Black-Scholes Model and Risk Neutral Pricing

1. See Benth's book: Exercise 4.4, page 137.
2. See Benth's book: page 113.
3. See Benth's book: Exercise 4.8, pages 140-141.
4. See Benth's book: Exercises 4.9 and 4.12, pages 142-143.
5. (a) Consider the process $Z_{t}=\log \left(S_{t}\right)$. Taking into account that $\partial_{x} \log (x)=1 / x, \partial_{x x} \log (x)=$ $-1 / x^{2}$ and

$$
\begin{aligned}
d S_{t} & =S_{t} \mu(t) d t+S_{t} \sigma(t) d W_{t} \\
\left(d S_{t}\right)^{2} & =S_{t}^{2} \sigma^{2}(t) d t
\end{aligned}
$$

we can apply Itô's formula to get that

$$
Z_{t}=\log \left(S_{0}\right)+\int_{0}^{t} \mu(s) d s+\int_{0}^{t} \sigma(s) d W_{s}-\frac{1}{2} \int_{0}^{t} \sigma^{2}(s) d s
$$

Taking the exponential we obtain the result

$$
S_{t}=\exp \left(Z_{t}\right)=S_{0} \exp \left(\int_{0}^{t} \mu(s) d s+\int_{0}^{t} \sigma(s) d W_{s}-\frac{1}{2} \int_{0}^{t} \sigma^{2}(s) d s\right)
$$

(b) Consider the process

$$
M_{t}=\exp \left(-\int_{0}^{t} \frac{\mu(s)-r(s)}{\sigma(s)} d W_{s}-\frac{1}{2} \int_{0}^{t}\left(\frac{\mu(s)-r(s)}{\sigma(s)}\right)^{2} d s\right), \quad t \in[0, T]
$$

Note that, as $\min _{t \in[0, T]} \sigma(t)>\sigma^{*}>0$, we have that $\frac{\mu(t)-r(t)}{\sigma(t)} \in L^{2}([0, T])$ and, by exercise 4. e) in List $2, M_{t}$ is a martingale under P. Alternatively, we can use Novikov's theorem because

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\frac{1}{2} \int_{0}^{T}\left(\frac{\mu(t)-r(t)}{\sigma(t)}\right)^{2} d t\right)\right] \\
= & \exp \left(\frac{1}{2} \int_{0}^{T}\left(\frac{\mu(t)-r(t)}{\sigma(t)}\right)^{2} d t\right)<\infty
\end{aligned}
$$

due to the fact that $\mu(t), r(t)$ and $\sigma(t)$ are deterministic and $\frac{\mu(t)-r(t)}{\sigma(t)} \in L^{2}([0, T])$. Therefore, according to Girsanov's theorem, we can define a probability measure Q by considering the following Radon-Nikodym derivative with respect to P

$$
\frac{d Q}{d P}=M_{T}=\exp \left(-\int_{0}^{T} \frac{\mu(t)-r(t)}{\sigma(t)} d W_{t}-\frac{1}{2} \int_{0}^{T}\left(\frac{\mu(t)-r(t)}{\sigma(t)}\right)^{2} d t\right)
$$

Note that, as $M_{T}>0, Q$ is actually equivalent to P. In addition, also by Girsanov's theorem, we have that the process

$$
\tilde{W}_{t}=\int_{0}^{t} \frac{\mu(s)-r(s)}{\sigma(s)} d s+W_{t}
$$

is a Brownian motion under Q. Rewriting the dynamics of S_{t} in terms of \tilde{W} we get that

$$
\begin{aligned}
d S_{t} & =S_{t} \mu(t) d t+S_{t} \sigma(t) d W_{t} \\
& =S_{t} \mu(t) d t+S_{t} \sigma(t)\left(d \tilde{W}_{t}-\frac{\mu(t)-r(t)}{\sigma(t)} d t\right) \\
& =S_{t} r(t) d t+S_{t} \sigma(t) d \tilde{W}_{t} .
\end{aligned}
$$

Moreover, $B_{t}=\exp \left(\int_{0}^{t} r(d) d s\right)$ which yields $B_{t}^{-1}=\exp \left(-\int_{0}^{t} r(d) d s\right)$ and

$$
d B_{t}^{-1}=-r(t) B_{t}^{-1} d t
$$

Hence, by the integration by parts formula, we have

$$
\begin{aligned}
d\left(\tilde{S}_{t}\right) & =d\left(B_{t}^{-1} S_{t}\right)=B_{t}^{-1} d S_{t}+S_{t} d B_{t}^{-1}+\overbrace{\left(d B_{t}^{-1}\right)\left(d S_{t}\right)}^{=0} \\
& =B_{t}^{-1}\left\{S_{t} r(t) d t+S_{t} \sigma(t) d \tilde{W}_{t}\right\}+S_{t}\left\{-r(t) B_{t}^{-1} d t\right\}=\tilde{S}_{t} \sigma(t) d \tilde{W}_{t} .
\end{aligned}
$$

As \tilde{W} is a B.M. under Q, we get that

$$
\tilde{S}_{t}=S_{0} \exp \left(\int_{0}^{t} \sigma(s) d \tilde{W}_{s}-\frac{1}{2} \int_{0}^{t} \sigma^{2}(s) d s\right)
$$

is a martingale under Q. Alternatively, one can prove that $\tilde{S}_{t} \sigma(t)$ belongs to $L_{a, T}^{2}$.
(c) By assumption, we have that $\tilde{V}_{t}(\phi)$ is a martingale under Q and $V_{T}(\phi)=\max \left(0, S_{T}-K\right)$. Hence,

$$
\begin{aligned}
\exp \left(-\int_{0}^{t} r(s) d s\right) V_{t}(\phi) & =\tilde{V}_{t}(\phi)=\mathbb{E}_{Q}\left[\tilde{V}_{T}(\phi) \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[\max \left(0, S_{T}-K\right) \exp \left(-\int_{0}^{T} r(s) d s\right) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

which yields

$$
\begin{equation*}
V_{t}(\phi)=\mathbb{E}_{Q}\left[\max \left(0, S_{T}-K\right) \exp \left(-\int_{t}^{T} r(s) d s\right) \mid \mathcal{F}_{t}\right] \tag{1}
\end{equation*}
$$

Using the expression for S_{t} in section a) and rewriting it in terms of \tilde{W} we can write

$$
S_{T}=S_{t} \exp \left(\int_{t}^{T} r(s) d s+\int_{t}^{T} \sigma(s) d \tilde{W}_{s}-\frac{1}{2} \int_{t}^{T} \sigma^{2}(s) d s\right)
$$

or, alternatively,

$$
S_{T} \exp \left(-\int_{t}^{T} r(s) d s\right)=S_{t} \exp \left(\int_{t}^{T} \sigma(s) d \tilde{W}_{s}-\frac{1}{2} \int_{t}^{T} \sigma^{2}(s) d s\right)
$$

Plugging this expression in equation (1) we obtain
$V_{t}(\phi)=\mathbb{E}_{Q}\left[\left.\max \left(0, S_{t} \exp \left(\int_{t}^{T} \sigma(s) d \tilde{W}_{s}-\frac{1}{2} \int_{t}^{T} \sigma^{2}(s) d s\right)-K \exp \left(-\int_{t}^{T} r(s) d s\right)\right) \right\rvert\, \mathcal{F}_{t}\right]$.

Recall the following general property of the conditional expectation. Let X be a \mathcal{G} measurable random variable and Y be a random variable independent of \mathcal{G}, then for any Borel measurable function Ψ such that $\mathbb{E}[|\Psi(X, Y)|]<\infty$ we have that

$$
\mathbb{E}[\Psi(X, Y) \mid \mathcal{G}]=\left.\mathbb{E}[\Psi(x, Y)]\right|_{x=X}
$$

Applying this property to $\mathcal{G}=\mathcal{F}_{t}, X=S_{t}, Y=\exp \left(\int_{t}^{T} \sigma(s) d \tilde{W}_{s}\right)$ and

$$
\Psi(x, y)=\max \left(0, x \exp \left(y-\frac{1}{2} \int_{t}^{T} \sigma^{2}(s) d s\right)-K \exp \left(-\int_{t}^{T} r(s) d s\right)\right)
$$

we get $V_{t}(\phi)=F\left(t, S_{t}\right)$ where
$F(t, x)=\mathbb{E}_{Q}\left[\max \left(0, x \exp \left(\int_{t}^{T} \sigma(s) d \tilde{W}_{s}-\frac{1}{2} \int_{t}^{T} \sigma^{2}(s) d s\right)-K \exp \left(-\int_{t}^{T} r(s) d s\right)\right)\right]$.
Note that $\mathbb{F}^{W}=\mathbb{F}^{\tilde{W}}$ and $\int_{t}^{T} \sigma(s) d \tilde{W}_{s}$ is independent of \mathcal{F}_{t} because \tilde{W} has independent increments under Q.
(d) In order to find an explicit expression for $F(t, x)$, note that $\int_{t}^{T} \sigma(s) d \tilde{W}_{s} \sim \mathcal{N}\left(0, \int_{t}^{T} \sigma^{2}(s) d s\right)$ under Q. Define

$$
\sigma^{2}(t, T)=\int_{t}^{T} \sigma^{2}(s) d s, \quad r(t, T)=\int_{t}^{T} r(s) d s
$$

Then,

$$
\begin{aligned}
F(t, x) & =\mathbb{E}_{Q}\left[\max \left(0, x \exp \left(\int_{t}^{T} \sigma(s) d \tilde{W}_{s}-\frac{1}{2} \sigma^{2}(t, T)\right)-K e^{-r(t, T)}\right)\right] \\
& =e^{-r(t, T)} \mathbb{E}_{Q}\left[\max \left(0, \exp \left(\int_{t}^{T} \sigma(s) d \tilde{W}_{s}+\log (x)+r(t, T)-\frac{1}{2} \sigma^{2}(t, T)\right)-K\right)\right] \\
& =e^{-r(t, T)} \mathbb{E}_{Q}[\max (0, Z-K)]
\end{aligned}
$$

where

$$
\log (Z) \sim \mathcal{N}\left(\log (x)+r(t, T)-\frac{1}{2} \sigma^{2}(t, T), \sigma^{2}(t, T)\right)
$$

under Q. Hence, we can use the Black-Scholes formulae to obtain

$$
F(t, x)=x \Phi\left(d_{1}\right)-K e^{-r(t, T)} \Phi\left(d_{2}\right)
$$

with

$$
\begin{aligned}
& d_{1}=\frac{\log \left(\frac{x}{K}\right)+r(t, T)+\frac{1}{2} \sigma^{2}(t, T)}{\sqrt{\sigma^{2}(t, T)}} \\
& d_{2}=\frac{\log \left(\frac{x}{K}\right)+r(t, T)-\frac{1}{2} \sigma^{2}(t, T)}{\sqrt{\sigma^{2}(t, T)}}
\end{aligned}
$$

6. By the risk neutral pricing formula we get, as $\mathcal{F}_{0}=\{\Omega, \varnothing\}$, that

$$
\pi_{0}(H)=e^{-r T} \mathbb{E}_{Q}\left[\max \left(\left(\prod_{i=1}^{n} S_{t_{i}}\right)^{1 / n}-K, 0\right)\right]
$$

where Q is the unique risk-neutral probability measure in the Black-Scholes model. That is, the probability measure given by

$$
\frac{d Q}{d P}=\exp \left(-\frac{u-r}{\sigma} W_{T}-\left(\frac{u-r}{\sigma}\right)^{2} T\right)
$$

Recall that S_{t} can be written as

$$
S_{t}=S_{0} \exp \left(\sigma \tilde{W}_{t}+\left(r-\frac{\sigma^{2}}{2}\right) t\right)
$$

where \tilde{W} is a Brownian motion under Q. Moreover, we have the recursion

$$
\begin{aligned}
S_{t_{i}}= & S_{0} \exp \left(\sigma \tilde{W}_{t_{i}}+\left(r-\frac{\sigma^{2}}{2}\right) t_{i}\right) \\
= & S_{0} \exp \left(\sigma \tilde{W}_{t_{i-1}}+\left(r-\frac{\sigma^{2}}{2}\right) t_{i-1}\right) \\
& \times \exp \left(\sigma\left(\tilde{W}_{t_{i}}-\tilde{W}_{t_{i-1}}\right)+\left(r-\frac{\sigma^{2}}{2}\right)\left(t_{i}-t_{i-1}\right)\right) \\
= & S_{t_{i-1}} \exp \left(\Delta \tilde{W}_{i}+\left(r-\frac{\sigma^{2}}{2}\right) \Delta t_{i}\right),
\end{aligned}
$$

where $\Delta \tilde{W}_{i} \triangleq \tilde{W}_{t_{i}}-\tilde{W}_{t_{i-1}}$ and $\Delta t_{i} \triangleq t_{i}-t_{i-1}$. Iterating this recursion we get

$$
S_{t_{i}}=S_{0} \prod_{k=1}^{i} \exp \left(\Delta \tilde{W}_{k}+\left(r-\frac{\sigma^{2}}{2}\right) \Delta t_{k}\right)
$$

and

$$
\prod_{i=1}^{n} S_{t_{i}}=S_{0} \prod_{i=1}^{n} \prod_{k=1}^{i} \exp \left(\Delta \tilde{W}_{k}+\left(r-\frac{\sigma^{2}}{2}\right) \Delta t_{k}\right)
$$

Taking logarithm we obtain

$$
\begin{aligned}
Z & \triangleq \log \left(\left(\prod_{i=1}^{n} S_{t_{i}}\right)^{1 / n}\right)=\log \left(S_{0}\right)+\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{i}\left\{\Delta \tilde{W}_{k}+\left(r-\frac{\sigma^{2}}{2}\right) \Delta t_{k}\right\} \\
& =\log \left(S_{0}\right)+\frac{1}{n} \sum_{i=1}^{n}(n-i+1) \Delta \tilde{W}_{i}+\frac{1}{n}\left(r-\frac{\sigma^{2}}{2}\right) \sum_{i=1}^{n}(n-i+1) \Delta t_{k}
\end{aligned}
$$

Obviously, under Q, Z has normal distribution with

$$
\mathbb{E}[Z]=\log \left(S_{0}\right)+\frac{1}{n}\left(r-\frac{\sigma^{2}}{2}\right) \sum_{i=1}^{n}(n-i+1) \Delta t_{k}
$$

and

$$
\operatorname{Var}[Z]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n}(n-i+1) \Delta \tilde{W}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n}(n-i+1)^{2} \Delta t_{i},
$$

where to compute the variance we have used that $\Delta \tilde{W}_{i}$ are independent of each other. Hence, we have reduced the problem to compute

$$
\pi_{0}(H)=e^{-r T} \mathbb{E}\left[\max \left(e^{Z}-K, 0\right)\right]
$$

where

$$
Z \sim \mathcal{N}\left(\log \left(S_{0}\right)+\frac{1}{n}\left(r-\frac{\sigma^{2}}{2}\right) \sum_{i=1}^{n}(n-i+1) \Delta t_{k}, \frac{1}{n^{2}} \sum_{i=1}^{n}(n-i+1)^{2} \Delta t_{i}\right)
$$

A formula for this expectation is given in the solution of exercise 33 in List 1.
7. These contingent claims are examples of the so called packages, which are linear combinations of simpler options and positions in cash. Let $C\left(t, S_{t} ; K\right)$ denote the arbitrage free price at time t of a call option with strike K (and exercise time T).
(a) The payoff $H_{1}=\min \left(\max \left(S_{T}, K_{1}\right), K_{2}\right)$ with $K_{2}>K_{1}>0$ can be rewritten as

$$
H_{1}=K_{1}+\max \left(0, S_{T}-K_{1}\right)-\max \left(0, S_{T}-K_{2}\right) .
$$

Using the risk-neutral pricing formula we get that

$$
\begin{aligned}
\pi_{t}\left(H_{1}\right)= & e^{-r(T-t)} \mathbb{E}_{Q}\left[H_{1} \mid \mathcal{F}_{t}\right] \\
= & e^{-r(T-t)} \mathbb{E}_{Q}\left[K_{1}+\max \left(0, S_{T}-K_{1}\right)-\max \left(0, S_{T}-K_{2}\right) \mid \mathcal{F}_{t}\right] \\
= & e^{-r(T-t)} K_{1}+e^{-r(T-t)} \mathbb{E}_{Q}\left[\max \left(0, S_{T}-K_{1}\right) \mid \mathcal{F}_{t}\right] \\
& -e^{-r(T-t)} \mathbb{E}_{Q}\left[\max \left(0, S_{T}-K_{2}\right) \mid \mathcal{F}_{t}\right] \\
= & e^{-r(T-t)} K_{1}+C\left(t, S_{t} ; K_{1}\right)-C\left(t, S_{t} ; K_{2}\right) .
\end{aligned}
$$

(b) The payoff $H_{2}=\max \left(S_{T}, S_{0} e^{r T}\right)-K$, with $K>0$ can be rewritten as

$$
H_{2}=\max \left(0, S_{T}-S_{0} e^{r T}\right)+S_{0} e^{r T}-K .
$$

Using the risk-neutral pricing formula we get that

$$
\begin{aligned}
\pi_{t}\left(H_{2}\right) & =e^{-r(T-t)} \mathbb{E}_{Q}\left[H_{2} \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} \mathbb{E}_{Q}\left[\max \left(0, S_{T}-S_{0} e^{r T}\right)+S_{0} e^{r T}-K \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} \mathbb{E}_{Q}\left[\max \left(0, S_{T}-S_{0} e^{r T}\right) \mid \mathcal{F}_{t}\right]+e^{-r(T-t)}\left\{S_{0} e^{r T}-K\right\} \\
& =C\left(t, S_{t} ; S_{0} e^{r T}\right)+S_{0} e^{r t}-e^{-r(T-t)} K .
\end{aligned}
$$

8. See See Benth's book: pages 79-81.
