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The Basics of Monte Carlo Method

� Goal: Estimate the expectation θ = E[g(X)], where g is a
measurable function and X is a random variable such that g(X) is
integrable.

� Let fXigi=1,..,N of i.i.d. random variables with law L(X). By the
law of large numbers we have that

θ̃N ,
1
N

N

∑
i=1

g(Xi) �!
N!∞

θ,

where the convergence may be a.s. (strong law of large numbers) or
in probability (weak law of large numbers).

� If we assume in addition that E[jg(X)j2] < ∞ then by the central
limit theorem we have that

p
N

θ̃N � θ

Var[g(X)]
L�!

N!∞
N (0, 1).



The Basics of Monte Carlo Method

� Assume that we can generate x1, x2, ..., xN random numbers from
the distribution X, then the Monte Carlo estimation of θ will be

θ̃N =
1
N

N

∑
i=1

g(xi).

� From the central limit theorem we can construct the 95% con�dence
interval for θ�

θ̃N � 1.96
Var[g(X)]p

N
, θ̃N + 1.96

Var[g(X)]p
N

�
.

� Var[g(X)] is unknown, but can be estimated by

σ̂2
N�1 =

1
N � 1

N

∑
i=1

�
g(xi)� θ̃N

�2



The Basics of Monte Carlo Method

� Usually, the estimator σ̂2
N�1 converges fast to Var[g(X)].

� One can run a pilot simulation with less samples Np < N and use
σ̂2

Np�1 instead of Var[g(X)] to compute a con�dence interval, i.e., 
θ̃N � 1.96

σ̂2
Np�1p

N
, θ̃N + 1.96

σ̂2
Np�1p

N

!
.

� The important fact is that the rate of convergence of the method is
1/
p

N.
� Variance reduction techniques: Note that

Var[θ̃N ] =
1
N

Var[g(X)].

There are modi�cations of the Monte Carlo estimator θ̂N that allow
to reduce Var[θ̂N ] and get better con�dence intervals using the
same number of simulations.



The Basics of Monte Carlo Method

� However, these variance reduction techniques do not change the rate
of convergence.

� Another important aspect is that the rate of convergence is
independent of the dimension of the problem.

� As a rule of thumb when an expectation can be computed using
numerical quadrature of integrals and this integrals are one
dimensional, Monte Carlo methods perform worst than quadrature
methods.

� If the dimension is high, Monte Carlo methods perform better than
quadrature methods and it is usually simpler to implement.



Pricing Simple Contingent Claims

� Assume that we have a contingent claim of the form H = h(ST).
� By the risk-neutral pricing formula we get that

f (t, x) = e�r(T�t)EQ[h(S
t,x
T )],

where, under Q, St,x is a geometric Brwonian motion with dirft
r� σ2

2 , volatility σ and initial state St,x
t = x.

� Hence,

f (t, x) = e�r(T�t)EQ

�
h
�

x exp
��

r� σ2

2

�
(T � t) + σ(W̃T � W̃t)

���
,

where W̃ is a Brownian motion under Q.
� Note that W̃T � W̃t �

p
T � tZ where Z � N (0, 1) under Q.



Pricing Simple Contingent Claims
� Therefore, the Monte Carlo algorithm for pricing the contingent
claim is:

1. Draw N independent samples from a Z � N (0, 1) :

(z1, ..., zN).

2. Compute

e�r(T�t) 1
N

N

∑
i=1

h
�

x exp
��

r� σ2

2

�
(T � t) + σ

p
T � tzi

��
� All statistical packages have implemented functions to generate
random numbers from the most common distributions, in particular
the normal distribution.

� If you use R or Matlab you can generate simultaneously vectors of
samples from a standard normal distribution. This feature makes
easy the vectorization of many simulation algorithms.

� Recall that these languages are interpreted and you must avoid the
use of loops whenever possible.



Pricing Simple Contingent Claims

� Recall that using the density approach we can express the delta in
the hedging strategy as an expectation

∂ f
∂x
(t, x) = e�r(T�t)EQ[g(t, x, St,x

T )],

where

g(t, x, s) = h(s)
log(s/x)� (r� σ2/2)(T � t)

xσ2(T � t)
.

� Moreover,

g(t, x, St,x
T ) = h(St,x

T )
W̃T � W̃t

xσ2(T � t)

� Hence, to compute the delta we can use the Monte Carlo algorithm
with a modi�ed payo¤.



Pricing Simple Contingent Claims
� An alternative approach is to use numerical di¤erentiation.
� We can make the following approximation

∂ f
∂x
(t, x) � f (t, x+ h)� f (t, x)

h
.

� One can compute f (t, x) and f (t, x+ h) using the Monte Carlo
algorithm and then dividing the di¤erence by h.

� Although it seems more work to run two times the Monte Carlo
simulation, one can use the same random numbers to compute
f (t, x) and f (t, x+ h).

� This technique is called common random numbers and is one of the
simplest methods to reduce the variance of the Monte Carlo
estimate of f (t, x+ h)� f (t, x).

� Sometimes is used the symmetric di¤erence

∂ f
∂x
(t, x) � f (t, x+ h)� f (t, x� h)

2h
.



Pricing of Path-Dependent Claims

� We consider the pricing of a knock-out call option, that is, a
contingent claim with payo¤

H = max (0, ST � K) 1fSt�b:t2[0,T]g.

� This contingent claim pays the same as a call option whenever the
price process never exceeds the threshold b during the life of the
claim. Note that b > K for the contract to make sense.

� The price of this option depends on the whole path of the price
process not only ST .

� From the risk-neutral pricing formula we get that the price of a
knock-out call option at time 0 is given by

π0(H) = e�rTEQ[max (0, ST � K) 1fSt�b:t2[0,T]g].



Pricing of Path-Dependent Claims

� In order to simulate a non-zero outcome from the payo¤ H we must
check if St � b for all t 2 [0, T].

� Of course this is impossible to check.
� What we do is to simulate the values of St is a �ne partition
ftigi=0,...,M of [0, T] and check that Sti � b for i = 0, ..., M.

� This procedure introduces an error or bias that tends to zero as M
tends to in�nity.

� The idea is to simulate the discretized path recursively.
� Fix M 2 N large and set δ = T/M . Consider ftj = jδgj=0,...,M.
� Recall that

St = S0 exp
��

r� σ2

2

�
t+ σW̃t

�
,

where W̃ is a Brownian motion under Q.



Pricing of Path-Dependent Claims

� We can write

Stj = S0 exp
��

r� σ2

2

�
tj + σW̃tj

�
= S0 exp

��
r� σ2

2

�
(tj�1 + δ) + σ

�
W̃tj�1 + W̃tj � W̃tj�1

��
= S0 exp

��
r� σ2

2

�
tj�1 + σW̃tj�1

�
� exp

��
r� σ2

2

�
δ+ σ

�
W̃tj � W̃tj�1

��
= Stj�1 exp

��
r� σ2

2

�
δ+ σ

p
δZj

�
,

for j = 1, ..., M.



Pricing of Path-Dependent Claims

� The random variables Zj = δ�1/2
�

W̃tj � W̃tj�1

�
are distributed

according to a N (0, 1) and are independent of Stj�1 .
� With this recursion formula is easy to use a Monte Carlo approach
to simulate the path of St at the times ftjgj=0,...,M in the partition.

� Of course it may happen that St > b for some t 2 (tj, tj+1) while
Stj � b and Stj�1 � b. The probability that this happens tends to
zero as we increase the points in the partion but there alway be a
small bias.

� We simulate an outcome of H by simulating St at points
ftjgj=0,...,M while checking if the condition Stj � b is full�lled for all
j = 1, ..., M.. If this is the case the outcome is max(0, ST � K),
otherwise the outcome is zero.



Pricing of Path-Dependent Claims

The Monte Carlo algorithm for a Knock-Out call option.

1. For k = 1, ..., N
1.1 For j = 1, ..., M

� Draw one outcome zk
j from Zj � N (0, 1).

� Compute

sk
j = sk

j�1 exp
��

r� σ2

2

�
δ+ σ

p
δzk

j

�
.

� If sk
j > b, let xk = 0 and return to 1.

1.2 Let xk = max
�

0, sk
M � K

�
.

2. Compute

e�rT 1
N

N

∑
k=1

xk.
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T
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