Introduction and Techniques
in Financial Mathematics
UiO-STK4510
Autumn 2015
Teacher: S. Ortiz-Latorre

Solution Compulsory Exercise

Task 2

In this task you will do some computations on one of the first models for stochastic interest rates. Consider the process $\left\{r_{t}\right\}_{t \in \mathbb{R}_{+}}$given by the stochastic differential equation (s.d.e)

$$
\begin{equation*}
d r_{t}=k\left(\theta-r_{t}\right) d t+\sigma d W_{t}, \quad r_{0} \in \mathbb{R}_{+}, \tag{1}
\end{equation*}
$$

where k, θ and σ are strictly positive constants and W is a standard Brownian motion.
a) First find the solution $\left\{Z_{t}\right\}_{t \in \mathbb{R}_{+}}$of the s.d.e.

$$
d Z_{t}=-a Z_{t} d t+\sigma d W_{t}, \quad Z_{0} \in \mathbb{R}
$$

as a function to the initial condition Z_{0}, where a and σ are strictly positive constants.
b) For any $\beta \in \mathbb{R}$ define the process $Y_{t}=Z_{t}+\beta$. Find the s.d.e. satisfied by Y. Choosing appropriately the parameters $a \in \mathbb{R}_{+}$and $\beta \in \mathbb{R}$, find the solution $\left\{r_{t}\right\}_{t \in \mathbb{R}_{+}}$of the s.d.e. (1).
c) Compute $\mathbb{E}\left[r_{t}\right]$ and $\operatorname{Var}\left[r_{t}\right]$. What is the law of r_{t} ?
d) r_{t} takes negative values with strict probability and, therefore, it is not a good model for interest rates. A possible solution is to consider $R_{t}=\exp \left(r_{t}\right)$. Compute the dynamics of R_{t}, i.e., find the s.d.e. describing the evolution of R_{t}

Solution Task 2

a) We consider the integrating factor $e^{a t}$, that is, let $X_{t}=e^{a t} Z_{t}$. By the integration by parts formula, and taking into account that $\left(d e^{a t}\right)\left(d Z_{t}\right)=0$, we get that

$$
\begin{aligned}
d X_{t} & =d\left(e^{a t} Z_{t}\right)=e^{a t} d Z_{t}+Z_{t} d\left(e^{a t}\right)+\left(d e^{a t}\right)\left(d Z_{t}\right) \\
& =e^{a t}\left\{-a Z_{t} d t+\sigma d W_{t}\right\}+Z_{t} a e^{a t} d t+0 \\
& =\left\{-a e^{a t} Z_{t}+a e^{a t} Z_{t}\right\} d t+e^{a t} \sigma d W_{t} \\
& =e^{a t} \sigma d W_{t},
\end{aligned}
$$

or, in integral form,

$$
e^{a t} Z_{t}=X_{t}=Z_{0}+\int_{0}^{t} \sigma e^{a s} d W_{s}
$$

which yields the following explicit expression for Z_{t}

$$
Z_{t}=Z_{0} e^{-a t}+e^{-a t} \int_{0}^{t} \sigma e^{a s} d W_{s}
$$

b) $Y=\left\{Y_{t}\right\}_{t \in \mathbb{R}_{+}}$satifies the following s.d.e.

$$
\begin{aligned}
d Y_{t} & =d\left(Z_{t}+\beta\right)=d Z_{t}=-a Z_{t} d t+\sigma d W_{t} \\
& =-a\left(Y_{t}-\beta\right) d t+\sigma d W_{t} \\
& =a\left(\beta-Y_{t}\right) d t+\sigma d W_{t}, \\
Y_{0} & =Z_{0}+\beta .
\end{aligned}
$$

If we choose $a=k$ and $\beta=\theta$ and $Z_{0}=r_{0}-\beta=r_{0}-\theta$, we get that the s.d.e. satisfied by Y is the same as the s.d.e. satisfied by $r=\left\{r_{t}\right\}_{t \in \mathbb{R}_{+}}$. As this s.d.e. satisfies the conditions to get a unique strong solution we get that

$$
\begin{aligned}
r_{t} & =Y_{t}=Z_{t}+\beta=\beta+Z_{0} e^{-a t}+e^{-a t} \int_{0}^{t} \sigma e^{a s} d W_{s} \\
& =\theta+\left(r_{0}-\theta\right) e^{-k t}+e^{-k t} \int_{0}^{t} \sigma e^{k s} d W_{s} \\
& =r_{0} e^{-k t}+\theta\left(1-e^{-k t}\right)+e^{-k t} \int_{0}^{t} \sigma e^{k s} d W_{s} .
\end{aligned}
$$

c) As for all $t \geq 0$ we have that $\sigma e^{k s} \in L_{a, t}^{2}$, we get that

$$
\mathbb{E}\left[\int_{0}^{t} \sigma e^{k s} d W_{s}\right]=0
$$

and by the Itô isometry

$$
\mathbb{E}\left[\left(\int_{0}^{t} \sigma e^{k s} d W_{s}\right)^{2}\right] \mathbb{E}\left[\int_{0}^{t} \sigma^{2} e^{2 k s} d s\right]=\frac{\sigma^{2}}{2 k}\left(e^{2 k t}-1\right)
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}\left[r_{t}\right] & =r_{0} e^{-k t}+\theta\left(1-e^{-k t}\right)+e^{-k t} \mathbb{E}\left[\int_{0}^{t} \sigma e^{k s} d W_{s}\right] \\
& =r_{0} e^{-k t}+\theta\left(1-e^{-k t}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Var}\left[r_{t}\right] & =\mathbb{E}\left[\left(r_{t}-\mathbb{E}\left[r_{t}\right]\right)^{2}\right]=\mathbb{E}\left[\left(e^{-k t} \int_{0}^{t} \sigma e^{k s} d W_{s}\right)^{2}\right] \\
& =e^{-2 k t} \frac{\sigma^{2}}{2 k}\left(e^{2 k t}-1\right)=\frac{\sigma^{2}}{2 k}\left(1-e^{-2 k t}\right)
\end{aligned}
$$

d) Applying Itô formula to $R_{t}=f\left(r_{t}\right)=\exp \left(r_{t}\right)$, taking into account that,

$$
\begin{gathered}
r_{t}=\log \left(R_{t}\right), \\
f^{\prime}(x)=f^{\prime \prime}(x)=f(x),
\end{gathered}
$$

and that

$$
\left(d r_{t}\right)^{2}=\left(k\left(\theta-r_{t}\right) d t+\sigma d W_{t}\right)^{2}=\sigma^{2} d t
$$

by the product rule of Itô differentials, we obtain

$$
\begin{aligned}
d R_{t} & =d f\left(r_{t}\right)=f^{\prime}\left(r_{t}\right) d r_{t}+\frac{1}{2} f^{\prime \prime}\left(r_{t}\right)\left(d r_{t}\right)^{2} \\
& =\exp \left(r_{t}\right) d r+\frac{1}{2} \exp \left(r_{t}\right)\left(d r_{t}\right)^{2} \\
& =R_{t}\left\{k\left(\theta-r_{t}\right) d t+\sigma d W_{t}\right\}+\frac{\sigma^{2}}{2} R_{t} d t \\
& =R_{t}\left\{k\left(\theta-\log \left(R_{t}\right)\right)+\frac{\sigma^{2}}{2}\right\} d t+\sigma R_{t} d W_{t}
\end{aligned}
$$

Task 3

In this task you will work on the relationship between a call option and a put option on the same asset, with the same strike and with the same exercise time. Recall that a call option is a contingent claim H_{1} with $H_{1}=h_{1}\left(S_{T}\right)=\max \left(0, S_{T}-K\right)$. A put option is a contingent claim H_{2} with $H_{2}=h_{2}\left(S_{T}\right)=\max \left(0, K-S_{T}\right)$.
a) Let C_{t} and P_{t} denote the price at time t of a call option and a put option with the same strike price K and exercise time T. Assume that those contingent claims are traded in the market in addition to the riskless asset and risky asset S_{t}. Assuming only that there are no arbitrage oportunities in the market (we do not specify any particular dynamics for S), deduce that

$$
\begin{equation*}
C_{t}-P_{t}=S_{t}-e^{-r(T-t)} K, \quad 0 \leq t \leq T \tag{2}
\end{equation*}
$$

b) Assume now that we are in the Black-Scholes model. Use the Black-Scholes formula for pricing contingent claims of the form $h\left(S_{T}\right)$ to compute the price of a put option P_{t} and its hedging strategy. Compute also the greeks.
c) Check that formula (2) holds in the Black-Scholes model.

Solution Task 3

a) If at time t we buy a put option, sell a call option and buy one unit of the risky asset (one share of the stock) we have a portfolio with value

$$
P_{t}-C_{t}+S_{t}
$$

This portfolio, will have the following value at time T,

$$
\max \left(K-S_{T}, 0\right)-\max \left(S_{T}-K, 0\right)+S_{T}=\left\{\begin{array}{cll}
0-\left(S_{T}-K\right)+S_{T} & \text { if } & S_{T} \geq K \\
K-S_{T}-0+S_{T} & \text { if } & S_{T}<K
\end{array}=K\right.
$$

Hence, we have a replicating portolio made of calls, puts and risky asset for the constant claim K at time T. But on the other hand, we can construct a replicating portfolio for the constant claim K at time T by investing solely on the riskless asset at time t the amount $K e^{-r(T-t)}$. As we have assumed that there are no arbitrage opportunities in the market the t arbitrage free price of both porfolios (that replicate the same contingent claim K) must coincide and this yields that

$$
P_{t}-C_{t}+S_{t}=K e^{-r(T-t)}
$$

and reordering the terms in the equation we get

$$
C_{t}-P_{t}=S_{t}-K e^{-r(T-t)}
$$

b) The price process $\pi_{t}(H)$ of a contingent claim $H=h\left(S_{T}\right)$ is given by

$$
\pi_{t}(H)=f\left(t, S_{t}\right)
$$

and the hedging strategy is given by

$$
\left(\phi_{t}^{0}, \phi_{t}^{1}\right)=\left(e^{-r t}\left\{f\left(t, S_{t}\right)-S_{t} \frac{\partial f}{\partial x}\left(t, S_{t}\right)\right\}, \frac{\partial f}{\partial x}\left(t, S_{t}\right)\right), \quad t \in[0, T]
$$

where

$$
f(t, x)=e^{-r(T-t)} \mathbb{E}\left[h\left(Z_{T}^{t, x}\right)\right]
$$

and $\log Z_{T}^{t, x} \sim \mathcal{N}\left(\log (x)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t), \sigma^{2}(T-t)\right)$. In what follows, let

$$
\begin{aligned}
\phi(y) & \triangleq \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right), \\
\Phi(y) & \triangleq \int_{-\infty}^{y} \phi(x) d x \\
d_{1}(x) & \triangleq \frac{\log (x / K)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
d_{2}(x) & \triangleq \frac{\log (x / K)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} .
\end{aligned}
$$

The following relations will be useful afterwards

$$
\begin{aligned}
\phi(y) & =\phi(-y), \\
\Phi(y)+\Phi(-y) & =1 \\
d_{1}(x)-d_{2}(x) & =\sigma \sqrt{T-t}, \\
d_{1}^{\prime}(x) & =d_{2}^{\prime}(x)=\frac{1}{x \sigma \sqrt{T-t}}, \\
\frac{\phi\left(d_{1}(x)\right)}{\phi\left(d_{2}(x)\right)} & =\frac{K e^{-r(T-t)}}{x}
\end{aligned}
$$

In the case of a put option we have $H_{2}=h_{2}\left(S_{T}\right)=\max \left(0, K-S_{T}\right)$ and, therefore,

$$
\begin{aligned}
f(t, x) & =e^{-r(T-t)} \mathbb{E}\left[h_{2}\left(Z_{T}^{t, x}\right)\right]=e^{-r(T-t)} \mathbb{E}\left[\max \left(0, K-Z_{T}^{t, x}\right)\right]=e^{-r(T-t)} \mathbb{E}\left[\left(K-Z_{T}^{t, x}\right) \mathbf{1}_{\left\{Z_{T}^{t, x} \leq K\right\}}\right] \\
& =K e^{-r(T-t)} \mathbb{E}\left[\mathbf{1}_{\left\{Z_{T}^{t, x} \leq K\right\}}\right]-e^{-r(T-t)} \mathbb{E}\left[Z_{T}^{t, x} \mathbf{1}_{\left\{Z_{T}^{t, x} \leq K\right\}}\right] \triangleq A_{1}-A_{2}
\end{aligned}
$$

In order to express the results in terms of the distribution function of the standard normal law, we note that the random variable

$$
Y \triangleq \frac{\log \left(Z_{T}^{t, x}\right)-\log (x)-\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

has a $\mathcal{N}(0,1)$ law. To compute A_{1} note that $Z_{T}^{t, x} \leq K$ if and only if

$$
Y=\frac{\log \left(Z_{T}^{t, x}\right)-\log (x)-\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \leq-d_{2}(x)
$$

Hence,

$$
\begin{aligned}
A_{1} & =K e^{-r(T-t)} \mathbb{E}\left[\mathbf{1}_{\left\{Z_{T}^{t, x} \leq K\right\}}\right]=K e^{-r(T-t)} \mathbb{E}\left[\mathbf{1}_{\left\{Y \leq-d_{2}(x)\right\}}\right] \\
& =K e^{-r(T-t)} \int_{-\infty}^{+\infty} \mathbf{1}_{\left\{Y \leq-d_{2}(x)\right\}} \phi(y) d y=K e^{-r(T-t)} \int_{-\infty}^{-d_{2}(x)} \phi(y) d y \\
& =K e^{-r(T-t)} \Phi\left(-d_{2}(x)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
A_{2} & =e^{-r(T-t)} \mathbb{E}\left[\exp \left(\log \left(Z_{T}^{t, x}\right)\right) \mathbf{1}_{\left\{Z_{T}^{t, x} \leq K\right\}}\right] \\
& =e^{-r(T-t)} \mathbb{E}\left[\exp \left(\log (x)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)+Y \sigma \sqrt{T-t}\right) \mathbf{1}_{\left\{Y \leq-d_{2}(x)\right\}}\right] \\
& =x \int_{-\infty}^{+\infty} \exp \left(-\frac{\sigma^{2}}{2}(T-t)+y \sigma \sqrt{T-t}\right) \mathbf{1}_{\left\{y \leq-d_{2}(x)\right\}} \phi(y) d y \\
& =x \int_{-\infty}^{-d_{2}(x)} \phi(y-\sigma \sqrt{T-t}) d y=x \int_{-\infty}^{-d_{2}(x)-\sigma \sqrt{T-t}} \phi(z) d z \\
& =x \int_{-\infty}^{-d_{1}(x)} \phi(z) d z=x \Phi\left(-d_{1}(x)\right)
\end{aligned}
$$

and we obtain

$$
f(t, x)=K e^{-r(T-t)} \Phi\left(-d_{2}(x)\right)-x \Phi\left(-d_{1}(x)\right)
$$

Therefore, the price of a put at time t is equal to

$$
\pi_{t}\left(H_{2}\right)=f\left(t, S_{t}\right)=K e^{-r(T-t)} \Phi\left(-d_{2}\left(S_{t}\right)\right)-S_{t} \Phi\left(-d_{1}\left(S_{t}\right)\right)
$$

Moreover, note that if (ϕ^{0}, ϕ^{1}) is the hedging strategy then

$$
\phi_{t}^{0} e^{r t}+\phi_{t}^{1} S_{t}=V_{t}(\phi)=\pi_{t}(H)=f\left(t, S_{t}\right)=K e^{-r(T-t)} \Phi\left(-d_{2}\left(S_{t}\right)\right)-S_{t} \Phi\left(-d_{1}\left(S_{t}\right)\right)
$$

and equating the coefficients for S_{t} and $e^{r t}$ we get

$$
\begin{aligned}
\phi_{t}^{0} & =-\Phi\left(-d_{1}\left(S_{t}\right)\right) \\
\phi_{t}^{1} & =K e^{-r T} \Phi\left(-d_{2}\left(S_{t}\right)\right)
\end{aligned}
$$

Alternatively, we can compute the derivative of $f(t, x)$ with respect to x,

$$
\begin{aligned}
\frac{\partial f}{\partial x}(t, x) & =-K e^{-r(T-t)} \phi\left(-d_{2}(x)\right) d_{2}^{\prime}(x)-\left\{\Phi\left(-d_{1}(x)\right)-x \phi\left(-d_{1}(x)\right) d_{1}^{\prime}(x)\right\} \\
& =-\frac{K e^{-r(T-t)} \phi\left(d_{2}(x)\right)}{x \sigma \sqrt{T-t}}-\Phi\left(-d_{1}(x)\right)+\frac{\phi\left(d_{1}(x)\right)}{\sigma \sqrt{T-t}} \\
& =-\Phi\left(-d_{1}(x)\right)+\frac{1}{\sigma \sqrt{T-t}}\left\{\phi\left(d_{1}(x)\right)-\frac{K e^{-r(T-t)} \phi\left(d_{2}(x)\right)}{x}\right\} \\
& =-\Phi\left(-d_{1}(x)\right)
\end{aligned}
$$

which yields $\phi_{t}^{1}=-\Phi\left(-d_{1}\left(S_{t}\right)\right)$ and

$$
\phi_{t}^{0}=e^{-r t}\left\{f\left(t, S_{t}\right)-S_{t} \frac{\partial f}{\partial x}\left(t, S_{t}\right)\right\}=K e^{-r T} \Phi\left(-d_{2}\left(S_{t}\right)\right)
$$

The computation of the Greeks is an exercise on taking derivatives. The results are:

$$
\begin{aligned}
\Delta & =\frac{\partial f}{\partial S_{t}}\left(t, S_{t}\right)=-\Phi\left(-d_{1}\left(S_{t}\right)\right) \\
\Gamma & =\frac{\partial^{2} f}{\partial S_{t}^{2}}\left(t, S_{t}\right)=\frac{\phi\left(d_{1}\right)}{S_{t} \sigma \sqrt{T-t}}, \\
\Theta & =\frac{\partial f}{\partial t}\left(t, S_{t}\right)=r e^{-r(T-t)} K \Phi\left(-d_{2}\right)-\frac{\sigma S_{t} \phi\left(d_{1}\right)}{2 \sqrt{T-t}} \\
& =K e^{-r(T-t)}\left\{r \Phi\left(-d_{2}\right)-\phi\left(d_{2}\right) \frac{\sigma}{2 \sqrt{T-t}}\right\} \\
\rho & =\frac{\partial f}{\partial r}\left(t, S_{t}\right)=-(T-t) e^{-r(T-t)} K \Phi\left(-d_{2}\right) \\
\frac{\partial f}{\partial \sigma}\left(t, S_{t}\right) & =\sqrt{T-t} S_{t} \phi\left(d_{1}\right) \\
& =K e^{-r(T-t)} \phi\left(d_{2}\right) \sqrt{T-t}
\end{aligned}
$$

c) In the Black-Scholes model, the price of a call is

$$
C_{t}=S_{t} \Phi\left(d_{1}\left(S_{t}\right)\right)-e^{-r(T-t)} K \Phi\left(d_{2}\left(S_{t}\right)\right)
$$

and the price of a put is

$$
P_{t}=K e^{-r(T-t)} \Phi\left(-d_{2}(x)\right)-S_{t} \Phi\left(-d_{1}\left(S_{t}\right)\right)
$$

Hence,

$$
\begin{aligned}
C_{t}-P_{t} & =S_{t}\left\{\Phi\left(d_{1}\left(S_{t}\right)\right)+\Phi\left(-d_{1}\left(S_{t}\right)\right\}-e^{-r(T-t)} K\left\{\Phi\left(d_{2}\left(S_{t}\right)+\Phi\left(-d_{2}(x)\right)\right\}\right.\right. \\
& =S_{t}-e^{-r(T-t)} K
\end{aligned}
$$

because for any $x \in \mathbb{R}$ we have that $\Phi(x)+\Phi(-x)=1$.

