Introduction and Techniques
in Financial Mathematics
UiO-STK4510
Autumn 2015
Teacher:S. Ortiz-Latorre

Solution Optional Exercise

Problem 1 Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ defined on some probability space (Ω, \mathcal{F}, P).

1. Compute $\psi(\theta)=\mathbb{E}\left[e^{\theta X}\right]$ for $\theta \in \mathbb{R}$.
2. Define $L(X ; \theta):=e^{\theta X} / \psi(\theta)$ and show that $Q_{\theta}(A)=\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{A}\right], A \in \mathcal{F}$ defines a probability measure on (Ω, \mathcal{F}).
3. Show that $Q_{\theta} \ll P$.
4. Find the law of X under Q_{θ}, that is, the law of X as a random variable defined on $\left(\Omega, \mathcal{F}, Q_{\theta}\right)$.
5. Let \mathcal{G} be a sub- σ-algebra of \mathcal{F}. Show that for any $Y \in L^{1}\left(\Omega, \mathcal{F}, Q_{\theta}\right)$ one has that

$$
\mathbb{E}_{Q_{\theta}}[Y \mid \mathcal{G}]=\frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]}, \quad Q_{\theta} \text {-a.s. }
$$

Solution

1. As $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ we know that $P_{X} \ll \lambda$ and its density is given by

$$
\frac{d P_{X}}{d \lambda}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Hence, using the image measure theorem, we have that

$$
\begin{aligned}
\psi(\theta) & =\mathbb{E}\left[e^{\theta X}\right]=\int_{\Omega} e^{\theta X} d P=\int_{\mathbb{R}} e^{\theta x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d \lambda \\
& =\int_{-\infty}^{+\infty} e^{\theta x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
\end{aligned}
$$

Note that

$$
\begin{align*}
\theta x-\frac{(x-\mu)^{2}}{2 \sigma^{2}} & =-\frac{-2 \theta \sigma^{2} x+(x-\mu)^{2}}{2 \sigma^{2}}=-\frac{x^{2}-2\left(\mu+\theta \sigma^{2}\right) x+\mu^{2}}{2 \sigma^{2}} \\
& =-\frac{x^{2}-2\left(\mu+\theta \sigma^{2}\right) x+\left(\mu+\theta \sigma^{2}\right)^{2}}{2 \sigma^{2}}+\frac{\left(\mu+\theta \sigma^{2}\right)^{2}-\mu^{2}}{2 \sigma^{2}} \\
& =-\frac{\left(x-\left(\mu+\theta \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}+\mu \theta+\frac{\theta^{2} \sigma^{2}}{2} \tag{1}
\end{align*}
$$

Therefore,

$$
\psi(\theta)=\exp \left(\mu \theta+\frac{\theta^{2} \sigma^{2}}{2}\right) \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x-\left(\mu+\theta \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right) d x=\exp \left(\mu \theta+\frac{\theta^{2} \sigma^{2}}{2}\right)
$$

because the integral is equal to one (we are integrating the density of a $\mathcal{N}\left(\mu+\theta \sigma^{2}, \sigma^{2}\right)$).
2. By construction $L(X ; \theta)>0$ and $\mathbb{E}[L(X ; \theta)]=\frac{1}{\psi(\theta)} \mathbb{E}\left[e^{\theta X}\right]=\frac{\psi(\theta)}{\psi(\theta)}=1$. Let's check that $Q_{\theta}(A):=\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{A}\right], \forall A \in \mathcal{F}$ defines a probability measure on (Ω, \mathcal{F}), that is, we have to check that Q_{θ} is a measure (positivity, σ-additivity and $Q_{\theta}(\varnothing)=0$) and $Q_{\theta}(\Omega)=1$.
(a) $Q_{\theta}(\Omega)=\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{\Omega}\right]=\mathbb{E}[L(X ; \theta)]=1$
(b) (positivity) That $Q_{\theta}(A) \geq 0$ follows from the monotonicity of the expectation (if $Z \geq 0, P$ a.s then $\mathbb{E}[Z] \geq 0)$ and the fact that $L(X ; \theta) \mathbf{1}_{A} \geq 0, P$-a.s..
(c) (σ-additivity) Let $\left\{A_{n}\right\}_{n \geq 1}$ pairwise disjoint. Note that $\mathbf{1}_{\cup_{n \geq 1} A_{n}}=\sum_{n \geq 1} \mathbf{1}_{A_{n}}$, because the events are pairwise disjoint. Moreover, $S_{m}=\sum_{n=1}^{m} L(X ; \theta) \mathbf{1}_{A_{n}}, m \geq 1$ is a sequence converging P-a.s. to $\sum_{n=1}^{+\infty} L(X ; \theta) \mathbf{1}_{A_{n}}$, which is dominated by $L(X ; \theta) \in L^{1}(\Omega, \mathcal{F}, P)$, i.e.,

$$
\left|\sum_{n=1}^{+\infty} L(X ; \theta) \mathbf{1}_{A_{n}}\right| \leq L(X ; \theta), \quad P \text {-a.s. }
$$

Therefore, we can apply the dominated convergence theorem to get

$$
\begin{aligned}
Q_{\theta}\left(\cup_{n \geq 1} A_{n}\right) & =\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{\cup_{n \geq 1} A_{n}}\right]=\mathbb{E}\left[L(X ; \theta) \sum_{n \geq 1} \mathbf{1}_{A_{n}}\right]=\mathbb{E}\left[\lim _{m \rightarrow \infty} \sum_{n=1}^{m} L(X ; \theta) \mathbf{1}_{A_{n}}\right] \\
& =\lim _{m \rightarrow \infty} \sum_{n=1}^{m} \mathbb{E}\left[L(X ; \theta) \mathbf{1}_{A_{n}}\right]=\lim _{m \rightarrow \infty} \sum_{n=1}^{m} Q_{\theta}\left(A_{n}\right)=\sum_{n=1}^{\infty} Q_{\theta}\left(A_{n}\right) .
\end{aligned}
$$

The σ-additivity can also be proved using the monotone convergence theorem or even the Tonelli-Hobson (Fubini) theorem.
(d) As Q_{θ} is σ-additive then is additive and we have that $1=Q_{\theta}(\Omega)=Q_{\theta}(\Omega \cup \varnothing)=$ $Q_{\theta}(\Omega)+Q_{\theta}(\varnothing)=1+Q_{\theta}(\varnothing)$, which yields that $Q_{\theta}(\varnothing)=0$. Alternatively, using that $L(X ; \theta) \mathbf{1}_{A}=0, P$-a.s. we get that $Q_{\theta}(\varnothing)=\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{\varnothing}\right]=\mathbb{E}[0]=0$.
3. To prove that $Q_{\theta} \ll P$ we must show that : $\forall A \in \mathcal{F}$ with $P(A)=0$ we have that $Q_{\theta}(A)=0$. Therefore, assume that $A \in \mathcal{F}$ and $P(A)=0$, by definition

$$
Q_{\theta}(A)=\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{A}\right]=\mathbb{E}[0]=0
$$

where we have used that $L(X ; \theta) \mathbf{1}_{A}=0, P$-a.s. and the integral of P-a.s. equal integrands coincide. Alternatively, we could have used the Radon-Nikodym theorem, which states that $Q_{\theta} \ll P$ iff there exists a random variable $\frac{d Q_{\theta}}{d P} \geq 0, P$-a.s. such that $Q_{\theta}(A)=\int_{\Omega} \frac{d Q_{\theta}}{d P} 1_{A} d P=$ $\mathbb{E}\left[\frac{d Q_{\theta}}{d P} 1_{A}\right]$. Obviously, by construction, $L(X ; \theta)$ is a version of $\frac{d Q_{\theta}}{d P}$.
4. The law of X under Q_{θ} is the image measure of Q_{θ} by X, which is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ that we will denote by $Q_{\theta, X}$. For all $A \in \mathcal{B}(\mathbb{R})$, we have that

$$
\begin{aligned}
Q_{\theta, X}(A) & =Q_{\theta}\left(X^{-1}(A)\right)=\int_{\Omega} L(X ; \theta) \mathbf{1}_{X^{-1}(A)} d P=\int_{\mathbb{R}} L(x ; \theta) \mathbf{1}_{A} d P_{X} \\
& =\int_{A} \frac{e^{\theta x}}{\psi(\theta)} d P_{X}=\int_{A} \frac{e^{\theta x}}{\psi(\theta)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d \lambda \\
& =\int_{A} \exp \left(\theta x-\mu \theta-\frac{\theta^{2} \sigma^{2}}{2}\right) \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
& =\int_{A} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x-\left(\mu+\theta \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right) d x
\end{aligned}
$$

where we have used the definition of image measure, the definition of Q_{θ}, the image measure theorem, the definition of $L(X ; \theta)$, that $P_{X} \ll \lambda$ with density of a $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and equality (1). Hence, for all $A \in \mathcal{B}(\mathbb{R})$, we have that

$$
Q_{\theta, X}(A)=\int_{A} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x-\left(\mu+\theta \sigma^{2}\right)\right)^{2}}{2 \sigma^{2}}\right) d x
$$

which shows that $\frac{d Q_{\theta, X}}{d \lambda}$ is the density of a normal distribution of mean $\mu+\theta \sigma^{2}$ and variance σ^{2} and we can conclude that, under $Q_{\theta}, X \sim N\left(\mu+\theta \sigma^{2}, \sigma^{2}\right)$. This a very basic version of Girsanov's theorem.
5. By assumption $Y \in L^{1}\left(\Omega, \mathcal{F}, Q_{\theta}\right)$ and, therefore, $\mathbb{E}_{Q_{\theta}}[Y \mid \mathcal{G}]$ exists. Next, we must show that the right hand side of the equality is well defined. First note that $\mathbb{E}[|L(X ; \theta)|]=\mathbb{E}[L(X ; \theta)]=$ 1, which yields that $L(X ; \theta) \in L^{1}(\Omega, \mathcal{F}, P)$ and that $\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]$ exists. Moreover, $Y \in$ $L^{1}\left(\Omega, \mathcal{F}, Q_{\theta}\right)$ iff $\mathbb{E}_{Q_{\theta}}[|Y|]=\mathbb{E}[|Y| L(X ; \theta)]<\infty$, which yields that $Y L(X ; \theta) \in L^{1}(\Omega, \mathcal{F}, P)$ and that $\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]$ also exists. To show that $\frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]}$ is well defined we must prove that that $P(\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0)=0, P$-a.s. (as $Q \ll P$, this will also hold under Q_{θ}). Obviously, this follows from the fact that $L(X ; \theta)>0, P$-a.s.. Let's write the proof carefully. Consider the set $\{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0\} \in \mathcal{G}$, by the defining property of the conditional expectation we have that

$$
\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{\{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0\}}\right]=\mathbb{E}\left[\mathbb{E}[L(X ; \theta) \mid \mathcal{G}] \mathbf{1}_{\{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0\}}\right]=\mathbb{E}\left[0 \mathbf{1}_{\{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0\}}\right]=0
$$

Note also that $L(X ; \theta) \mathbf{1}_{\{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0\}} \geq 0, P$-a.s. yields that $\mathbb{E}\left[L(X ; \theta) \mathbf{1}_{\{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0\}}\right] \geq 0$ by the monotonicity of the Lebesgue integral. By exercise 16., we know that this implies that $L(X ; \theta) \mathbf{1}_{\{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0\}}=0, P$-a.s., but as $L(X ; \theta)>0, P$-a.s. we get that $\mathbf{1}_{\{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0\}}=0$, P-a.s., which is equivalent to say $P(\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=0)=0$. Hence, $\frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]}$ is well defined and it is obviously \mathcal{G}-measurable. Finally, we only need to prove the conditional expectation defining property. That is,

$$
\mathbb{E}_{Q_{\theta}}\left[Y \mathbf{1}_{B}\right]=\mathbb{E}_{Q_{\theta}}\left[\frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]} \mathbf{1}_{B}\right], \quad \forall B \in \mathcal{G}
$$

For all $B \in \mathcal{G}$, we have that

$$
\begin{aligned}
& \mathbb{E}_{Q_{\theta}}\left[\frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]} \mathbf{1}_{B}\right] \\
& =\mathbb{(1)}\left[L(X ; \theta) \frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]} \mathbf{1}_{B}\right] \\
& \overline{=(2)} \mathbb{E}\left[\mathbb{E}\left[\left.L(X ; \theta) \frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]} \mathbf{1}_{B} \right\rvert\, \mathcal{G}\right]\right] \\
& =\mathbb{(3)}\left[\mathbb{E}\left[\mathbb{E}[L(X ; \theta) \mid \mathcal{G}] \frac{\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}]}{\mathbb{E}[L(X ; \theta) \mid \mathcal{G}]} \mathbf{1}_{B}\right]\right. \\
& =\mathbb{(4)}\left[\mathbb{E}[Y L(X ; \theta) \mid \mathcal{G}] \mathbf{1}_{B}\right] \\
& \overline{(5)} \mathbb{E}\left[\mathbb{E}\left[Y L(X ; \theta) \mathbf{1}_{B} \mid \mathcal{G}\right]\right] \\
& \overline{(6)} \mathbb{E}\left[Y L(X ; \theta) \mathbf{1}_{B}\right] \\
& \overline{\overline{(7)}} \mathbb{E} \mathbb{E}_{Q_{\theta}}\left[Y \mathbf{1}_{B}\right] .
\end{aligned}
$$

Where we have used:
(1) Proposition 55, Lecture 2, to express an expectation with respect to Q_{θ} as an expectation with respect to P using the Radon-Nikodym derivative $\frac{d Q_{\theta}}{d P}=L(X ; \theta)$.
(2) Conservation of the expectation property.
(3) "What is measurable goes out" property.
(4) $\mathbb{E}[L(X ; \theta) \mid \mathcal{G}] / \mathbb{E}[L(X ; \theta) \mid \mathcal{G}]=1$.
(5) "What is measurable goes out" property. In this case, it goes in.
(6) Conservation of the expectation property.
(7) Proposition 55, Lecture 2,.

