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The Basics of Monte Carlo Method

¢ Goal: Estimate the expectation § = E[g(X)], where g is a
measurable function and X is a random variable such that g(X) is
integrable.

e Let {X;}i—1, N of i.i.d. random variables with law £(X). By the
law of large numbers we have that
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where the convergence may be a.s. (strong law of large numbers) or
in probability (weak law of large numbers).

e If we assume in addition that ]E[|g(X)|2] < oo then by the central
limit theorem we have that
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The Basics of Monte Carlo Method

e Assume that we can generate x1, X, ..., Xy random numbers from
the distribution X, then the Monte Carlo estimation of 8 will be

~ 1 N
On = N g(x;).
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e From the central limit theorem we can construct the 95% confidence
interval for 6

. Varlg(X)] Var[g(X)]
(eN - 1.96T,6N + 1.96\/N> :

e Var[g(X)] is unknown, but can be estimated by
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The Basics of Monte Carlo Method

Usually, the estimator &3, ; converges fast to Var[g(X)].
One can run a pilot simulation with less samples N, < N and use
&%\Ip—l instead of Var[g(X)] to compute a confidence interval, i.e.,
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The important fact is that the rate of convergence of the method is
1/VN.

Variance reduction techniques: Note that

Var[fy] = %Var[g(X)}.

There are modifications of the Monte Carlo estimator @y that allow
to reduce Var[fy] and get better confidence intervals using the
same number of simulations.



The Basics of Monte Carlo Method

However, these variance reduction techniques do not change the rate
of convergence.

Another important aspect is that the rate of convergence is
independent of the dimension of the problem.

As a rule of thumb when an expectation can be computed using
numerical quadrature of integrals and this integrals are one
dimensional, Monte Carlo methods perform worst than quadrature
methods.

If the dimension is high, Monte Carlo methods perform better than
quadrature methods and it is usually simpler to implement.



Pricing Simple Contingent Claims

e Assume that we have a contingent claim of the form H = h(S7).
e By the risk-neutral pricing formula we get that

f(t,x) = e " T DEG[n(SEY)),

where, under Q, S"* is a geometric Brwonian motion with dirft
2 . e
r— ‘77, volatility o and initial state Sf’x = Xx.

e Hence,

2

f(t,x)= e’r(T*t)]EQ [h (xexp <<r - (72> (T—t)+c(Wr — WQ))] ,

where W is a Brownian motion under Q.
e Note that Wy — W; ~ /T — tZ where Z ~ N(0,1) under Q.



Pricing Simple Contingent Claims

o Therefore, the Monte Carlo algorithm for pricing the contingent
claim is:

1. Draw N independent samples from a Z ~ N (0,1) :

(le ey ZN).

2. Compute

e*r(Tft)% % h (x exp ((r - U;) (T—t)+ a\/ﬁzi»

i=1

o All statistical packages have implemented functions to generate
random numbers from the most common distributions, in particular
the normal distribution.

o If you use R or Matlab you can generate simultaneously vectors of
samples from a standard normal distribution. This feature makes
easy the vectorization of many simulation algorithms.

e Recall that these languages are interpreted and you must avoid the
use of loops whenever possible.



Pricing Simple Contingent Claims

e Recall that using the density approach we can express the delta in
the hedging strategy as an expectation

 (1,x) = e T DEg g (t,x,557)],

ox
where
_ log(s/x) — (r —?/2)(T —t)
g(t,x,8) = h(s) (T 1) :
e Moreover, _ B
txy t,x WT_Wt
g(t,x,S57") = h(S7 )7x02(T— i)

e Hence, to compute the delta we can use the Monte Carlo algorithm
with a modified payoff.



Pricing Simple Contingent Claims

An alternative approach is to use numerical differentiation.

We can make the following approximation
of f(t,x+h) = f(tx)
a(t, X) R ? .

One can compute f(t,x) and f(t,x 4+ h) using the Monte Carlo
algorithm and then dividing the difference by h.

Although it seems more work to run two times the Monte Carlo
simulation, one can use the same random numbers to compute
f(t,x) and f(t,x+h).

This technique is called common random numbers and is one of the

simplest methods to reduce the variance of the Monte Carlo
estimate of f(t,x +h) — f(t,x).

Sometimes is used the symmetric difference

Af . . flbx+h) —f(t,x—h)
ax (%) ™ 2h '




Pricing of Path-Dependent Claims

We consider the pricing of a knock-out call option, that is, a
contingent claim with payoff

H = max (O, ST - K) 1{St§b:t€[O,T]}'

This contingent claim pays the same as a call option whenever the
price process never exceeds the threshold b during the life of the
claim. Note that b > K for the contract to make sense.

The price of this option depends on the whole path of the price
process not only Srt.

From the risk-neutral pricing formula we get that the price of a
knock-out call option at time 0 is given by

mo(H) = e "TEg[max (0, St — K) 1(s,<ptefo1})-



Pricing of Path-Dependent Claims

In order to simulate a non-zero outcome from the payoff H we must
check if Sy < b for all t € [0, T].

Of course this is impossible to check.

What we do is to simulate the values of S; is a fine partition
{ti}izo,.,m of [0, T] and check that S;, < b for i =0,..., M.

This procedure introduces an error or bias that tends to zero as M
tends to infinity.

The idea is to simulate the discretized path recursively.
Fix M € IN large and set 6 = T/M . Consider {t; = jo};—o, m-

Recall that
o2 -
St = Spexp <<r— 2) t—i—(th) ,

where W is a Brownian motion under Q.



Pricing of Path-Dependent Claims

e We can write

o? ~
St], = SO exp ((T 2) ti —I—O’Wt].)

o? - .

= Soexp<<r 2) 1+(5)+0’(Wt ]-I-Wt].—Wt].l))
o? .

= Spexp <<r 2> £ 1+0Wtj 1>
o? N

X exp ((r 2) o+ Wt Wtj1)>
o2
= eXp(( 2>5+0'\/:5Z]'>,

forj=1,.., M.



Pricing of Path-Dependent Claims

The random variables Z; = §~1/2 (Wt], - WtH) are distributed
according to a A'(0,1) and are independent of St 4

With this recursion formula is easy to use a Monte Carlo approach
to simulate the path of S; at the times {t;};—o,_a in the partition.
Of course it may happen that S; > b for some t € (tj,tj;1) while
St]. < b and StH < b. The probability that this happens tends to
zero as we increase the points in the partion but there alway be a
small bias.

We simulate an outcome of H by simulating S; at points
{ti}j=o0,..,m while checking if the condition St; < b is fullfilled for all

j=1,.., M.. If this is the case the outcome is max(0, St — K),
otherwise the outcome is zero.



Pricing of Path-Dependent Claims

The Monte Carlo algorithm for a Knock-Out call option.
1. Fork=1,..,N
11 Forj=1,.,.M

e Draw one outcome z;-‘ from Z; ~ N(0,1).

o Compute
s;‘—sk ]exp<<r——>5+(r\/gz>
o |f s}‘ > b, let xX¥ =0 and return to 1.
1.2 Let x* = max (O,sll‘vI — K) .

2. Compute

,,Tl %x
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