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Brownian Motion and Stochastic Calculus

Recall �rst some de�nitions given in class.

De�nition 1 (Def. Class) A standard Brownian motion is a process satisfying

1. W has continuous paths P -a.s.,

2. W0 = 0; P -a.s.,

3. W has independent increments,

4. For all 0 � s < t; the law of Wt �Ws is a N (0; (t� s)):

De�nition 2 X is a Gaussian process if for any t1; t2; � � � tn;2 R+; n 2 N the vector

(Xt1 ; Xt2 ; :::; Xtn);

is multivariate normal.

A useful criterion to check if a vector is multivariate normal is the following

Proposition 3 A vector (X1; :::; Xn) is multivariate normal if and only if for all �i 2 R; i = 1; :::; n
one has that the random variable

Pn
i=1 �iXi is (univariate) normal.

Remark 4 Note that, by proposition 3, we may assume that the times ftigi=1;:::;n in de�nition 2
are ordered, i.e., 0 � t1 < t2 < � � � < tn:

In Exercise 1 the following alternative de�nition of Brownian motion is introduced.

De�nition 5 (Def. Gaussian) A standard Brownian motion is a process satisfying

a) W has continuous paths P -a.s.,

b) W is a Gaussian process,

c) W is centered (E[Wt] = 0) and the covariance function

K(s; t) , E[(Wt � E[Wt]) (Ws � E[Ws])] = E[WtWs] = min(s; t):

Recall also the de�nition of F-Brownian motion.

De�nition 6 A F-Brownian motion W is a real stochastic process adapted to F satisfying

1. W has continuous paths P -a.s.,

2. W0 = 0; P -a.s,

3. For all 0 � s < t; the random variable Wt �Ws is independent of Fs:

4. For all 0 � s < t; the law of Wt �Ws is a N (0; (t� s)):
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1. In this exercise we have to show that Def. Class is equivalent to Def. Gaussian

Def. Class =) Def. Gaussian.: Clearly 1: ) a): Properties 3: and 4: yields that for any 0 �
t1 < t2 < � � � < tn; n 2 N the vector

(Wtn �Wtn�1 ;Wtn�1 �Wtn�2 ; :::;Wt1)

has multivariate normal distribution and, by a linear transform, we get that

(Wt1 ; :::;Wtn�1 ;Wtn)

has a multivariate normal distribution. Alternatively, for all �i 2 R; i = 1; :::; n we have that

nX
i=1

�iWti =
nX
i=1

�i

iX
j=1

�
Wtj �Wtj�1

�
=

nX
j=1

0@ nX
i=j

�i

1A�Wtj �Wtj�1

�
;

which is a univariate normal by properties 3: and 4: Hence, we can conclude that W is a
Gaussian process. By 4: we get that E[Wt] = 0 for all t � 0: Moreover, if s < t we have that

K(s; t) = E[WsWt] = E[Ws(Wt �Ws) +W
2
s ] = E[Ws(Wt �Ws)] + E[W 2

s ]

= E[Ws]E[(Wt �Ws)] + s = s;

where we have used 3: and 4: A similar reasoning can be done if t < s; so we get that
K(s; t) = min(s; t):

Def. Gaussian =) Def. Class.: Clearly a) ) 1: By property c) we have that E[W0] = 0
and E[W 2

0 ] = K(0; 0) = 0; which yields that W0 = 0; P -a.s. and, hence, property 2: is
satis�ed. Note that if (Z1; Z2) is bivariate Gaussian then Z1 is independent of Z2 if and only
if E[Z1Z2] = E[Z1]E[Z2]. In order to prove 3:; we have to show that Wt �Ws is independent
of Wv �Wu for any 0 � u � v � s � t: As W is a Gaussian process by b); we have that
(Wt �Ws;Wv �Wu) is bivariate Gaussian and it su¢ ces to prove that

E[(Wt �Ws)(Wv �Wu)] = 0;

but using property c) we get that

E[(Wt �Ws)(Wv �Wu)] = K(t; v)�K(t; u)�K(s; v) +K(s; u)
= v � u� v + u = 0:

Finally, by b) again, we have that for all 0 � s < t the law of Wt�Ws is Gaussian. And using
c) we get that

E[Wt �Ws] = E[Wt]� E[Ws] = 0;

V ar[Wt �Ws] = E
h
(Wt �Ws)

2
i

= K(t; t)�K(t; s)�K(s; t) +K(s; s) = t� s;

which yields property 4:

2. W is a Brownian motion, a > 0 and F the minimal augmented �ltration generated by W:

(a) Xt = �Wt; t 2 R+ : X has continuous paths P -a.s. because W has continuous paths
P -a.s.. For any 0 � t1 < t2 < � � � < tn; n 2 N the vector

(Xt1 ; :::; Xtn�1 ; Xtn) = (�Wt1 ; :::;�Wtn�1 ;�Wtn)
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is Gaussian because (Wt1 ; :::;Wtn�1 ;Wtn) is Gaussian, asW is a Gaussian process. More-
over

E[Xt] = E[�Wt] = �E[Wt] = 0;

K(s; t) = E[XsXt] = E[(�Ws) (�Wt)] = E[WsWt] = min(s; t):

Therefore, by the previous exercise we can conclude that X is a Brownian motion. Note
also that F = FX : This is becauseXt = '(Wt); where '(x) = �x is a bijection. This yields
that �(Xt) = �(Wt) and, therefore, FXt = �(Xs : 0 � s � t) = �(Ws : 0 � s � t) = Ft
for any t: Hence, we can conclude that X is also an F-Brownian motion.

(b) Xt =Wa+t�Wa; t 2 R : X has continuous paths P -a.s. because W has continuous paths
P -a.s.. For any 0 < t1 < t2 < � � � < tn; n 2 N the vector

(Wa;Wa+t1 ; :::;Wa+tn�1 ;Wa+tn);

is multivariate normal because W is a Gaussian process. By a linear transformation of
the previous vector we get that�

Wa+t1 �Wa; :::;Wa+tn�1 �Wa;Wa+tn �Wa

�
;

is also multivariate normal and, hence, the process X is Gaussian. We also have that

E[Xt] = E[Wa+t �Wa] = 0;

K(s; t) = E[XsXt] = E[(Wa+s �Wa) (Wa+t �Wa)]

= K(a+ s; a+ t)�K(a+ s; a)�K(a; a+ t) +K(a; a)
= min (a+ s; a+ t)�min (a+ s; a)�min (a; a+ t) + min (a; a)
= min (a+ s; a+ t)� a = min (s; t) :

Therefore, we can conclude that X is a Brownian motion. However, X is not an F-
Brownian motion because X is not adapted to F; note that Xt =Wa+t�Wa depends on
Wa+t which is not Ft measurable.

(c) Xt =Wat2 ; t 2 R+ : X is not a Brownian motion because, although has continuous paths,
is Gaussian and centered, one has that

K(s; t) = E[XsXt] = E[Xas2Wat2 ] = min(as
2; as2) 6= min(s; t):

As X is not a Brownian motion, it cannot be an F-Brownian motion.

3. Let f 2 L2 ([0; T ]) : First we will show that Xt =
R t
0
f(s)dWs � N

�
0;
R t
0
jf(s)j2 ds

�
for every

t 2 [0; T ]. De�ne ft(s) , f(s)1[0;t](s) and note that jft(s)j � jf(s)j for all s 2 [0; T ]: As f is
deterministic, we have that for all t 2 [0; T ] the process ft it is also measurable and adapted
and

E

"Z T

0

jft(s)j2 ds
#
=

Z T

0

jft(s)j2 ds �
Z T

0

jf(s)j2 ds <1:

Hence, ft 2 L2a;T and Xt =
R t
0
f(s)dWs =

R T
0
ft(s)dWs: Consider a sequence of partitions

�n = f0 = t0 < t1 < t2 < � � � < tn�1 < tn = Tg; n � 1;

with k�nk , max1�i�n jti � ti�1j converging to zero when n tends to in�nity. We can consider
the sequence of function ft;n(s) =

Pn�1
i=1 ft(ti)1[ti;ti+1)(s): We have that ft;n converges �-a.e.

to ft and

E

"Z T

0

jft(s)� ft;n(s)j2 ds
#
=

Z T

0

jft(s)� ft;n(s)j2 ds �!
n!1

0;

by dominated convergence. Hence, fn;t(s) (as a process in s) is a sequence of simple processes
approximating ft in L2a;T and, by the construction of the Itô integral, we have thatZ T

0

ft;n(s)dWs
L2�!

n!1

Z T

0

ft(s)Ws:

3 Last updated: November 25, 2015



In addition, for every n � 1;Z T

0

ft;n(s)dWs =
n�1X
i=1

ft(ti) (Wti �Wti) ;

which is a sum of independent Gaussian random variables with law N (0;
Pn�1

i=1 jft(ti)j
2
(ti �

ti�1)):We recall the following result that we give without proof (it is easy using the relationship
between characteristic functions and weak convergence). Let Zn be a sequence of random

variables with laws N (0; �2n): If Zn
L2�!

n!1
Z1 then �21 , limn!1 �

2
n <1 and Z1 � N (0; �21):

In our case, we have that Z1 =
R T
0
ft(s)Ws =

R t
0
f(s)Ws and �21 =

R T
0
f2t (s)ds =

R t
0
f2(s)ds:

Therefore we can conclude that Xt =
R t
0
f(s)dWs � N (0;

R t
0
f2(s)ds): Finally, to show that X

is a Gaussian process, note that for all �i 2 R; and ftigi=1;:::;n 2 R+; n 2 N we have that

nX
i=1

�iXti =
nX
i=1

�i

Z ti

0

f(s)dWs =

Z T

0

 
nX
i=1

�ifti(s)

!
dWs;

which is an univariate Gaussian because
Pn

i=1 �ifti(s) 2 L2([0; T ]). By the properties of the
Itô integral, we get that E[Xt] = 0 and E[XsXt] =

Rmin(s;t)
0

f2(u)du:

4. LetW be a Brownian motion and F = FW : Show that the following processes are F-martingales.
A general remark on this kind of problems: If you are given a process that is a regular/smooth
transformation of a Brownian motion, the straightforward way of checking that the process is
a martingale is to use Itô�s formula.

(a) Xt = exp
�
�Wt � �2

2 t
�
; t 2 [0; T ] : X is F-adapted because Xt = 't(Wt) where 't

is a Borel measurable function for every t 2 [0; T ]. This means that Xt is �(Wt)-
measurable and, in particular, Ft-measurable because �(Wt) � Ft for every t 2 [0; T ]:
Xt 2 L1(
;F ; P );i.e., E[jXtj] <1 because Wt � N (0; t) and, hence,

E[exp(�Wt)] = exp(
�2

2
t);

which yields E[jXtj] < 1: To check the martingale property E[XtjFs] = Xs; we can

check that E
h
Xt

Xs
jFs
i
= 1; because Xs is Fs-measurable and can go inside the conditional

expectation. We have that

E
�
Xt
Xs
jFs
�

= E
�
exp

�
�(Wt �Ws)�

�2

2
(t� s)

�
jFs
�

= E [exp (�(Wt �Ws)) jFs] exp
�
��

2

2
(t� s)

�
= E [exp (�(Wt �Ws))] exp

�
��

2

2
(t� s)

�
= exp

�
�2

2
(t� s)

�
exp

�
��

2

2
(t� s)

�
= 1;

where we have used that exp
�
� �2

2 (t� s)
�
is deterministic, that exp (�(Wt �Ws)) is

independent of Fs and the moment generating function of a normal distribution, i.e., for
Z � N (�; �2) we have E[exp(�Z)] = exp

�
�� + �2

2 �
2
�
:

(b) Yt = et=2 cos(Wt); t 2 [0; T ] : Y is F-adapted by the same kind of reasoning as in section
a:: That, Yt 2 L1(
;F ; P ) follows from the fact that jcos(x)j � 1, we have

E [jYtj] = E
h���et=2 cos(Wt)

���i = et=2E [jcos(Wt)j] � et=2 <1:
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To check the martingale property we will use Itô�s formula. Note that Yt = f(t;Wt)
where f(t; x) = et=2 cos(x) 2 C1;2([0; T ]� R) and @tf = 1

2f; @xf(t; x) = �e
t=2 sin(x) and

@xxf = �f: Hence,

Yt = f(t;Wt) = 1 +

Z t

0

f@tf(s;Ws) +
1

2
@xxf(s;Ws)gds+

Z t

0

@xf(s;Ws)dWs

= 1�
Z t

0

es=2 sin(Ws)dWs:

As es=2 sin(Ws) is measurable and adapted and

E

"Z T

0

���et=2 sin(Wt)
���2 dt# � E"Z T

0

etdt

#
� eTT <1;

we have that et=2 sin(Wt) 2 L2a;T and the Itô integral is a martingale.
(c) Zt =W 2

t � t; t 2 [0; T ] : Z is F-adapted by the same kind of reasoning as in section a:: Z
is integrable because

E[jZtj] � E[W 2
t ] + t = 2t <1:

To check the martingale property we could use Itô�s formula or the property that a
Brownian motion has independent increments.

E[ZtjFs] = E[W 2
t � tjFs] = E[(Wt �Ws +Ws)

2 jFs]� t
= E[(Wt �Ws)

2 jFs]� E[2(Wt �Ws)WsjFs] + E[W 2
s jFs]� t

= E[(Wt �Ws)
2
]� 2WsE[(Wt �Ws)jFs] +W 2

s � t
= t� s� 2WsE[(Wt �Ws)] +W

2
s � t =W 2

s � s = Zs;

where we have used that Wt�Ws is independent of Fs; that if V is independent of G one
has that E[V jG] = E[V ]; that Ws is Fs-measurable and that W is a centered process.

(d) Gt = eWt � 1 � 1
2

R t
0
eWsds; t 2 [0; T ] : G is F-adapted because eWt is �(Wt)-measurable

and �(Wt) � Ft: Moreover,
R t
0
eWsds is Ft measurable because (using the de�nition of

Riemann integrable function) is a P -a.s. limit of Ft-measurable random variables. In
other words, Gt only depends on the values of W up to time t: G is integrable because
Wt (and Ws) has moments exponential moments of all orders. The martingale property
follows by applying Itô�s formula to g(Wt) with the function g(x) = ex: Note, @tg =
0; @xg = @xxg = g: Hence,

g(Wt) = e
Wt = 1 +

Z t

0

eWsdWs +
1

2

Z t

0

eWsds;

which yields that Gt =
R t
0
eWsdWs: As eWt is measurable, adapted and

E

"Z T

0

��eWt
��2 dt# = Z T

0

E
�
e2Wt

�
dt =

Z T

0

e
4t
2 dt � e2TT <1:

Hence, eWt 2 L2a;T and Gt is a martingale (because the Itô integral of a process in L2a;T
is a martingale).

(e) Ht = exp
�R t

0
fsdWs � 1

2

R t
0
f2s ds

�
; t 2 [0; T ]; f 2 L2 ([0; T ]) deterministic: H is F-adapted

because exp(
R t
0
fsdWs) is Ft-measurable as the Itô integrals is an F-adapted process. By

exercise 3., the law of
R t
0
fsdWs is N

�
0;
R t
0
f2s ds

�
because f is deterministic and square

integrable. This yields that H is integrable. To check the martingale property we can
repeat the same arguments as in section a: or use Itô�s formula to h(x) = exp(x) applied
to the Itô process

R t
0
fsdWs � 1

2

R t
0
f2s ds:
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5. The square integrability ofM ensure that the conditional expectation exists. The result follows
using the basic properties of the conditional expectation and expanding (Mt�Ms)

2: We have
that

E[(Mt �Ms)
2jFs] = E

�
M2
t � 2MsMt +M

2
s jFs

�
= E

�
M2
t jFs

�
� 2MsE [MtjFs] +M2

s

= E
�
M2
t jFs

�
� 2M2

s +M
2
s

= E
�
M2
t �M2

s jFs
�
;

where we have used that Ms and M2
s are Fs-measurable and E [MtjFs] =Ms; the martingale

property of M:

6. Yt = '(Mt) where ' is a convex function and M is an F-martingale. Y is integrable by
assumption. Note that as ' is convex it is continuous and, hence, Borel measurable. Therefore,
Yt is �(Mt)-measurable and, asM is F-adapted, we have that Yt is Ft-measurable, which yields
that Y is F-adapted. Finally the submartingale property follows from the conditional Jensen�s
inequality and the fact that M is a martingale, i.e., if h(V ) 2 L1(
;F ; P ) and G is a sub-�-
algebra of F we have that E[h(V )jG] � h(E[V )jG]). Let�s write it:

E[YtjFs] = E['(Mt)jFs] � '(E[MtjFs]) = '(Ms) = Ys:

7. Let FX = fFXt = �(Xs : 0 � s � t)gt2R+ and GX = fFXt = �(Xv �Xu : 0 � u � v � t)gt2R+
the natural �ltrations generated by the process X and by the increments of the process X:
These �ltrations are actually the same because for any 0 � t1 � t2 � � � � � tn 2 R+; n 2 N;
we have that �(Xt1 ; Xt2 ; :::; Xtn) = �(Xt1 ; Xt2 � Xt1 ; :::; Xtn � Xtn�1) (note that there is a
bijection between these two vectors). The hypothesis in this problem is that the process X has
constant mean (E[Xt] = m; t 2 R+) and independent increments. The independent increments
property can be written as follows: for all s � t the random variable Xt �Xs is independent
of all random variables Xv � Xu with 0 � u � v � s: Therefore, we have that Xt � Xs is
independent of GXs : Hence,

E[Xt �XsjFXs ] = E[Xt �XsjGXs ] = E[Xt �Xs] = E[Xt]� E[Xs] = 0;

and we can conclude that X is a martingale (with respect to its natural �ltration FXt ).

8. Let X 2 Lp(
;F ; P ) for some p � 1 and F be a �ltration in the probability space (
;F ; P ):
Then Mt = E[XjFt] is a F-martingale. M is F-adapted by construction. We prove the p-th
integrability ofM (which implies the integrability ofM). It follows by the conditional Jensen�s
inequality applied to the convex function '(x) = jxjp, the conservation of expectation property
of the conditional expectation and the hypothesis X 2 Lp(
;F ; P );

E[jMtjp] = E[jE[XjFt]jp] � E[E[jXjp jFt]] = E[jXjp] <1:

The martingale property of M follows from the tower property of the conditional expectation

E[MtjFs] = E[E[XjFt]jFs] = E[XjFs] =Ms:

9. For this exercise I only give the solution. W = (W 1
t ;W

2
t ;W

3
t )t2R+ is a 3-dimensional Brownian

motion.

(a) u1(t;Wt) = 5 + 4t+ exp
�
3W 1

t

�
has the following Itô di¤erential

du1(t;Wt) = 3 exp
�
3W 1

t

�
dW 1

t +

�
4 +

9

2
exp

�
3W 1

t

��
dt;

u1(0; 0) = 5:

(b) u2(t;Wt) = (W
2
t )
2 + (W 3

t )
2 has the following Itô di¤erential

du2(t;Wt) = 2W 2
t dW

2
t + 2W

3
t dW

3
t + 2dt;

u2(0; 0) = 0:
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(c) u3(t;Wt) = log(u1(t;Wt)u2(t;Wt)) has the following Itô di¤erential

du3(t;Wt) =
3 exp

�
3W 1

t

�
5 + 4t+ exp (3W 1

t )
dW 1

t +
2W 2

t

(W 2
t )
2 + (W 3

t )
2
dW 2

t

+
2W 3

t

(W 2
t )
2 + (W 3

t )
2
dW 3

t +

(
4 + 9

2 exp
�
3W 1

t

�
5 + 4t+ exp (3W 1

t )

+
2

(W 2
t )
2 + (W 3

t )
2
� 9
2

exp
�
6W 1

t

�
(5 + 4t+ exp (3W 1

t ))
2

� 2(W
2
t )
2 + 2(W 3

t )
2

((W 2
t )
2 + (W 3

t )
2)
2

)
dt

10. Recall that a discrete time, integrable and fHngn�0-adapted process fZngn�0 is a fHng-
martingale if E[ZnjHn�1] = Zn�1 for all n � 1: Gn is fFng-adapted because Hi(Mi �Mi�1)
is Fi-measurable for 0 � i � n and, hence, Fn-measurable. Next step is to check that
E[jGnj] < 1 for all n � 1: We have, using the triangular inequality and the fact that M is
integrable because it is a martingale, that

E[jGnj] = E

"�����
nX
i=1

Hi(Mi �Mi�1)

�����
#
�

nX
i=1

E [jHi(Mi �Mi�1)j]

�
nX
i=1

CiE [j(Mi �Mi�1)j] �
nX
i=1

Ci fE [jMij] + E [jMi�1j]g

� 2 sup
0�i�n

E [jMij]
nX
i=1

Ci <1;

To check the martingale property we can write

E[GnjFn�1] = E

"
nX
i=1

Hi(Mi �Mi�1)jFn�1

#
= E [Gn�1 +Hn(Mn �Mn�1)jFn�1]
= Gn�1 +HnE [Mn �Mn�1jFn�1]
= Gn�1 + E [MnjFn�1]�Mn�1

= Gn�1 +Mn�1 �Mn�1 = Gn�1;

where we have used that Gn�1;Hn and Mn�1are Fn�1-measurable and M is a martingale.

11. In this exercise we have to �nd the Itô representation of some square integrable random
variables, that is, if F 2 L2(
;FT ; P ) there exists a process f 2 L2a;T such that F =

E[F ] +
R T
0
fsdWs:

(a) F1 =WT : We can write

WT =

Z T

0

dWt = 0 +

Z T

0

dWt = E[WT ] +

Z T

0

1dWt:

(b) F2 =W 2
T : We can use Itô�s formula to get that

W 2
T = W0 +

Z T

0

2

2
dt+

Z T

0

2WtdWt

= 0 + T +

Z T

0

2WtdWt = E[W 2
T ] +

Z T

0

2WtdWt:

(c) F3 = eWT : Here, the idea is to use that we know that f(t;Wt) = exp(Wt � t
2 ) is a

martingale so we can write it as an stochastic integral of some process in L2a;T : To �nd
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such a process we use Itô�s formula. We have that @tf(t; x) = � 1
2f(t; x) and @xf(t; x) =

@xxf(t; x) = f(t; x): Therefore,

exp (WT � T=2) = 1 +
Z T

0

exp (Wt � t=2) dWt;

which yields that

exp (WT ) = eT=2 + eT=2
Z T

0

exp (Wt � t=2) dWt

= E[exp (WT )] +

Z T

0

exp (Wt + (T � t)=2) dWt:

Note that eT=2 can go inside the stochastic integral because is deterministic.

(d) F4 =
R T
0
Wtdt: By the integration by parts formula one can write

TWT =

Z T

0

Wtdt+

Z T

0

tdWt;

which yieldsZ T

0

Wtdt = TWT �
Z T

0

tdWt = T

Z T

0

dWt �
Z T

0

tdWt

=

Z T

0

(T � t)dWt = E

"Z T

0

Wtdt

#
+

Z T

0

(T � t)dWt:

Note that E
hR T
0
Wtdt

i
=
R T
0
E [Wt] dt =

R T
0
0dt = 0:

(e) F6 =
R T
0
t2W 2

t dt: The idea is to consider the process Yt = W 2
t � t that we know it is a

martingale. By Itô�s formula we have that dYt = 2WtdWt: On the other hand consider
the process given by dXt = t2dt which is equal to Xt = t3

3 : Now, we can apply integration
by parts formula to the process XtYt; taking into account that d(Xt)d(Yt) = 0; to get

T 3

3
(W 2

T � T ) = XtYt = X0Y0 +

Z T

0

XtdYt +

Z T

0

YtdXt

= 0 +

Z T

0

2

3
t3WtdWt +

Z T

0

t2(W 2
t � t)dt

=

Z T

0

2

3
t3WtdWt +

Z T

0

t2W 2
t dt�

T 4

4
;

but note that
T 3

3
(W 2

T � T ) =
T 3

3

Z T

0

2WtdWt =

Z T

0

2

3
T 3WtdWt:

Hence, we get thatZ T

0

t2W 2
t dt =

T 4

4
+

Z T

0

2

3
T 3WtdWt �

Z T

0

2

3
t3WtdWt

= E

"Z T

0

t2W 2
t dt

#
+

Z T

0

2

3
(T 3 � t3)WtdWt;

because

E

"Z T

0

t2W 2
t dt

#
=

Z T

0

t2E
�
W 2
t

�
dt =

Z T

0

t3dt =
T 4

4
:
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12. P jFt and QjFt are probabilities on (
;Ft) that are constructed by considering the restriction
of P and Q; respectively, to Ft, that is, P jFt(A) = P (A) and QjFt(A) = Q(A); A 2 Ft. Hence,

A 2 Ft such that 0 = P jFt(A) = P (A) =)
Q�P

0 = Q(A) = QjFt(A);

and we get that QjFt � P jFt : De�ne ZT = dQ
dP and Zt = EP [ZT jFt]: By exercise 8., we know

that Z is a F-martingale. Moreover, for all A 2 Ft we have that

QjFt(A) = Q(A) = EQ[1A] = EP [ZT1A] = EP [E[ZT1AjFt]]
= EP [E[ZT jFt]1A] = EP [Zt1A] = EP jFt [Zt1A];

which yields that Zt =
dQjFt
dP jFt

; P jFt-a.s. Note that we have used that EP [X] = EP jFt [X] for
any X that is Ft-measurable. One can check this property by using the de�nitions of Lebesgue
integral and the fact that P jFt coincides with P on any Ft-measurable set. Finally, we have
to prove that Y is a martingale under Q () ZY is a martingale under P:

)) By exercise 32 in List 1 (see the solution of the optional exercise) We have that

EQ[YtjFs]EP [ZtjFs] = EP [ZtYtjFs]; s < t: (1)

Note that, as Y is a martingale under Q we get EQ[YtjFs] = Ys and as Z is a martingale under
P we get EP [ZtjFs] = Zs: Hence, the left hand side of equation (1) is equal to ZsYs and we
can conclude that ZY is a martingale under P:

()As ZY and Z are martingales under P; we get that EP [ZtYtjFs] = ZsYs and EP [ZtjFs] = Zs
and equation (1) is equal to

EQ[YtjFs]Zs = ZsYs () EQ[YtjFs] = Ys:

Therefore, we can conclude that Y is a martingale under Q:
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