Brownian Motion and Stochastic Calculus

Recall first some definitions given in class.
Definition 1 (Def. Class) A standard Brownian motion is a process satisfying

1. W has continuous paths P-a.s.,
2. $W_{0}=0, P$-a.s.,
3. W has independent increments,
4. For all $0 \leq s<t$, the law of $W_{t}-W_{s}$ is a $\mathcal{N}(0,(t-s))$.

Definition $2 X$ is a Gaussian process if for any $t_{1}, t_{2}, \cdots t_{n}, \in \mathbb{R}_{+}, n \in \mathbb{N}$ the vector

$$
\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right)
$$

is multivariate normal.
A useful criterion to check if a vector is multivariate normal is the following
Proposition 3 A vector $\left(X_{1}, \ldots, X_{n}\right)$ is multivariate normal if and only if for all $\lambda_{i} \in \mathbb{R}, i=1, \ldots, n$ one has that the random variable $\sum_{i=1}^{n} \lambda_{i} X_{i}$ is (univariate) normal.

Remark 4 Note that, by proposition 3, we may assume that the times $\left\{t_{i}\right\}_{i=1, \ldots, n}$ in definition 2 are ordered, i.e., $0 \leq t_{1}<t_{2}<\cdots<t_{n}$.

In Exercise 1 the following alternative definition of Brownian motion is introduced.
Definition 5 (Def. Gaussian) A standard Brownian motion is a process satisfying
a) W has continuous paths P-a.s.,
b) W is a Gaussian process,
c) W is centered $\left(\mathbb{E}\left[W_{t}\right]=0\right)$ and the covariance function

$$
K(s, t) \triangleq \mathbb{E}\left[\left(W_{t}-\mathbb{E}\left[W_{t}\right]\right)\left(W_{s}-\mathbb{E}\left[W_{s}\right]\right)\right]=\mathbb{E}\left[W_{t} W_{s}\right]=\min (s, t)
$$

Recall also the definition of \mathbb{F}-Brownian motion.
Definition $6 A \mathbb{F}$-Brownian motion W is a real stochastic process adapted to \mathbb{F} satisfying

1. W has continuous paths P-a.s.,
2. $W_{0}=0, P-a . s$,
3. For all $0 \leq s<t$, the random variable $W_{t}-W_{s}$ is independent of \mathcal{F}_{s}.
4. For all $0 \leq s<t$, the law of $W_{t}-W_{s}$ is a $\mathcal{N}(0,(t-s))$.
5. In this exercise we have to show that Def. Class is equivalent to Def. Gaussian

Def. Class \Longrightarrow Def. Gaussian.: Clearly 1. $\Rightarrow a)$. Properties 3. and 4. yields that for any $0 \leq$ $t_{1}<t_{2}<\cdots<t_{n}, n \in \mathbb{N}$ the vector

$$
\left(W_{t_{n}}-W_{t_{n-1}}, W_{t_{n-1}}-W_{t_{n-2}}, \ldots, W_{t_{1}}\right)
$$

has multivariate normal distribution and, by a linear transform, we get that

$$
\left(W_{t_{1}}, \ldots, W_{t_{n-1}}, W_{t_{n}}\right)
$$

has a multivariate normal distribution. Alternatively, for all $\lambda_{i} \in \mathbb{R}, i=1, \ldots, n$ we have that

$$
\sum_{i=1}^{n} \lambda_{i} W_{t_{i}}=\sum_{i=1}^{n} \lambda_{i} \sum_{j=1}^{i}\left(W_{t_{j}}-W_{t_{j-1}}\right)=\sum_{j=1}^{n}\left(\sum_{i=j}^{n} \lambda_{i}\right)\left(W_{t_{j}}-W_{t_{j-1}}\right)
$$

which is a univariate normal by properties 3. and 4. Hence, we can conclude that W is a Gaussian process. By 4 . we get that $\mathbb{E}\left[W_{t}\right]=0$ for all $t \geq 0$. Moreover, if $s<t$ we have that

$$
\begin{aligned}
K(s, t) & =\mathbb{E}\left[W_{s} W_{t}\right]=\mathbb{E}\left[W_{s}\left(W_{t}-W_{s}\right)+W_{s}^{2}\right]=\mathbb{E}\left[W_{s}\left(W_{t}-W_{s}\right)\right]+\mathbb{E}\left[W_{s}^{2}\right] \\
& =\mathbb{E}\left[W_{s}\right] \mathbb{E}\left[\left(W_{t}-W_{s}\right)\right]+s=s
\end{aligned}
$$

where we have used 3. and 4. A similar reasoning can be done if $t<s$, so we get that $K(s, t)=\min (s, t)$.
Def. Gaussian \Longrightarrow Def. Class.: Clearly $a) \Rightarrow 1$. By property c) we have that $\mathbb{E}\left[W_{0}\right]=0$ and $\mathbb{E}\left[W_{0}^{2}\right]=K(0,0)=0$, which yields that $W_{0}=0, P$-a.s. and, hence, property 2 . is satisfied. Note that if $\left(Z_{1}, Z_{2}\right)$ is bivariate Gaussian then Z_{1} is independent of Z_{2} if and only if $\mathbb{E}\left[Z_{1} Z_{2}\right]=\mathbb{E}\left[Z_{1}\right] \mathbb{E}\left[Z_{2}\right]$. In order to prove 3., we have to show that $W_{t}-W_{s}$ is independent of $W_{v}-W_{u}$ for any $0 \leq u \leq v \leq s \leq t$. As W is a Gaussian process by b), we have that ($W_{t}-W_{s}, W_{v}-W_{u}$) is bivariate Gaussian and it suffices to prove that

$$
\mathbb{E}\left[\left(W_{t}-W_{s}\right)\left(W_{v}-W_{u}\right)\right]=0
$$

but using property c) we get that

$$
\begin{aligned}
\mathbb{E}\left[\left(W_{t}-W_{s}\right)\left(W_{v}-W_{u}\right)\right] & =K(t, v)-K(t, u)-K(s, v)+K(s, u) \\
& =v-u-v+u=0
\end{aligned}
$$

Finally, by b) again, we have that for all $0 \leq s<t$ the law of $W_{t}-W_{s}$ is Gaussian. And using c) we get that

$$
\begin{aligned}
\mathbb{E}\left[W_{t}-W_{s}\right] & =\mathbb{E}\left[W_{t}\right]-\mathbb{E}\left[W_{s}\right]=0 \\
\operatorname{Var}\left[W_{t}-W_{s}\right] & =\mathbb{E}\left[\left(W_{t}-W_{s}\right)^{2}\right] \\
& =K(t, t)-K(t, s)-K(s, t)+K(s, s)=t-s
\end{aligned}
$$

which yields property 4.
2. W is a Brownian motion, $a>0$ and \mathbb{F} the minimal augmented filtration generated by W.
(a) $X_{t}=-W_{t}, t \in \mathbb{R}_{+}: X$ has continuous paths P-a.s. because W has continuous paths P-a.s.. For any $0 \leq t_{1}<t_{2}<\cdots<t_{n}, n \in \mathbb{N}$ the vector

$$
\left(X_{t_{1}}, \ldots, X_{t_{n-1}}, X_{t_{n}}\right)=\left(-W_{t_{1}}, \ldots,-W_{t_{n-1}},-W_{t_{n}}\right)
$$

is Gaussian because $\left(W_{t_{1}}, \ldots, W_{t_{n-1}}, W_{t_{n}}\right)$ is Gaussian, as W is a Gaussian process. Moreover

$$
\begin{aligned}
\mathbb{E}\left[X_{t}\right] & =\mathbb{E}\left[-W_{t}\right]=-\mathbb{E}\left[W_{t}\right]=0 \\
K(s, t) & =\mathbb{E}\left[X_{s} X_{t}\right]=\mathbb{E}\left[\left(-W_{s}\right)\left(-W_{t}\right)\right]=\mathbb{E}\left[W_{s} W_{t}\right]=\min (s, t)
\end{aligned}
$$

Therefore, by the previous exercise we can conclude that X is a Brownian motion. Note also that $\mathbb{F}=\mathbb{F}^{X}$. This is because $X_{t}=\varphi\left(W_{t}\right)$, where $\varphi(x)=-x$ is a bijection. This yields that $\sigma\left(X_{t}\right)=\sigma\left(W_{t}\right)$ and, therefore, $\mathcal{F}_{t}^{X}=\sigma\left(X_{s}: 0 \leq s \leq t\right)=\sigma\left(W_{s}: 0 \leq s \leq t\right)=\mathcal{F}_{t}$ for any t. Hence, we can conclude that X is also an \mathbb{F}-Brownian motion.
(b) $X_{t}=W_{a+t}-W_{a}, t \in \mathbb{R}: X$ has continuous paths P-a.s. because W has continuous paths P-a.s.. For any $0<t_{1}<t_{2}<\cdots<t_{n}, n \in \mathbb{N}$ the vector

$$
\left(W_{a}, W_{a+t_{1}}, \ldots, W_{a+t_{n-1}}, W_{a+t_{n}}\right)
$$

is multivariate normal because W is a Gaussian process. By a linear transformation of the previous vector we get that

$$
\left(W_{a+t_{1}}-W_{a}, \ldots, W_{a+t_{n-1}}-W_{a}, W_{a+t_{n}}-W_{a}\right),
$$

is also multivariate normal and, hence, the process X is Gaussian. We also have that

$$
\begin{aligned}
\mathbb{E}\left[X_{t}\right] & =\mathbb{E}\left[W_{a+t}-W_{a}\right]=0, \\
K(s, t) & =\mathbb{E}\left[X_{s} X_{t}\right]=\mathbb{E}\left[\left(W_{a+s}-W_{a}\right)\left(W_{a+t}-W_{a}\right)\right] \\
& =K(a+s, a+t)-K(a+s, a)-K(a, a+t)+K(a, a) \\
& =\min (a+s, a+t)-\min (a+s, a)-\min (a, a+t)+\min (a, a) \\
& =\min (a+s, a+t)-a=\min (s, t)
\end{aligned}
$$

Therefore, we can conclude that X is a Brownian motion. However, X is not an \mathbb{F} Brownian motion because X is not adapted to \mathbb{F}, note that $X_{t}=W_{a+t}-W_{a}$ depends on W_{a+t} which is not \mathcal{F}_{t} measurable.
(c) $X_{t}=W_{a t^{2}}, t \in \mathbb{R}_{+}: X$ is not a Brownian motion because, although has continuous paths, is Gaussian and centered, one has that

$$
K(s, t)=\mathbb{E}\left[X_{s} X_{t}\right]=\mathbb{E}\left[X_{a s^{2}} W_{a t^{2}}\right]=\min \left(a s^{2}, a s^{2}\right) \neq \min (s, t)
$$

As X is not a Brownian motion, it cannot be an \mathbb{F}-Brownian motion.
3. Let $f \in L^{2}([0, T])$. First we will show that $X_{t}=\int_{0}^{t} f(s) d W_{s} \sim \mathcal{N}\left(0, \int_{0}^{t}|f(s)|^{2} d s\right)$ for every $t \in[0, T]$. Define $f_{t}(s) \triangleq f(s) \mathbf{1}_{[0, t]}(s)$ and note that $\left|f_{t}(s)\right| \leq|f(s)|$ for all $s \in[0, T]$. As f is deterministic, we have that for all $t \in[0, T]$ the process f_{t} it is also measurable and adapted and

$$
\mathbb{E}\left[\int_{0}^{T}\left|f_{t}(s)\right|^{2} d s\right]=\int_{0}^{T}\left|f_{t}(s)\right|^{2} d s \leq \int_{0}^{T}|f(s)|^{2} d s<\infty .
$$

Hence, $f_{t} \in L_{a, T}^{2}$ and $X_{t}=\int_{0}^{t} f(s) d W_{s}=\int_{0}^{T} f_{t}(s) d W_{s}$. Consider a sequence of partitions

$$
\pi^{n}=\left\{0=t_{0}<t_{1}<t_{2}<\cdots<t_{n-1}<t_{n}=T\right\}, n \geq 1,
$$

with $\left\|\pi^{n}\right\| \triangleq \max _{1 \leq i \leq n}\left|t_{i}-t_{i-1}\right|$ converging to zero when n tends to infinity. We can consider the sequence of function $f_{t, n}(s)=\sum_{i=1}^{n-1} f_{t}\left(t_{i}\right) \mathbf{1}_{\left[t_{i}, t_{i+1}\right)}(s)$. We have that $f_{t, n}$ converges λ-a.e. to f_{t} and

$$
\mathbb{E}\left[\int_{0}^{T}\left|f_{t}(s)-f_{t, n}(s)\right|^{2} d s\right]=\int_{0}^{T}\left|f_{t}(s)-f_{t, n}(s)\right|^{2} d s \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

by dominated convergence. Hence, $f_{n, t}(s)$ (as a process in s) is a sequence of simple processes approximating f_{t} in $L_{a, T}^{2}$ and, by the construction of the Itô integral, we have that

$$
\int_{0}^{T} f_{t, n}(s) d W_{s} \underset{n \rightarrow \infty}{\stackrel{L^{2}}{\longrightarrow}} \int_{0}^{T} f_{t}(s) W_{s}
$$

In addition, for every $n \geq 1$,

$$
\int_{0}^{T} f_{t, n}(s) d W_{s}=\sum_{i=1}^{n-1} f_{t}\left(t_{i}\right)\left(W_{t_{i}}-W_{t_{i}}\right)
$$

which is a sum of independent Gaussian random variables with law $\mathcal{N}\left(0, \sum_{i=1}^{n-1}\left|f_{t}\left(t_{i}\right)\right|^{2}\left(t_{i}-\right.\right.$ $\left.t_{i-1}\right)$). We recall the following result that we give without proof (it is easy using the relationship between characteristic functions and weak convergence). Let Z_{n} be a sequence of random variables with laws $\mathcal{N}\left(0, \sigma_{n}^{2}\right)$. If $Z_{n} \xrightarrow[n \rightarrow \infty]{L^{2}} Z_{\infty}$ then $\sigma_{\infty}^{2} \triangleq \lim _{n \rightarrow \infty} \sigma_{n}^{2}<\infty$ and $Z_{\infty} \sim \mathcal{N}\left(0, \sigma_{\infty}^{2}\right)$. In our case, we have that $Z_{\infty}=\int_{0}^{T} f_{t}(s) W_{s}=\int_{0}^{t} f(s) W_{s}$ and $\sigma_{\infty}^{2}=\int_{0}^{T} f_{t}^{2}(s) d s=\int_{0}^{t} f^{2}(s) d s$. Therefore we can conclude that $X_{t}=\int_{0}^{t} f(s) d W_{s} \sim \mathcal{N}\left(0, \int_{0}^{t} f^{2}(s) d s\right)$. Finally, to show that X is a Gaussian process, note that for all $\lambda_{i} \in \mathbb{R}$, and $\left\{t_{i}\right\}_{i=1, \ldots, n} \in \mathbb{R}_{+}, n \in \mathbb{N}$ we have that

$$
\sum_{i=1}^{n} \lambda_{i} X_{t_{i}}=\sum_{i=1}^{n} \lambda_{i} \int_{0}^{t_{i}} f(s) d W_{s}=\int_{0}^{T}\left(\sum_{i=1}^{n} \lambda_{i} f_{t_{i}}(s)\right) d W_{s}
$$

which is an univariate Gaussian because $\sum_{i=1}^{n} \lambda_{i} f_{t_{i}}(s) \in L^{2}([0, T])$. By the properties of the Itô integral, we get that $\mathbb{E}\left[X_{t}\right]=0$ and $\mathbb{E}\left[X_{s} X_{t}\right]=\int_{0}^{\min (s, t)} f^{2}(u) d u$.
4. Let W be a Brownian motion and $\mathbb{F}=\mathbb{F}^{W}$. Show that the following processes are \mathbb{F}-martingales. A general remark on this kind of problems: If you are given a process that is a regular/smooth transformation of a Brownian motion, the straightforward way of checking that the process is a martingale is to use Itô's formula.
(a) $X_{t}=\exp \left(\theta W_{t}-\frac{\theta^{2}}{2} t\right), t \in[0, T]: X$ is \mathbb{F}-adapted because $X_{t}=\varphi_{t}\left(W_{t}\right)$ where φ_{t} is a Borel measurable function for every $t \in[0, T]$. This means that X_{t} is $\sigma\left(W_{t}\right)$ measurable and, in particular, \mathcal{F}_{t}-measurable because $\sigma\left(W_{t}\right) \subset \mathcal{F}_{t}$ for every $t \in[0, T]$. $X_{t} \in L^{1}(\Omega, \mathcal{F}, P)$,i.e., $\mathbb{E}\left[\left|X_{t}\right|\right]<\infty$ because $W_{t} \sim \mathcal{N}(0, t)$ and, hence,

$$
\mathbb{E}\left[\exp \left(\theta W_{t}\right)\right]=\exp \left(\frac{\theta^{2}}{2} t\right)
$$

which yields $\mathbb{E}\left[\left|X_{t}\right|\right]<\infty$. To check the martingale property $E\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}$, we can check that $\mathbb{E}\left[\left.\frac{X_{t}}{X_{s}} \right\rvert\, \mathcal{F}_{s}\right]=1$, because X_{s} is \mathcal{F}_{s}-measurable and can go inside the conditional expectation. We have that

$$
\begin{aligned}
\mathbb{E}\left[\left.\frac{X_{t}}{X_{s}} \right\rvert\, \mathcal{F}_{s}\right] & =\mathbb{E}\left[\left.\exp \left(\theta\left(W_{t}-W_{s}\right)-\frac{\theta^{2}}{2}(t-s)\right) \right\rvert\, \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\exp \left(\theta\left(W_{t}-W_{s}\right)\right) \mid \mathcal{F}_{s}\right] \exp \left(-\frac{\theta^{2}}{2}(t-s)\right) \\
& =\mathbb{E}\left[\exp \left(\theta\left(W_{t}-W_{s}\right)\right)\right] \exp \left(-\frac{\theta^{2}}{2}(t-s)\right) \\
& =\exp \left(\frac{\theta^{2}}{2}(t-s)\right) \exp \left(-\frac{\theta^{2}}{2}(t-s)\right)=1
\end{aligned}
$$

where we have used that $\exp \left(-\frac{\theta^{2}}{2}(t-s)\right)$ is deterministic, that $\exp \left(\theta\left(W_{t}-W_{s}\right)\right)$ is independent of \mathcal{F}_{s} and the moment generating function of a normal distribution, i.e., for $Z \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ we have $\mathbb{E}[\exp (\theta Z)]=\exp \left(\mu \theta+\frac{\theta^{2}}{2} \sigma^{2}\right)$.
(b) $Y_{t}=e^{t / 2} \cos \left(W_{t}\right), t \in[0, T]: Y$ is \mathbb{F}-adapted by the same kind of reasoning as in section a.. That, $Y_{t} \in L^{1}(\Omega, \mathcal{F}, P)$ follows from the fact that $|\cos (x)| \leq 1$, we have

$$
\mathbb{E}\left[\left|Y_{t}\right|\right]=\mathbb{E}\left[\left|e^{t / 2} \cos \left(W_{t}\right)\right|\right]=e^{t / 2} \mathbb{E}\left[\left|\cos \left(W_{t}\right)\right|\right] \leq e^{t / 2}<\infty
$$

To check the martingale property we will use Itô's formula. Note that $Y_{t}=f\left(t, W_{t}\right)$ where $f(t, x)=e^{t / 2} \cos (x) \in C^{1,2}([0, T] \times \mathbb{R})$ and $\partial_{t} f=\frac{1}{2} f, \partial_{x} f(t, x)=-e^{t / 2} \sin (x)$ and $\partial_{x x} f=-f$. Hence,

$$
\begin{aligned}
Y_{t} & =f\left(t, W_{t}\right)=1+\int_{0}^{t}\left\{\partial_{t} f\left(s, W_{s}\right)+\frac{1}{2} \partial_{x x} f\left(s, W_{s}\right)\right\} d s+\int_{0}^{t} \partial_{x} f\left(s, W_{s}\right) d W_{s} \\
& =1-\int_{0}^{t} e^{s / 2} \sin \left(W_{s}\right) d W_{s}
\end{aligned}
$$

As $e^{s / 2} \sin \left(W_{s}\right)$ is measurable and adapted and

$$
\mathbb{E}\left[\int_{0}^{T}\left|e^{t / 2} \sin \left(W_{t}\right)\right|^{2} d t\right] \leq \mathbb{E}\left[\int_{0}^{T} e^{t} d t\right] \leq e^{T} T<\infty
$$

we have that $e^{t / 2} \sin \left(W_{t}\right) \in L_{a, T}^{2}$ and the Itô integral is a martingale.
(c) $Z_{t}=W_{t}^{2}-t, t \in[0, T]: Z$ is \mathbb{F}-adapted by the same kind of reasoning as in section $a . . Z$ is integrable because

$$
\mathbb{E}\left[\left|Z_{t}\right|\right] \leq \mathbb{E}\left[W_{t}^{2}\right]+t=2 t<\infty .
$$

To check the martingale property we could use Itô's formula or the property that a Brownian motion has independent increments.

$$
\begin{aligned}
\mathbb{E}\left[Z_{t} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[W_{t}^{2}-t \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\left(W_{t}-W_{s}+W_{s}\right)^{2} \mid \mathcal{F}_{s}\right]-t \\
& =\mathbb{E}\left[\left(W_{t}-W_{s}\right)^{2} \mid \mathcal{F}_{s}\right]-\mathbb{E}\left[2\left(W_{t}-W_{s}\right) W_{s} \mid \mathcal{F}_{s}\right]+\mathbb{E}\left[W_{s}^{2} \mid \mathcal{F}_{s}\right]-t \\
& =\mathbb{E}\left[\left(W_{t}-W_{s}\right)^{2}\right]-2 W_{s} \mathbb{E}\left[\left(W_{t}-W_{s}\right) \mid \mathcal{F}_{s}\right]+W_{s}^{2}-t \\
& =t-s-2 W_{s} \mathbb{E}\left[\left(W_{t}-W_{s}\right)\right]+W_{s}^{2}-t=W_{s}^{2}-s=Z_{s}
\end{aligned}
$$

where we have used that $W_{t}-W_{s}$ is independent of \mathcal{F}_{s}, that if V is independent of \mathcal{G} one has that $\mathbb{E}[V \mid \mathcal{G}]=\mathbb{E}[V]$, that W_{s} is \mathcal{F}_{s}-measurable and that W is a centered process.
(d) $G_{t}=e^{W_{t}}-1-\frac{1}{2} \int_{0}^{t} e^{W_{s}} d s, t \in[0, T]: G$ is \mathbb{F}-adapted because $e^{W_{t}}$ is $\sigma\left(W_{t}\right)$-measurable and $\sigma\left(W_{t}\right) \subset \mathcal{F}_{t}$. Moreover, $\int_{0}^{t} e^{W_{s}} d s$ is \mathcal{F}_{t} measurable because (using the definition of Riemann integrable function) is a P-a.s. limit of \mathcal{F}_{t}-measurable random variables. In other words, G_{t} only depends on the values of W up to time $t . G$ is integrable because W_{t} (and W_{s}) has moments exponential moments of all orders. The martingale property follows by applying Itô's formula to $g\left(W_{t}\right)$ with the function $g(x)=e^{x}$. Note, $\partial_{t} g=$ $0, \partial_{x} g=\partial_{x x} g=g$. Hence,

$$
g\left(W_{t}\right)=e^{W_{t}}=1+\int_{0}^{t} e^{W_{s}} d W_{s}+\frac{1}{2} \int_{0}^{t} e^{W_{s}} d s
$$

which yields that $G_{t}=\int_{0}^{t} e^{W_{s}} d W_{s}$. As $e^{W_{t}}$ is measurable, adapted and

$$
\mathbb{E}\left[\int_{0}^{T}\left|e^{W_{t}}\right|^{2} d t\right]=\int_{0}^{T} \mathbb{E}\left[e^{2 W_{t}}\right] d t=\int_{0}^{T} e^{\frac{4 t}{2}} d t \leq e^{2 T} T<\infty
$$

Hence, $e^{W_{t}} \in L_{a, T}^{2}$ and G_{t} is a martingale (because the Itô integral of a process in $L_{a, T}^{2}$ is a martingale).
(e) $H_{t}=\exp \left(\int_{0}^{t} f_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} f_{s}^{2} d s\right), t \in[0, T], f \in L^{2}([0, T])$ deterministic: H is \mathbb{F}-adapted because $\exp \left(\int_{0}^{t} f_{s} d W_{s}\right)$ is \mathcal{F}_{t}-measurable as the Itô integrals is an \mathbb{F}-adapted process. By exercise 3., the law of $\int_{0}^{t} f_{s} d W_{s}$ is $\mathcal{N}\left(0, \int_{0}^{t} f_{s}^{2} d s\right)$ because f is deterministic and square integrable. This yields that H is integrable. To check the martingale property we can repeat the same arguments as in section a. or use Itô's formula to $h(x)=\exp (x)$ applied to the Itô process $\int_{0}^{t} f_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} f_{s}^{2} d s$.
5. The square integrability of M ensure that the conditional expectation exists. The result follows using the basic properties of the conditional expectation and expanding $\left(M_{t}-M_{s}\right)^{2}$. We have that

$$
\begin{aligned}
\mathbb{E}\left[\left(M_{t}-M_{s}\right)^{2} \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[M_{t}^{2}-2 M_{s} M_{t}+M_{s}^{2} \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[M_{t}^{2} \mid \mathcal{F}_{s}\right]-2 M_{s} \mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]+M_{s}^{2} \\
& =\mathbb{E}\left[M_{t}^{2} \mid \mathcal{F}_{s}\right]-2 M_{s}^{2}+M_{s}^{2} \\
& =\mathbb{E}\left[M_{t}^{2}-M_{s}^{2} \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

where we have used that M_{s} and M_{s}^{2} are \mathcal{F}_{s}-measurable and $\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s}$, the martingale property of M.
6. $Y_{t}=\varphi\left(M_{t}\right)$ where φ is a convex function and M is an \mathbb{F}-martingale. Y is integrable by assumption. Note that as φ is convex it is continuous and, hence, Borel measurable. Therefore, Y_{t} is $\sigma\left(M_{t}\right)$-measurable and, as M is \mathbb{F}-adapted, we have that Y_{t} is \mathcal{F}_{t}-measurable, which yields that Y is \mathbb{F}-adapted. Finally the submartingale property follows from the conditional Jensen's inequality and the fact that M is a martingale, i.e., if $h(V) \in L^{1}(\Omega, \mathcal{F}, P)$ and \mathcal{G} is a sub- σ algebra of \mathcal{F} we have that $\mathbb{E}[h(V) \mid \mathcal{G}] \geq h(\mathbb{E}[V) \mid \mathcal{G}])$. Let's write it:

$$
\mathbb{E}\left[Y_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\varphi\left(M_{t}\right) \mid \mathcal{F}_{s}\right] \geq \varphi\left(\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]\right)=\varphi\left(M_{s}\right)=Y_{s} .
$$

7. Let $\mathbb{F}^{X}=\left\{\mathcal{F}_{t}^{X}=\sigma\left(X_{s}: 0 \leq s \leq t\right)\right\}_{t \in \mathbb{R}_{+}}$and $\mathbb{G}^{X}=\left\{\mathcal{F}_{t}^{X}=\sigma\left(X_{v}-X_{u}: 0 \leq u \leq v \leq t\right)\right\}_{t \in \mathbb{R}_{+}}$ the natural filtrations generated by the process X and by the increments of the process X. These filtrations are actually the same because for any $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n} \in \mathbb{R}_{+}, n \in \mathbb{N}$, we have that $\sigma\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right)=\sigma\left(X_{t_{1}}, X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right)$ (note that there is a bijection between these two vectors). The hypothesis in this problem is that the process X has constant mean $\left(\mathbb{E}\left[X_{t}\right]=m, t \in \mathbb{R}_{+}\right)$and independent increments. The independent increments property can be written as follows: for all $s \leq t$ the random variable $X_{t}-X_{s}$ is independent of all random variables $X_{v}-X_{u}$ with $0 \leq u \leq v \leq s$. Therefore, we have that $X_{t}-X_{s}$ is independent of \mathcal{G}_{s}^{X}. Hence,

$$
\mathbb{E}\left[X_{t}-X_{s} \mid \mathcal{F}_{s}^{X}\right]=\mathbb{E}\left[X_{t}-X_{s} \mid \mathcal{G}_{s}^{X}\right]=\mathbb{E}\left[X_{t}-X_{s}\right]=\mathbb{E}\left[X_{t}\right]-\mathbb{E}\left[X_{s}\right]=0,
$$

and we can conclude that X is a martingale (with respect to its natural filtration \mathcal{F}_{t}^{X}).
8. Let $X \in L^{p}(\Omega, \mathcal{F}, P)$ for some $p \geq 1$ and \mathbb{F} be a filtration in the probability space (Ω, \mathcal{F}, P). Then $M_{t}=\mathbb{E}\left[X \mid \mathcal{F}_{t}\right]$ is a \mathbb{F}-martingale. M is \mathbb{F}-adapted by construction. We prove the p-th integrability of M (which implies the integrability of M). It follows by the conditional Jensen's inequality applied to the convex function $\varphi(x)=|x|^{p}$, the conservation of expectation property of the conditional expectation and the hypothesis $X \in L^{p}(\Omega, \mathcal{F}, P)$,

$$
\mathbb{E}\left[\left|M_{t}\right|^{p}\right]=\mathbb{E}\left[\left|\mathbb{E}\left[X \mid \mathcal{F}_{t}\right]\right|^{p}\right] \leq \mathbb{E}\left[\mathbb{E}\left[|X|^{p} \mid \mathcal{F}_{t}\right]\right]=\mathbb{E}\left[|X|^{p}\right]<\infty .
$$

The martingale property of M follows from the tower property of the conditional expectation

$$
\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[X \mid \mathcal{F}_{s}\right]=M_{s}
$$

9. For this exercise I only give the solution. $W=\left(W_{t}^{1}, W_{t}^{2}, W_{t}^{3}\right)_{t \in \mathbb{R}_{+}}$is a 3-dimensional Brownian motion.
(a) $u_{1}\left(t, W_{t}\right)=5+4 t+\exp \left(3 W_{t}^{1}\right)$ has the following Itô differential

$$
\begin{aligned}
d u_{1}\left(t, W_{t}\right) & =3 \exp \left(3 W_{t}^{1}\right) d W_{t}^{1}+\left\{4+\frac{9}{2} \exp \left(3 W_{t}^{1}\right)\right\} d t \\
u_{1}(0,0) & =5
\end{aligned}
$$

(b) $u_{2}\left(t, W_{t}\right)=\left(W_{t}^{2}\right)^{2}+\left(W_{t}^{3}\right)^{2}$ has the following Itô differential

$$
\begin{aligned}
d u_{2}\left(t, W_{t}\right) & =2 W_{t}^{2} d W_{t}^{2}+2 W_{t}^{3} d W_{t}^{3}+2 d t \\
u_{2}(0,0) & =0
\end{aligned}
$$

(c) $u_{3}\left(t, W_{t}\right)=\log \left(u_{1}\left(t, W_{t}\right) u_{2}\left(t, W_{t}\right)\right)$ has the following Itô differential

$$
\begin{aligned}
d u_{3}\left(t, W_{t}\right)= & \frac{3 \exp \left(3 W_{t}^{1}\right)}{5+4 t+\exp \left(3 W_{t}^{1}\right)} d W_{t}^{1}+\frac{2 W_{t}^{2}}{\left(W_{t}^{2}\right)^{2}+\left(W_{t}^{3}\right)^{2}} d W_{t}^{2} \\
& +\frac{2 W_{t}^{3}}{\left(W_{t}^{2}\right)^{2}+\left(W_{t}^{3}\right)^{2}} d W_{t}^{3}+\left\{\frac{4+\frac{9}{2} \exp \left(3 W_{t}^{1}\right)}{5+4 t+\exp \left(3 W_{t}^{1}\right)}\right. \\
& +\frac{2}{\left(W_{t}^{2}\right)^{2}+\left(W_{t}^{3}\right)^{2}}-\frac{9}{2} \frac{\exp \left(6 W_{t}^{1}\right)}{\left(5+4 t+\exp \left(3 W_{t}^{1}\right)\right)^{2}} \\
& \left.-\frac{2\left(W_{t}^{2}\right)^{2}+2\left(W_{t}^{3}\right)^{2}}{\left(\left(W_{t}^{2}\right)^{2}+\left(W_{t}^{3}\right)^{2}\right)^{2}}\right\} d t
\end{aligned}
$$

10. Recall that a discrete time, integrable and $\left\{\mathcal{H}_{n}\right\}_{n \geq 0}$-adapted process $\left\{Z_{n}\right\}_{n \geq 0}$ is a $\left\{\mathcal{H}_{n}\right\}$ martingale if $\mathbb{E}\left[Z_{n} \mid \mathcal{H}_{n-1}\right]=Z_{n-1}$ for all $n \geq 1 . G_{n}$ is $\left\{\mathcal{F}_{n}\right\}$-adapted because $\bar{H}_{i}\left(M_{i}-M_{i-1}\right)$ is \mathcal{F}_{i}-measurable for $0 \leq i \leq n$ and, hence, \mathcal{F}_{n}-measurable. Next step is to check that $\mathbb{E}\left[\left|G_{n}\right|\right]<\infty$ for all $n \geq 1$. We have, using the triangular inequality and the fact that M is integrable because it is a martingale, that

$$
\begin{aligned}
\mathbb{E}\left[\left|G_{n}\right|\right] & =\mathbb{E}\left[\left|\sum_{i=1}^{n} H_{i}\left(M_{i}-M_{i-1}\right)\right|\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[\left|H_{i}\left(M_{i}-M_{i-1}\right)\right|\right] \\
& \leq \sum_{i=1}^{n} C_{i} \mathbb{E}\left[\left|\left(M_{i}-M_{i-1}\right)\right|\right] \leq \sum_{i=1}^{n} C_{i}\left\{\mathbb{E}\left[\left|M_{i}\right|\right]+\mathbb{E}\left[\left|M_{i-1}\right|\right]\right\} \\
& \leq 2 \sup _{0 \leq i \leq n} \mathbb{E}\left[\left|M_{i}\right|\right] \sum_{i=1}^{n} C_{i}<\infty
\end{aligned}
$$

To check the martingale property we can write

$$
\begin{aligned}
\mathbb{E}\left[G_{n} \mid \mathcal{F}_{n-1}\right] & =\mathbb{E}\left[\sum_{i=1}^{n} H_{i}\left(M_{i}-M_{i-1}\right) \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{E}\left[G_{n-1}+H_{n}\left(M_{n}-M_{n-1}\right) \mid \mathcal{F}_{n-1}\right] \\
& =G_{n-1}+H_{n} \mathbb{E}\left[M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right] \\
& =G_{n-1}+\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right]-M_{n-1} \\
& =G_{n-1}+M_{n-1}-M_{n-1}=G_{n-1}
\end{aligned}
$$

where we have used that G_{n-1}, H_{n} and M_{n-1} are \mathcal{F}_{n-1}-measurable and M is a martingale.
11. In this exercise we have to find the Itô representation of some square integrable random variables, that is, if $F \in L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$ there exists a process $f \in L_{a ; T}^{2}$ such that $F=$ $\mathbb{E}[F]+\int_{0}^{T} f_{s} d W_{s}$.
(a) $F_{1}=W_{T}$. We can write

$$
W_{T}=\int_{0}^{T} d W_{t}=0+\int_{0}^{T} d W_{t}=\mathbb{E}\left[W_{T}\right]+\int_{0}^{T} 1 d W_{t}
$$

(b) $F_{2}=W_{T}^{2}$. We can use Itô's formula to get that

$$
\begin{aligned}
W_{T}^{2} & =W_{0}+\int_{0}^{T} \frac{2}{2} d t+\int_{0}^{T} 2 W_{t} d W_{t} \\
& =0+T+\int_{0}^{T} 2 W_{t} d W_{t}=\mathbb{E}\left[W_{T}^{2}\right]+\int_{0}^{T} 2 W_{t} d W_{t}
\end{aligned}
$$

(c) $F_{3}=e^{W_{T}}$. Here, the idea is to use that we know that $f\left(t, W_{t}\right)=\exp \left(W_{t}-\frac{t}{2}\right)$ is a martingale so we can write it as an stochastic integral of some process in $L_{a, T}^{2}$. To find
such a process we use Itô's formula. We have that $\partial_{t} f(t, x)=-\frac{1}{2} f(t, x)$ and $\partial_{x} f(t, x)=$ $\partial_{x x} f(t, x)=f(t, x)$. Therefore,

$$
\exp \left(W_{T}-T / 2\right)=1+\int_{0}^{T} \exp \left(W_{t}-t / 2\right) d W_{t}
$$

which yields that

$$
\begin{aligned}
\exp \left(W_{T}\right) & =e^{T / 2}+e^{T / 2} \int_{0}^{T} \exp \left(W_{t}-t / 2\right) d W_{t} \\
& =\mathbb{E}\left[\exp \left(W_{T}\right)\right]+\int_{0}^{T} \exp \left(W_{t}+(T-t) / 2\right) d W_{t}
\end{aligned}
$$

Note that $e^{T / 2}$ can go inside the stochastic integral because is deterministic.
(d) $F_{4}=\int_{0}^{T} W_{t} d t$. By the integration by parts formula one can write

$$
T W_{T}=\int_{0}^{T} W_{t} d t+\int_{0}^{T} t d W_{t}
$$

which yields

$$
\begin{aligned}
\int_{0}^{T} W_{t} d t & =T W_{T}-\int_{0}^{T} t d W_{t}=T \int_{0}^{T} d W_{t}-\int_{0}^{T} t d W_{t} \\
& =\int_{0}^{T}(T-t) d W_{t}=\mathbb{E}\left[\int_{0}^{T} W_{t} d t\right]+\int_{0}^{T}(T-t) d W_{t}
\end{aligned}
$$

Note that $\mathbb{E}\left[\int_{0}^{T} W_{t} d t\right]=\int_{0}^{T} \mathbb{E}\left[W_{t}\right] d t=\int_{0}^{T} 0 d t=0$.
(e) $F_{6}=\int_{0}^{T} t^{2} W_{t}^{2} d t$. The idea is to consider the process $Y_{t}=W_{t}^{2}-t$ that we know it is a martingale. By Itô's formula we have that $d Y_{t}=2 W_{t} d W_{t}$. On the other hand consider the process given by $d X_{t}=t^{2} d t$ which is equal to $X_{t}=\frac{t^{3}}{3}$. Now, we can apply integration by parts formula to the process $X_{t} Y_{t}$, taking into account that $d\left(X_{t}\right) d\left(Y_{t}\right)=0$, to get

$$
\begin{aligned}
\frac{T^{3}}{3}\left(W_{T}^{2}-T\right) & =X_{t} Y_{t}=X_{0} Y_{0}+\int_{0}^{T} X_{t} d Y_{t}+\int_{0}^{T} Y_{t} d X_{t} \\
& =0+\int_{0}^{T} \frac{2}{3} t^{3} W_{t} d W_{t}+\int_{0}^{T} t^{2}\left(W_{t}^{2}-t\right) d t \\
& =\int_{0}^{T} \frac{2}{3} t^{3} W_{t} d W_{t}+\int_{0}^{T} t^{2} W_{t}^{2} d t-\frac{T^{4}}{4}
\end{aligned}
$$

but note that

$$
\frac{T^{3}}{3}\left(W_{T}^{2}-T\right)=\frac{T^{3}}{3} \int_{0}^{T} 2 W_{t} d W_{t}=\int_{0}^{T} \frac{2}{3} T^{3} W_{t} d W_{t}
$$

Hence, we get that

$$
\begin{aligned}
\int_{0}^{T} t^{2} W_{t}^{2} d t & =\frac{T^{4}}{4}+\int_{0}^{T} \frac{2}{3} T^{3} W_{t} d W_{t}-\int_{0}^{T} \frac{2}{3} t^{3} W_{t} d W_{t} \\
& =\mathbb{E}\left[\int_{0}^{T} t^{2} W_{t}^{2} d t\right]+\int_{0}^{T} \frac{2}{3}\left(T^{3}-t^{3}\right) W_{t} d W_{t}
\end{aligned}
$$

because

$$
\mathbb{E}\left[\int_{0}^{T} t^{2} W_{t}^{2} d t\right]=\int_{0}^{T} t^{2} \mathbb{E}\left[W_{t}^{2}\right] d t=\int_{0}^{T} t^{3} d t=\frac{T^{4}}{4}
$$

12. $\left.P\right|_{\mathcal{F}_{t}}$ and $\left.Q\right|_{\mathcal{F}_{t}}$ are probabilities on $\left(\Omega, \mathcal{F}_{t}\right)$ that are constructed by considering the restriction of P and Q, respectively, to \mathcal{F}_{t}, that is, $\left.P\right|_{\mathcal{F}_{t}}(A)=P(A)$ and $\left.Q\right|_{\mathcal{F}_{t}}(A)=Q(A), A \in \mathcal{F}_{t}$. Hence,

$$
A \in \mathcal{F}_{t} \text { such that } 0=\left.P\right|_{\mathcal{F}_{t}}(A)=P(A) \underset{Q \ll P}{\Longrightarrow} 0=Q(A)=\left.Q\right|_{\mathcal{F}_{t}}(A),
$$

and we get that $\left.\left.Q\right|_{\mathcal{F}_{t}} \ll P\right|_{\mathcal{F}_{t}}$. Define $Z_{T}=\frac{d Q}{d P}$ and $Z_{t}=\mathbb{E}_{P}\left[Z_{T} \mid \mathcal{F}_{t}\right]$. By exercise 8., we know that Z is a \mathbb{F}-martingale. Moreover, for all $A \in \mathcal{F}_{t}$ we have that

$$
\begin{aligned}
\left.Q\right|_{\mathcal{F}_{t}}(A) & =Q(A)=\mathbb{E}_{Q}\left[\mathbf{1}_{A}\right]=\mathbb{E}_{P}\left[Z_{T} \mathbf{1}_{A}\right]=\mathbb{E}_{P}\left[E\left[Z_{T} \mathbf{1}_{A} \mid \mathcal{F}_{t}\right]\right] \\
& =\mathbb{E}_{P}\left[E\left[Z_{T} \mid \mathcal{F}_{t}\right] \mathbf{1}_{A}\right]=\mathbb{E}_{P}\left[Z_{t} \mathbf{1}_{A}\right]=\mathbb{E}_{P \mid \mathcal{F}_{t}}\left[Z_{t} \mathbf{1}_{A}\right],
\end{aligned}
$$

which yields that $Z_{t}=\frac{\left.d Q\right|_{\mathcal{F}_{t}}}{\left.d P\right|_{\mathcal{F}_{t}}},\left.P\right|_{\mathcal{F}_{t}}$-a.s. Note that we have used that $\mathbb{E}_{P}[X]=\mathbb{E}_{\left.P\right|_{\mathcal{F}_{t}}}[X]$ for any X that is \mathcal{F}_{t}-measurable. One can check this property by using the definitions of Lebesgue integral and the fact that $\left.P\right|_{\mathcal{F}_{t}}$ coincides with P on any \mathcal{F}_{t}-measurable set. Finally, we have to prove that Y is a martingale under $Q \Longleftrightarrow Z Y$ is a martingale under P.
\Rightarrow) By exercise 32 in List 1 (see the solution of the optional exercise) We have that

$$
\begin{equation*}
\mathbb{E}_{Q}\left[Y_{t} \mid \mathcal{F}_{s}\right] \mathbb{E}_{P}\left[Z_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}_{P}\left[Z_{t} Y_{t} \mid \mathcal{F}_{s}\right], \quad s<t \tag{1}
\end{equation*}
$$

Note that, as Y is a martingale under Q we get $\mathbb{E}_{Q}\left[Y_{t} \mid \mathcal{F}_{s}\right]=Y_{s}$ and as Z is a martingale under P we get $\mathbb{E}_{P}\left[Z_{t} \mid \mathcal{F}_{s}\right]=Z_{s}$. Hence, the left hand side of equation (1) is equal to $Z_{s} Y_{s}$ and we can conclude that $Z Y$ is a martingale under P.
$\Leftarrow)$ As $Z Y$ and Z are martingales under P, we get that $\mathbb{E}_{P}\left[Z_{t} Y_{t} \mid \mathcal{F}_{s}\right]=Z_{s} Y_{s}$ and $\mathbb{E}_{P}\left[Z_{t} \mid \mathcal{F}_{s}\right]=Z_{s}$ and equation (1) is equal to

$$
\mathbb{E}_{Q}\left[Y_{t} \mid \mathcal{F}_{s}\right] Z_{s}=Z_{s} Y_{s} \Longleftrightarrow \mathbb{E}_{Q}\left[Y_{t} \mid \mathcal{F}_{s}\right]=Y_{s} .
$$

Therefore, we can conclude that Y is a martingale under Q.

