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Sampling Conventions

� We observe the price process S of some stock (or stock index) at
times ftigi=0,...,n, we denote it by fSigi=0,...,n.

� We assume that the price observations are made at equidistant
times, ti � ti�1 = ∆t, where ∆t is constant and it can be days,
weeks, months, etc...

� For instance, measuring the time in days means that we observe the
last trading price (close price) of a stock every day, and remove
weekends and other holidays. We ignore calendar time and operate
only with trading days. In this case ∆t = 1.

� Although we observe the price process every day, in option pricing
the time is measured in years.

� Hence, making the convention of 252 trading days in a year, we have
that ∆t = 1/252 and thus the daily prices Si are observed at times
ti = i/252, i = 0, 1, 2, .., n . At t252 we have one full year of trading
days.



Returns and Logreturns

� The series of returns R = fRigi=1,...,n is de�ned by

Ri =
Si � Si�1

Si�1
=

Si
Si�1

� 1, i = 1, ..., n.

� Ri is the return at time ti of an investment in the asset at time ti�1.
� The series of logreturns r = frigi=1,...,n is de�ned by

ri = log
�

Si
Si�1

�
= log(Si)� log(Si�1), i = 1, ..., n.

� ri is the logarithm of the relative price change from ti�1 to ti.
� The relationship between the returns and logreturns is as follows

Ri = eri � 1 or ri = log (1+ Ri) .

� Note that if jRij is small then ri is close to Ri, so there is little
di¤erence to consider logreturns instead of returns.



Returns and Logreturns

� We can consider the returns and logreturns over the most recent k
periods

Ri(k) =
Si � Si�k

Si�k
, ri(k) = log

�
Si

Si�k

�
= log (Si)� log (Si�k) .

� Multiplicativity of returns:

1+ Ri(k) = (1+ Ri) (1+ Ri�1) � � � (1+ Ri�k+1) =
Si

Si�k
.

� Additivity of logreturns:

ri(k) = ri+ ri�1+ � � �+ ri�k+1 = log (Si)� log (Si�k) = log
�

Si
Si�k

�
.

� The logreturns are preferable because it is easier to deduce the time
series properties of additive processes than of multiplicative
processes.



Geometric Brownian Motion
� We assume that the price process S follows a geometric Brownian
motion, i.e.,

St = S0 exp (µt+ σWt) ,

where W is a standard Brownian motion.
� Therefore, the logreturns have the following expression

ri = log
�

Si
Si�1

�
= µ∆t+ σ(Wti �Wti�1),

and, by the properties of W, we can conclude that the logreturns are
independent, identically distributed with law N (µ∆t, σ2∆t).

� We can estimate µ and σ using the maximum likelihood technique
as the likelihood function is

Ln(r1, ..., rn; µ, σ2) =
n

∏
i=1

1p
2πσ2∆t

exp

 
� (ri � µ∆t)2

2σ2∆t

!
.

� Observe that no matter which time scale we choose the logreturns
are always Gaussian if we assume S to be a geometric Brownian
motion.



Fitting a Geometric Brownian Motion
� Having n logreturn data r1, r2, ..., rn, we estimate the expectation µ
and variance σ2 using

µ̂ =
1

n∆t

n

∑
i=1

ri, bσ2 =
1

n∆t

n

∑
i=1
(ri � µ̂∆t)2,

which are the maximum likelihood estimators. One can also consider

]σ2
n�1 =

1
(n� 1)∆t

n

∑
i=1
(ri � µ̂∆t)2,

which has the advantage of being unbiased.
� Assume that time is measured in years. Then,

� Daily observations then ∆t = 1/252.
� Weekly observations then ∆t = 1/52.
� Monthly observations then ∆t = 1/12.

� Note that the scaling ∆t changes signi�cantly the values of µ̂ andbσ2. Hence, when presenting results, it is important to clearly state
the sampling frequency and the time�s unit of measurement.



Gaussian Aggregation

� How the law of logreturns change when stock prices are sampled
over di¤erent time spans: daily, weekly or monthly?

� From the additivity property of logreturns, the weekly and monthly
logreturns can be derived from the daily logreturns ri.

� Using �ve trading days in a week, the logreturn rw
i for week i is

rw
i =

5

∑
k=1

r5(i�1)+k.

� Using twenty trading days in a month, the logreturn rm
i for month i

is

rm
i =

20

∑
k=1

r20(i�1)+k.



Gaussian Aggregation

� Assuming that ri are i.i.d. the central limit theorem will imply that
rw

i and rm
i are closer to a normal distribution than ri

� Empirically one �nds that the daily (or intraday) logreturns are far
from being normally distributed.

� However, it is also an empirical fact that the logreturns get closer to
be normally distributed if they are computed using longer time
periods.

� The phenomenon of convergence to a Gaussian distribution of
logreturns computed on longer time periods is known as Gaussian
aggregation.



Checking the Gaussianity of Logreturns
� To check the Gaussianity of logreturns is customary to compute the
skewness and kurtosis coe¢ cients.

� Let µk = E[(X�E[X])k], k = 2, 3, ... Note that, σ2 = µ2.
� The skewness of a random variable X is de�ned by

S(X) =
µ3

µ3/2
2

=
µ3
σ3 .

� The skewness coe¢ cient is a measurement of symmetry. If the
distribution of X is symmetric with respect to its mean then
S(X) = 0. In particular, if X � N(µ, σ2) then S(X) = 0.

� The kurtosis of a random variable X is de�ned by

K(X) =
µ4
µ2

2
=

µ4
σ4 .

� The kurtosis coe¢ cient is a measurement of heavy tails. If the
distribution of X gives higher probability to extreme values than the
normal distribution then K(X) � 3. If X � N(µ, σ2) then
K(X) = 3.



Checking the Gaussianity of Logreturns
� The Jarque-Bera test is an omnibus moments test to check is the
skewness and kurtosis of the data are consistent with a Gaussian
model.

� The sample skewness and kurtosis coe¢ cients of the lorgreturns ri
are given by

S =
1
n ∑n

i=1(ri � µ̂)3�
1
n ∑n

i=1(ri � µ̂)2
�3/2 , K =

1
n ∑n

i=1(ri � µ̂)4�
1
n ∑n

i=1(ri � µ̂)2
�2 .

� The Jarque-Bera test statistics is given by

JB =
1
6

n
�

S+
1
4
(K� 3)2

�
,

which has an asympotic chi-squared distribution with two degrees of
freedom under the null hypothesis that the logreturns have zero
skewness and kurtosis equal to three, like a normal random random
variable.



Checking the Gaussianity of Logreturns

� Other tests: Kolmogorov-Smirnov, Anderson and Darling, Shapiro
and Wilk and D�Agostino. R packages: "normtest" and "moments".

� You can also use "visual tests" to asses the Gaussianity of logreturns:
� Normal QQ-Plot: Plot the sample quantiles against the theoretical
quantiles of Gaussian random variable with mean and variance given
by the sample estimations.

� Histogram+Kernel Density Estimation: Plot the histogram and add
the plot of a kernel density estimation.

� Histogram+Theoretical Normal Density: Plot the histogram and add
the plot of the density of a normal random variable with mean and
variance given by the sample estimations.

� Kernel Density Estimation+Theoretical Normal Density: You plot
both curves in logarithmic scale. It is useful to detect heavy tails.

� A Kernel Density Estimation is a non-parametric technique to
estimate the density of the data. In R you can use the function
density to get a kernel density estimation.



Autocorrelation
� Assume that we have a time series X = fXtgt2Z that is
second-order stationary, i.e., the �rst two moments exists and

µX(t) , E[Xt] = µ,

γX(t, s) , E[(Xt � µ(t)(Xs � µ(s))] = γ(t+ k, s+ k), s, t, k 2 Z,

� Therefore, we can write the autocovariance function of X as a
function of one variable

γX(h) , γX(h, 0), h 2 Z,

note that γX(0) = Var[Xt], t 2 Z.
� The autocorrelation function (ACF) ρX(h) of a second-order
stationary series is

ρX(h) =
γX(h)
γX(0)

, h 2 Z,

we speak of autocorrelation or serial correlation ρX(h) at lag h.



Autocorrelation

� The sample autocovariances are calculated according to

γ̂X(h) =
1
h

n�h

∑
i=1

�
Xi+h � X

�
(Xi � X), 0 � h < n,

where X = 1
n ∑n

i=1 Xi.
� From the above we can compute the sample ACF

ρ̂X(h) =
γ̂X(h)
γ̂X(0)

, 0 � h < n.



Autocorrelation

� We say that fXgt2Z is a strict white noise (SWN) process if it is a
series of independent and identically distributed (i.i.d.) random
variables with �nite variance.

� A SWN X does not have serial autocorrelation, i.e., ρX(0) = 1 and
ρX(h) = 0, h 2 Znf0g.

� A "visual test" to check for serial autocorrelation is to plot a
correlogram, that is, to plot f(h, ρX(h)) : h = 0, 1, 2....g.

� A numeric test is that of Ljung and Box, under the null hypothesis
of SWN, the statistic

QLB(h) = n(n+ 2)
h

∑
j=1

(ρ̂X(j))
2

n� j

has an asymptotic chi-squared distribution with h degrees of freedom



Logreturns and Autocorrelation
� The Black-Scholes model (S is a geometric Brownian motion)
predicts that the logreturns are a SWN.

� In stock markets one often observes that the price �uctuations
cluster into periods with large movements and periods with smaller
variations.

� This means that the sizes of logreturns may be dependent and,
actually, this fact is usually con�rmed empirically.

� The autocorrelation describes how strongly the current logreturns
remembers earlier logreturns.

� To test to what extent a series of logreturns depart from the
Black-Scholes hypothesis one can use the correlogram and Ljung
and Box test.

� Usually if we look at the correlogram of logreturns we see that the
autocorrelation is close to zero at all positive lags and it �uctuates
around zero.

� However if we look at the squared of absolute logreturns we see that
the autocorrelation is close to zero at all positive lags but it is
positive. This is a sign of of what is known as long-range
dependence.



Example
� I have considered a series of daily prices of the stock of Apple
starting the 4th of January of 2010 and ending the 31th of
December 2013. (4 years roughly 1000 days)

� The plot of the prices is:
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Example

� The plot of logreturns is:
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Example

� The plot of squared logreturns is
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Example

� The estimated parameters (anualized) are

µ̂ = 0.2416527,
σ̂ = 0.278074,
S = �0.3027653,
K = 4.691388.

� This means that the logreturns are negatively skewed and the
kurtosis is bigger than the Gaussian kurtosis (3).

� The result of the Jarque-Bera test is JB = 943.06, p-value <
2.2e-16.

� Hence, we can reject the null hypothesis of normality.



Example
� The plot of the Histogram+Kernel Density Estimation+Theoretical
Normal Density is:
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Example
� The QQ-plot is:
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Example
� The result of Ljung-Box test with 10 lags is QLB(10) = 15.518,
p-value = 0.1143.

� The result of Ljung-Box test with 30 lags is QLB(30) = 47.222,
p-value = 0.02367.

� The correlogram for logreturns is:
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Example
� The correlogram for the squared logreturns is:

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Series  r * r



Example
� The correlogram for the absolute value of the logreturns is:
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Stylized facts of �nancial time series

� Absence of autocorrelations: Zero autocorrelation in the series of
logreturns.

� Heavy tails: High kurtosis of logreturns.
� Gain/loss asymmetry.: Negative skewness.
� Aggregational Gaussianity: The logreturns are closer to a normal
when we consider longer time periods.

� Volatility clustering/Intermittency: Clusters and burst in the series
of squared log-returns.

� Slow decay of autocorrelation in absolute returns.
� Long-range dependence: Positive autocorrelation in the series of
squared log-returns.


