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Solution Optional Exercise

Problem 1 Let X ~ N (u,0?) defined on some probability space (2, F, P).
1. Compute (0) = E[e?X] for § € R.

2. Define L(X;0) := X /1(0) and show that Qa(A) = E[L(X;0)14], A € F defines a probability
measure on (2, F).

3. Show that Qg < P.
4. Find the law of X under Qg, that is, the law of X as a random variable defined on (2, F,Qq).
5. Let G be a sub-c-algebra of F. Show that for any Y € L*(Q, F,Qy) one has that

E[Y L(X;0)|G]

%o 9= T yig]

Qg-a.s.

Solution

1. As X ~ N(u,0?) we know that Py < ) and its density is given by

Py 1 exp<_(‘r—/f‘)2>.

d\ ( )_ \/27‘(‘0’2 20'2

Hence, using the image measure theorem, we have that
P(0) = E[eX] = / e’*dp = / ef® L exp —M X
Q R V2702 202

+o00 2
1 (x —p)
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B /_Oo © 202 exp( 202 )dw.

Note that
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= - ( 952 ) + 1l + 5 (1)

Therefore,

2 2
)dm—exp(u@—i—g; )s

0% [t 1 (z — (1 + 602))°
P(0) = exp(ud + ?) . Vorg? exp <_ 952

because the integral is equal to one (we are integrating the density of a N'(u + 00?2, 0?)).
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2. By construction L(X;6) > 0 and E[L(X;0)] = ﬁE[eeX] = % = 1. Let’s check that
Qo(A) := E[L(X;0)14],YA € F defines a probability measure on (2, F), that is, we have to
0) and Qg(2) = 1.

check that Qy is a measure (positivity, o-additivity and Qy(2) =

(a) Qo(Q?) = B[L(X;0)10] = E[L(X;0)] =

(b) (positivity) That Qg(A) > 0 follows from the monotonicity of the expectation (if Z > 0, P-
a.s then E[Z] > 0) and the fact that L(X;6)14 > 0, P-a.s..

(c) (o-additivity) Let {A,},>1 pairwise disjoint. Note that 1y, ., 4, = > ,~; 14,, because
the events are pairwise disjoint. Moreover, S,, = > | L(X ;_0)1 A, M > 1 is a sequence

converging P-a.s. to Y% L(X;60)14,, which is dominated by L(X;0) € L'(Q,F, P),

ie.,

a;

+oo

D L(X;0)1a,

n=1

< L(X;0), P-as.

Therefore, we can apply the dominated convergence theorem to get

Qo (Unz14n) = BIL(X;0)10,.,4,] =BIL(X;0) ) 14,]=E "}I_{HOOZ (X;0)14,]
n>1 n=1

= Jim 3 B0 = i 30 Qo (40) =300 (4
n=1 ot

The o-additivity can also be proved using the monotone convergence theorem or even the
Tonelli-Hobson (Fubini) theorem.

(d) As Qg is o-additive then is additive and we have that 1 = Qy(Q) = Qo(Q U @) =
Qo(Q) + Qo(2) = 1 + Qp(), which yields that Qp(&) = 0. Alternatively, using that
L(X;6)14 =0, P-a.s. we get that Qp(2) = E[L(X;0)15] = E[0] = 0.

3. To prove that Qp < P we must show that : VA € F with P(A) = 0 we have that Qg(A) = 0.
Therefore, assume that A € F and P(A) = 0, by definition

Qo(A) = B[L(X;0)14] = E[0] = 0,

where we have used that L(X;0)14 = 0, P-a.s. and the integral of P-a.s. equal integrands

coincide. Alternatively, we could have used the Radon-Nikodym theorem which states that

Qo < P iff there exists a random variable % > 0, P-a.s. such that Qg(A fQ d%’ 14dP =

E[?—PS 14]. Obviously,by construction, L(X;0) is a version of %.

4. The law of X under @y is the image measure of QQy by X, which is a probability measure on
(R, B(R)) that we will denote by Qg x. For all A € B(R), we have that

Qo,x (A)

Qg(Xil(A)) / L(X;0)1x- 1(A)dp / 0)1 4dPx
_ [y, (-’
~Ja 7/’(9 / Y(0 271'02 ( 202 > i\
92 2 1 _ 2
= /Aexp (933 — b — 20 ) Wexp (—W) dx

1 (z— (,u—|—902))2
/A 53 exp (— = dx

where we have used the definition of image measure, the definition of )y, the image measure
theorem, the definition of L(X;6), that Px < X with density of a A'(i,0?) and equality (1).
Hence, for all A € B(R), we have that

_ 02 2
Q)= [ s e <— S ) da,
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which shows that dee)\’X is the density of a normal distribution of mean p + #o? and variance
0% and we can conclude that, under Qp, X ~ N(u + 0o% 0%). This a very basic version of
Girsanov’s theorem.

. By assumption Y € L'(Q, F,Qp) and, therefore, Eqg,[Y|G] exists. Next, we must show that
the right hand side of the equality is well defined. First note that E[|L(X;0)|] = E[L(X;0)] =
1, which yields that L(X;0) € L'(Q,F,P) and that E[L(X;0)|G] exists. Moreover, Y €
LYQ,F,Qp) iff Eq,[|Y]] = E[|Y|L(X;0)] < oo, which yields that Y L(X;6) € L' (2, F, P) and
that BE[Y L(X;0)|G] also exists. To show that W is well defined we must prove that
that P(E[L(X;0)|G] = 0) = 0, P-a.s. (as Q < P, this will also hold under Qg). Obviously,
this follows from the fact that L(X;60) > 0, P-a.s.. Let’s write the proof carefully. Consider
the set {E[L(X;0)|G] = 0} € G, by the defining property of the conditional expectation we
have that

B[L(X;0) (gL (x;0)|61=03] = BE[L(X;0)|G]1(m[L(x:0)|01=0}] = E[01(m[L(x;0)|61=0}] = O.

Note also that L(X;Q)I{E[L(X;g)‘g]zo} > 0, P-a.s. yields that E[L(X;9)1{E[L(X;9)‘g]:0}} >0
by the monotonicity of the Lebesgue integral. By exercise 16., we know that this implies that
L(X;0)1¢g[L(x:0)|g)=0} = 0, P-a.s., but as L(X;0) > 0, P-a.s. we get that 1(g[7,(x,0)|g]=0} = 0,
P-a.s., which is equivalent to say P(E[L(X;60)|G] = 0) = 0. Hence, W is well defined
and it is obviously G-measurable. Finally, we only need to prove the conditional expectation
defining property. That is,

E[YL(X;0)|G]

oY1) = Ea, | Src e

1B:|, VB € g.

For all B € G, we have that

5 quxmmB}
@ | 'B[L(X;0)[G]

E[Y L(X;0)[G) }
E[L(X;0)[g]

T BIYL(X;0)|]
‘E@F“”mewmhwﬂ

. -L(X;G)

= . B[Y'L(X;0)|5]
@E@WK”“Em&mml4

5 E[E[Y L(X;6)|G]15)]

= BIELY L(X;0)15(9]]
5 E[Y L(X;0)15]

= Ep,|Y1g].
™ Qe[ B]

Where we have used:

(1) Proposition 55, Lecture 2, to express an expectation with respect to Qg as an expectation
with respect to P using the Radon-Nikodym derivative % = L(X;0).

onservation of the expectation property.
(2) C ion of the expectation property.
at 1s measurable goes out" property.
"What i bl "
(4) BIL(X;0)[G] /B[L(X;0)|9] = 1.
(5) "What is measurable goes out" property. In this case, it goes in.
Conservation of the expectation property.
(6) p property.
(7)

Proposition 55, Lecture 2,.
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