Teacher: S. Ortiz-Latorre

Black-Scholes Model and Risk Neutral Pricing

- 1. See Benth's book: Exercise 4.4, page 137.
- 2. See Benth's book: page 113.
- 3. See Benth's book: Exercise 4.8, pages 140-141.
- 4. See Benth's book: Exercises 4.9 and 4.12, pages 142-143.
- 5. (a) Consider the process $Z_t = \log(S_t)$. Taking into account that $\partial_x \log(x) = 1/x$, $\partial_{xx} \log(x) = -1/x^2$ and

$$dS_t = S_t \mu(t) dt + S_t \sigma(t) dW_t,$$

$$(dS_t)^2 = S_t^2 \sigma^2(t) dt,$$

we can apply Itô's formula to get that

$$Z_{t} = \log(S_{0}) + \int_{0}^{t} \mu(s)ds + \int_{0}^{t} \sigma(s)dW_{s} - \frac{1}{2} \int_{0}^{t} \sigma^{2}(s)ds.$$

Taking the exponential we obtain the result

$$S_t = \exp(Z_t) = S_0 \exp\left(\int_0^t \mu(s)ds + \int_0^t \sigma(s)dW_s - \frac{1}{2}\int_0^t \sigma^2(s)ds\right).$$

(b) Consider the process

$$M_t = \exp\left(-\int_0^t \frac{\mu(s) - r(s)}{\sigma(s)} dW_s - \frac{1}{2} \int_0^t \left(\frac{\mu(s) - r(s)}{\sigma(s)}\right)^2 ds\right), \qquad t \in [0, T].$$

Note that, as $\min_{t \in [0,T]} \sigma(t) > \sigma^* > 0$, we have that $\frac{\mu(t) - r(t)}{\sigma(t)} \in L^2([0,T])$ and, by exercise 4. e) in List 2, M_t is a martingale under P. Alternatively, we can use Novikov's theorem because

$$\mathbb{E}\left[\exp\left(\frac{1}{2}\int_{0}^{T}\left(\frac{\mu(t)-r(t)}{\sigma(t)}\right)^{2}dt\right)\right]$$

$$=\exp\left(\frac{1}{2}\int_{0}^{T}\left(\frac{\mu(t)-r(t)}{\sigma(t)}\right)^{2}dt\right)<\infty,$$

due to the fact that $\mu(t), r(t)$ and $\sigma(t)$ are deterministic and $\frac{\mu(t)-r(t)}{\sigma(t)} \in L^2([0,T])$. Therefore, according to Girsanov's theorem, we can define a probability measure Q by considering the following Radon-Nikodym derivative with respect to P

$$\frac{dQ}{dP} = M_T = \exp\left(-\int_0^T \frac{\mu(t) - r(t)}{\sigma(t)} dW_t - \frac{1}{2} \int_0^T \left(\frac{\mu(t) - r(t)}{\sigma(t)}\right)^2 dt\right).$$

Note that, as $M_T > 0$, Q is actually equivalent to P. In addition, also by Girsanov's theorem, we have that the process

$$\tilde{W}_t = \int_0^t \frac{\mu(s) - r(s)}{\sigma(s)} ds + W_t,$$

is a Brownian motion under Q. Rewriting the dynamics of S_t in terms of \tilde{W} we get that

$$dS_t = S_t \mu(t) dt + S_t \sigma(t) dW_t$$

$$= S_t \mu(t) dt + S_t \sigma(t) \left(d\tilde{W}_t - \frac{\mu(t) - r(t)}{\sigma(t)} dt \right)$$

$$= S_t r(t) dt + S_t \sigma(t) d\tilde{W}_t.$$

Moreover, $B_t = \exp\left(\int_0^t r(d)ds\right)$ which yields $B_t^{-1} = \exp\left(-\int_0^t r(d)ds\right)$ and

$$dB_t^{-1} = -r(t)B_t^{-1}dt.$$

Hence, by the integration by parts formula, we have

$$d(\tilde{S}_{t}) = d(B_{t}^{-1}S_{t}) = B_{t}^{-1}dS_{t} + S_{t}dB_{t}^{-1} + \overbrace{(dB_{t}^{-1})(dS_{t})}^{=0}$$

$$= B_{t}^{-1}\left\{S_{t}r(t)dt + S_{t}\sigma(t)d\tilde{W}_{t}\right\} + S_{t}\left\{-r(t)B_{t}^{-1}dt\right\} = \tilde{S}_{t}\sigma(t)d\tilde{W}_{t}.$$

As \tilde{W} is a B.M. under Q, we get that

$$\tilde{S}_t = S_0 \exp\left(\int_0^t \sigma(s)d\tilde{W}_s - \frac{1}{2}\int_0^t \sigma^2(s)ds\right)$$

is a martingale under Q. Alternatively, one can prove that $\tilde{S}_t \sigma(t)$ belongs to $L_{a,T}^2$.

(c) By assumption, we have that $\tilde{V}_t(\phi)$ is a martingale under Q and $V_T(\phi) = \max(0, S_T - K)$. Hence,

$$\exp\left(-\int_0^t r(s)ds\right)V_t(\phi) = \tilde{V}_t(\phi) = \mathbb{E}_Q[\tilde{V}_T(\phi)|\mathcal{F}_t]$$
$$= \mathbb{E}_Q\left[\max(0, S_T - K)\exp\left(-\int_0^T r(s)ds\right)|\mathcal{F}_t\right],$$

which yields

$$V_t(\phi) = \mathbb{E}_Q \left[\max(0, S_T - K) \exp\left(-\int_t^T r(s) ds\right) | \mathcal{F}_t \right]. \tag{1}$$

Using the expression for S_t in section a) and rewriting it in terms of \tilde{W} we can write

$$S_T = S_t \exp\left(\int_t^T r(s)ds + \int_t^T \sigma(s)d\tilde{W}_s - \frac{1}{2}\int_t^T \sigma^2(s)ds\right),$$

or, alternatively,

$$S_T \exp\left(-\int_t^T r(s)ds\right) = S_t \exp\left(\int_t^T \sigma(s)d\tilde{W}_s - \frac{1}{2}\int_t^T \sigma^2(s)ds\right).$$

Plugging this expression in equation (1) we obtain

$$V_t(\phi) = \mathbb{E}_Q \left[\max \left(0, S_t \exp \left(\int_t^T \sigma(s) d\tilde{W}_s - \frac{1}{2} \int_t^T \sigma^2(s) ds \right) - K \exp \left(- \int_t^T r(s) ds \right) \right) | \mathcal{F}_t \right].$$

Recall the following general property of the conditional expectation. Let X be a \mathcal{G} -measurable random variable and Y be a random variable independent of \mathcal{G} , then for any Borel measurable function Ψ such that $\mathbb{E}[|\Psi(X,Y)|] < \infty$ we have that

$$\mathbb{E}\left[\Psi(X,Y)|\mathcal{G}\right] = \mathbb{E}\left[\Psi(x,Y)\right]|_{x=X}.$$

Applying this property to $\mathcal{G} = \mathcal{F}_t, X = S_t, Y = \exp\left(\int_t^T \sigma(s)d\tilde{W}_s\right)$ and

$$\Psi(x,y) = \max\left(0, x \exp\left(y - \frac{1}{2} \int_t^T \sigma^2(s) ds\right) - K \exp\left(-\int_t^T r(s) ds\right)\right),$$

we get $V_t(\phi) = F(t, S_t)$ where

$$F(t,x) = \mathbb{E}_Q \left[\max \left(0, x \exp \left(\int_t^T \sigma(s) d\tilde{W}_s - \frac{1}{2} \int_t^T \sigma^2(s) ds \right) - K \exp \left(- \int_t^T r(s) ds \right) \right) \right].$$

Note that $\mathbb{F}^W = \mathbb{F}^{\tilde{W}}$ and $\int_t^T \sigma(s) d\tilde{W}_s$ is independent of \mathcal{F}_t because \tilde{W} has independent increments under Q.

(d) In order to find an explicit expression for F(t,x), note that $\int_t^T \sigma(s) d\tilde{W}_s \sim \mathcal{N}(0, \int_t^T \sigma^2(s) ds)$ under Q. Define

$$\sigma^2(t,T) = \int_t^T \sigma^2(s)ds, \qquad r(t,T) = \int_t^T r(s)ds.$$

Then,

$$\begin{split} F(t,x) &= & \mathbb{E}_Q \left[\max \left(0, x \exp \left(\int_t^T \sigma(s) d\tilde{W}_s - \frac{1}{2} \sigma^2(t,T) \right) - K e^{-r(t,T)} \right) \right] \\ &= & e^{-r(t,T)} \mathbb{E}_Q \left[\max \left(0, \exp \left(\int_t^T \sigma(s) d\tilde{W}_s + \log(x) + r(t,T) - \frac{1}{2} \sigma^2(t,T) \right) - K \right) \right] \\ &= & e^{-r(t,T)} \mathbb{E}_Q \left[\max \left(0, Z - K \right) \right], \end{split}$$

where

$$\log(Z) \sim \mathcal{N}\left(\log(x) + r(t, T) - \frac{1}{2}\sigma^2(t, T), \sigma^2(t, T)\right),$$

under Q. Hence, we can use the Black-Scholes formulae to obtain

$$F(t,x) = x\Phi(d_1) - Ke^{-r(t,T)}\Phi(d_2),$$

with

$$\begin{array}{rcl} d_1 & = & \frac{\log\left(\frac{x}{K}\right) + r(t,T) + \frac{1}{2}\sigma^2(t,T)}{\sqrt{\sigma^2(t,T)}}, \\ d_2 & = & \frac{\log\left(\frac{x}{K}\right) + r(t,T) - \frac{1}{2}\sigma^2(t,T)}{\sqrt{\sigma^2(t,T)}} \end{array}$$

6. By the risk neutral pricing formula we get, as $\mathcal{F}_0 = \{\Omega, \emptyset\}$, that

$$\pi_0(H) = e^{-rT} \mathbb{E}_Q \left[\max \left(\left(\prod_{i=1}^n S_{t_i} \right)^{1/n} - K, 0 \right) \right],$$

where Q is the unique risk-neutral probability measure in the Black-Scholes model. That is, the probability measure given by

$$\frac{dQ}{dP} = \exp\left(-\frac{u-r}{\sigma}W_T - \left(\frac{u-r}{\sigma}\right)^2T\right).$$

Recall that S_t can be written as

$$S_t = S_0 \exp\left(\sigma \tilde{W}_t + \left(r - \frac{\sigma^2}{2}\right)t\right),$$

where \tilde{W} is a Brownian motion under Q. Moreover, we have the recursion

$$\begin{split} S_{t_i} &= S_0 \exp\left(\sigma \tilde{W}_{t_i} + \left(r - \frac{\sigma^2}{2}\right) t_i\right) \\ &= S_0 \exp\left(\sigma \tilde{W}_{t_{i-1}} + \left(r - \frac{\sigma^2}{2}\right) t_{i-1}\right) \\ &\times \exp\left(\sigma \left(\tilde{W}_{t_i} - \tilde{W}_{t_{i-1}}\right) + \left(r - \frac{\sigma^2}{2}\right) (t_i - t_{i-1})\right) \\ &= S_{t_{i-1}} \exp\left(\Delta \tilde{W}_i + \left(r - \frac{\sigma^2}{2}\right) \Delta t_i\right), \end{split}$$

where $\Delta \tilde{W}_i \triangleq \tilde{W}_{t_i} - \tilde{W}_{t_{i-1}}$ and $\Delta t_i \triangleq t_i - t_{i-1}$. Iterating this recursion we get

$$S_{t_i} = S_0 \prod_{k=1}^{i} \exp\left(\Delta \tilde{W}_k + \left(r - \frac{\sigma^2}{2}\right) \Delta t_k\right),\,$$

and

$$\prod_{i=1}^{n} S_{t_i} = S_0 \prod_{i=1}^{n} \prod_{k=1}^{i} \exp\left(\Delta \tilde{W}_k + \left(r - \frac{\sigma^2}{2}\right) \Delta t_k\right).$$

Taking logarithm we obtain

$$Z \triangleq \log\left(\left(\prod_{i=1}^{n} S_{t_i}\right)^{1/n}\right) = \log(S_0) + \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{i} \left\{\Delta \tilde{W}_k + \left(r - \frac{\sigma^2}{2}\right) \Delta t_k\right\}$$
$$= \log(S_0) + \frac{1}{n} \sum_{i=1}^{n} (n - i + 1) \Delta \tilde{W}_i + \frac{1}{n} \left(r - \frac{\sigma^2}{2}\right) \sum_{i=1}^{n} (n - i + 1) \Delta t_k.$$

Obviously, under Q, Z has normal distribution with

$$\mathbb{E}[Z] = \log(S_0) + \frac{1}{n} \left(r - \frac{\sigma^2}{2} \right) \sum_{i=1}^{n} (n - i + 1) \Delta t_k$$

and

$$\operatorname{Var}[Z] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}(n-i+1)\Delta \tilde{W}_{i}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}(n-i+1)^{2}\Delta t_{i},$$

where to compute the variance we have used that $\Delta \tilde{W}_i$ are independent of each other. Hence, we have reduced the problem to compute

$$\pi_0(H) = e^{-rT} \mathbb{E}\left[\max\left(e^Z - K, 0\right)\right],$$

where

$$Z \sim \mathcal{N}\left(\log(S_0) + \frac{1}{n}\left(r - \frac{\sigma^2}{2}\right)\sum_{i=1}^n (n-i+1)\Delta t_k, \frac{1}{n^2}\sum_{i=1}^n (n-i+1)^2 \Delta t_i\right).$$

A formula for this expectation is given in the solution of exercise 33 in List 1.

7. These contingent claims are examples of the so called *packages*, which are linear combinations of simpler options and positions in cash. Let $C(t, S_t; K)$ denote the arbitrage free price at time t of a call option with strike K (and exercise time T).

(a) The payoff $H_1 = \min(\max(S_T, K_1), K_2)$ with $K_2 > K_1 > 0$ can be rewritten as

$$H_1 = K_1 + \max(0, S_T - K_1) - \max(0, S_T - K_2).$$

Using the risk-neutral pricing formula we get that

$$\pi_{t}(H_{1}) = e^{-r(T-t)} \mathbb{E}_{Q}[H_{1}|\mathcal{F}_{t}]$$

$$= e^{-r(T-t)} \mathbb{E}_{Q}[K_{1} + \max(0, S_{T} - K_{1}) - \max(0, S_{T} - K_{2})|\mathcal{F}_{t}]$$

$$= e^{-r(T-t)} K_{1} + e^{-r(T-t)} \mathbb{E}_{Q}[\max(0, S_{T} - K_{1})|\mathcal{F}_{t}]$$

$$-e^{-r(T-t)} \mathbb{E}_{Q}[\max(0, S_{T} - K_{2})|\mathcal{F}_{t}]$$

$$= e^{-r(T-t)} K_{1} + C(t, S_{t}; K_{1}) - C(t, S_{t}; K_{2}).$$

(b) The payoff $H_2 = \max(S_T, S_0 e^{rT}) - K$, with K > 0 can be rewritten as

$$H_2 = \max(0, S_T - S_0 e^{rT}) + S_0 e^{rT} - K.$$

Using the risk-neutral pricing formula we get that

$$\pi_{t}(H_{2}) = e^{-r(T-t)} \mathbb{E}_{Q}[H_{2}|\mathcal{F}_{t}]$$

$$= e^{-r(T-t)} \mathbb{E}_{Q}[\max(0, S_{T} - S_{0}e^{rT}) + S_{0}e^{rT} - K|\mathcal{F}_{t}]$$

$$= e^{-r(T-t)} \mathbb{E}_{Q}[\max(0, S_{T} - S_{0}e^{rT})|\mathcal{F}_{t}] + e^{-r(T-t)} \left\{ S_{0}e^{rT} - K \right\}$$

$$= C(t, S_{t}; S_{0}e^{rT}) + S_{0}e^{rt} - e^{-r(T-t)}K.$$

8. See See Benth's book: pages 79-81.