Brownian motion with drift r� �2

2
and volatility �; i.e.,

dSt = rStdt+ �Std ~Wt:

If we now compute d ~St; we get that

d ~St = d(e
�rtSt) = �re�rtStdt+ e�rtdSt

= �r ~Stdt+ e�rt
�
rStdt+ �Std ~Wt

�
= �r ~Stdt+ r ~Stdt+ � ~Std ~Wt

= � ~Std ~Wt; (2)

or in explicit form

~St = ~S0 exp

�
� ~Wt �

�2

2
t

�
;

which is a martingale under Q: This motivates the following general de�nition.

De�nition 1 An equivalent martingale measure (EMM) is a probability measure Q equivalent to P
(P � Q) such that the discounted price of any asset in the market is a martingale under Q:

Remark 2 We just have shown that in the basic Black-Scholes model there is at least one equivalent
probability measure Q, given by

dQ

dP
= exp

 
��� r

�
WT �

1

2

�
�� r
�

�2
T

!
:

Note also that the discounted price of the riskless asset is constant and, hence, a martingale under
any probability measure.

Moreover, we have that

~Vt(�) = ~V0(�) +

Z t

0

�1sd ~Ss = ~V0(�) +

Z t

0

�1s� ~Ssd ~Wt;

and ~Vt(�) is a stochastic integral with respect to a Brownian motion under Q. Hence, under the
integrability condition

EQ

"Z T

0

����1t� ~St���2 dt
#
<1;

we have that ~Vt(�) is a martingale under Q: This property motivates the following de�nition of
admissibility.
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De�nition 3 A self-�nancing trading strategy � is called admissible if ~Vt(�) is a martingale under
Q.

The next proposition shows that the class of admissible strategies is a good class in terms of
arbitrage.

Proposition 4 The Black-Scholes model is free of arbitrage in the sense that there exists no admis-
sible arbitrage portfolios.

Proof. Assume that � is an arbitrage portfolio, i.e. V0(�) � 0; VT (�) � 0; P -a.s. and P (VT (�) >
0) > 0: As Q � P; we also have that VT (�) � 0; Q-a.s. and Q(VT (�) > 0) > 0: Then,

EQ
h
~VT (�)

i
= EQ

"
V0(�) +

Z T

0

�1sd ~Ss

#

= V0(�) + EQ

"Z T

0

�1td ~St

#
= V0(�) � 0;

because the integral is a martingale with zero expectation, under Q. This is a contradiction, because

VT (�) � 0; Q-a.s. and Q(VT (�) > 0) > 0 yields that EQ
h
~VT (�)

i
> 0:

The following, imprecisely stated, theorem is one of the cornerstones of mathematical �nance.

Theorem 5 (First Fundamental Theorem of Asset Pricing) A market model is free of arbi-
trage if and only if there exists at least one equivalent martingale measure.

The di¢ cult part is to show that if the model is free of arbitrage then there exists an equivalent
martingale measure.

1.3 Equivalent Martingale Measures and Completeness

Our goal is to give an arbitrage free price to any sensible contingent claim H (a positive FT -
measurable random variable satisfying some integrability constraints) that pays some amount at
time T: We just have shown that in the Black-Scholes model there are no arbitrage opportunities
because there exists an EMM Q: Moreover, we have seen that if � is admissible then ~V (�) is a
martingale under Q: Then, if we combine these facts with the martingale representation theorem we
have all the ingredients for pricing and hedging.

Theorem 6 (Risk Neutral Pricing) Let H 2 L2(
;FT ; Q) be a contingent claim. Then the
arbitrage free price of H is given by

�t(H) = EQ[e�r(T�t)HjFt]; (3)

and the price at time 0 is given by

�0(H) = EQ[e�rTH]:

Moreover, the hedging strategy � is given by

�0t = �t(H)� �1t ~St; �1t =
ht

� ~St
;

where h is the unique process in L2a;T such that

e�rTH = EQ[e�rTH] +
Z T

0

hsd ~Ws:

Proof. We have that �t(H); the arbitrage free price at time t of any replicable contingent claim
H; is given by Vt(�) the value of its admissible hedging portfolio at time t. Hence, if � is a hedging
strategy for H we have that

H = V0(�) +

Z T

0

�0tdBt +

Z T

0

�1tdSt;
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and the discounted portfolio will be a replicating portfolio for the claim ~H = e�rTH; i.e.,

~H = ~VT (�) = V0(�) +

Z T

0

�1td
~St:

It follows from the martingale properties of ~V (�) under Q that

EQ[e�rTHjFt] = EQ[ ~VT (�)jFt] = ~Vt(�) = e
�rtVt(�);

which yields
Vt(�) = EQ[e�r(T�t)HjFt]:

The equality �t(H) = Vt(�) yields the pricing formula (3) : The second step is to prove that a
su¢ cient condition for a claim H to be replicable is that H 2 L2(
;FT ; Q): Consider the discounted
claim ~H = e�rTH; which also belongs to L2(
;FT ; Q): Consider the square integrable martingale
Mt = EQ[e�rTHjFt] under Q: As ~W is a F-Brownian motion under Q we can apply the martingale
representation theorem to write

Mt = EQ[e�rTH] +
Z t

0

hsd ~Ws;

for h 2 L2a;T : De�ne the trading strategy � given by

�0t =Mt � �1t ~St; �1t =
ht

� ~St
:

The discounted value of this portfolio is

~Vt(�) = �
0
t + �

1
t
~St =Mt;

which is a martingale under Q; so � it is admissible. Its �nal value will be

VT (�) = e
rT ~VT (�) = e

rTMT = EQ[HjFT ] = H;

therefore Vt(�) replicates H: Finally, � is self-�nancing because

d ~Vt(�) = dMt = htd ~Wt;

and, on the other hand, by equation (2) we get

�1td ~St =
ht

� ~St
d ~S = htd ~Wt:

Remark 7 The previous theorem provides a very general pricing and hedging formulae and it is
very useful to prove theoretical results in the �eld of mathematical �nance. However, in practical
terms, it may be di¢ cult to use because it involves the computation of a conditional expectation.
The computation of the hedging strategy is even more di¢ cult as there are no general formulas for
computing the kernels in a martingale representation. If the random variable H is smooth in the
sense of Malliavin, then one can use the Clark-Ocone formula for those kernels but even in that case
it appears a conditional expectation to compute.

Remark 8 A su¢ cient condition for H 2 L2(
;FT ; Q) is that H 2 L2+"(
;FT ; P ) for some " > 0:

Remark 9 In the basic Black-Scholes model the �ltration FW = F ~W and, hence, we can apply
directly the martingale representation theorem with ~W . In more general cases, when the drift and
volatility of S are random, we only have that F ~W � FW and in order to apply the martingale
representation theorem with ~W we would need H to be ~FT -measurable. Nevertheless, one can prove
that such martingale representation still holds in those cases but it needs additional proof.
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Example 10 Assume that H = h(ST ) then

�t(H) = EQ
h
e�r(T�t)h(ST )jFt

i
:

St solves the following s.d.e.
dSt = rSt + �Std ~Wt;

under Q: Hence, St is a Markov process, and we have that

EQ
h
e�r(T�t)h(ST )jFt

i
= EQ

h
e�r(T�t)h(St;xT )

i
jx=St :

Moreover, by the Feynman-Kac representation, v(t; x) := EQ
�
e�r(T�t)f(St;xT )

�
solves the Black-

Scholes PDE with terminal condition h(x):

Therefore, the Black-Scholes market is complete for all contingent claims that are square inte-
grable under an equivalent martingale measure. Up till now we have proved that in Black-Scholes
model there exists an EMM measure Q given by

dQ

dP
= exp

 
��� r

�
WT �

1

2

�
�� r
�

�2
T

!
:

But, does there exist another Q̂ � P such that under Q̂ the discounted price process ~St = e�rtSt is
a martingale? The answer is no.

Lemma 11 In the Black-Scholes model Q is the unique EMM.

Proof. I�m going to sketch the proof. Assume that Q̂ is another probability measure such that

Q̂ � P: Then, we can consider the density process Dt = E
h
dQ̂
dP jFt

i
: Assume that dQ̂

dP 2 L2(P ).
Therefore, by the martingale representation theorem we have that

Dt = E

"
dQ̂

dP

#
+

Z t

0


sdWs = 1 +

Z t

0


sdWs:

By a similar reasonings as in the Girsanov�s theorem, one can prove that a process Xt is a martingale
under Q̂ if and only if DtXt is a martingale under P: Assume that ~St is martingale under Q̂ then
Dt ~St must be a martingale under P: Let us compute the dynamics of Dt ~St under P: First, we have
that

d ~St = (�� r) ~Stdt+ � ~StdWt

dDt = 
tdWt:

Then, by the integration by parts formula, we get

d(Dt ~St) = Dtd ~St + ~StdDt + dDtd ~St

= Dt (�� r) ~Stdt+Dt� ~StdWt + ~St
tdWt + 
t� ~Stdt

=
n
Dt (�� r) ~St + 
t� ~St

o
dt+

n
Dt� ~St + ~St
t

o
dWt:

Hence, for Dt ~St to be a martingale we must have that

Dt (�� r) ~St + 
t� ~St = 0; P 
 �; a.e.

which is equivalent to have


t = �Dt
(�� r)
�

:

Thus, Dt has the representation

Dt = 1�
Z t

0

Ds
(�� r)
�

dWs:
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But the unique solution of this s.d.e. is

Dt = exp

 
� (�� r)

�
Wt �

1

2

�
�� r
�

�2
t

!
:

As DT =
dQ
dP we get that, actually, Q̂ = Q: The only point left is the assumption that dQ̂

dP 2 L
2(P );

but this is just a technical point that can be addressed.
There exists a deep result that links the uniqueness of a martingale measure and the completeness

of a market model.

Theorem 12 (Second Fundamental Theorem of Asset Pricing) If a market model admits
an EMM Q; then the market is complete if and only if Q is the unique EMM.
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