Microeconomics 3200/4200: Part 1

P. Piacquadio

p.g.piacquadio@econ.uio.no

August 21, 2017

P. Piacquadio (p.g.piacquadio@econ.uio.r

3

A (10) A (10)

Outline

Introduction

- Course outline
- Economic models
- An example

Budget constraint

- Basic ingredients
- The budget set
- 3 Preferences
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- 5 Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Duality relations and comparative statics
 - Duality relations
 - Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Outline

Course outline

- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

・ロト ・聞ト ・ヨト ・ヨト

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

э

Course outline: part 1

- Part 1 is about microeconomics:
 - short introduction (Lecture 1);
 - consumer theory (Lectures 1-4);
 - partial equilibrium (Lecture 5);
 - production theory (Lectures 6-8);
 - uncertainty (Lecture 9).

Course outline: part 2

- Part 2 is about game theory (Lectures 10-16);
- with Professor Geir Asheim.

< 67 ▶

э

Seminars

- Seminar teachers are:
 - Torje Hegna (torje.hegna@econ.uio.no); and
 - Seongbong Hong (seongbong.hong@econ.uio.no).

- (Final) written examination on December 15th at 14:30 (3 hours).
- Compulsory assignment will be available in FRONTER:
 - 2 tests:
 - * "micro," 3 Oct at 9:00 to Oct 5 at 15:00; and
 - \star "game theory," 7 Nov at 9:00 to 9 Nov at 15:00.
 - each test consists of 10 multiple-choice questions;
 - to pass the compulsory assignment you must:
 - ★ submit answers to both tests;
 - ★ answer correctly 11/(10+10) questions.
- For more information, see course page.

Outline

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Duality relations and comparative statics

・ロト ・聞ト ・ヨト ・ヨト

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

э

Economic models

- Economics is about almost everything:
 - Varian writes: "economics proceeds by developing models of social phenomena."
- Why models?
- Two basic principles:
 - optimization principle;
 - equilibrium principle.

Economic models

- Economics is about almost everything:
 - Varian writes: "economics proceeds by developing models of social phenomena."
- Why models?
- Two basic principles:
 - optimization principle;
 - equilibrium principle.

Economic models

- Economics is about almost everything:
 - Varian writes: "economics proceeds by developing models of social phenomena."
- Why models?
- Two basic principles:
 - optimization principle;
 - equilibrium principle.

The optimization principle

• People try to do what is best for them, given the available alternatives.

• This is quite reasonable.

- The assumption tells that if Andrea decides to spend her savings on a new bike, it must be true that it is in her best interest to do so...
- ...given her information about the available alternatives, given her quantity of saving, given the prices of commodities, given what her friends decided to do, etc.

The optimization principle

• People try to do what is best for them, given the available alternatives.

- This is quite reasonable.
- The assumption tells that if Andrea decides to spend her savings on a new bike, it must be true that it is in her best interest to do so...
- ...given her information about the available alternatives, given her quantity of saving, given the prices of commodities, given what her friends decided to do, etc.

The optimization principle

• People try to do what is best for them, given the available alternatives.

- This is quite reasonable.
- The assumption tells that if Andrea decides to spend her savings on a new bike, it must be true that it is in her best interest to do so...
- ...given her information about the available alternatives, given her quantity of saving, given the prices of commodities, given what her friends decided to do, etc.

The equilibrium principle

• Prices adjust and ensure that the "demand" meets its "supply."

- This is somewhat more demanding.
- Sometimes prices adjust too slowly or too much. Sometimes other things happen before reaching the equilibrium, so that differences in demand and supply may increase.
- In general, however, the prices of most goods are fairly stable...so we accept the equilibrium principle.

The equilibrium principle

Prices adjust and ensure that the "demand" meets its "supply."

- This is somewhat more demanding.
- Sometimes prices adjust too slowly or too much. Sometimes other things happen before reaching the equilibrium, so that differences in demand and supply may increase.
- In general, however, the prices of most goods are fairly stable...so we accept the equilibrium principle.

Outline

Introduction

- Course outline
- Economic models

An example

2 Budget constraint

- Basic ingredients
- The budget set
- 3 Preferences
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

An example: the rental market

• Let us look at the rental market around Blindern.

- We can start investigating the **demand side**:
 - How many students are willing to pay 15.000 NOK?
 - How many are willing to pay 14.000 NOK?
 - How many are willing to pay 13.000 NOK?
 - ▶ ...
- The **reservation price** is the largest price that each student would be willing to pay.
- This information can be summarized compactly in a graph.

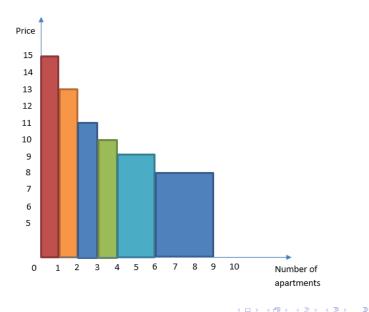
An example: the rental market

- Let us look at the rental market around Blindern.
- We can start investigating the demand side:
 - How many students are willing to pay 15.000 NOK?
 - How many are willing to pay 14.000 NOK?
 - How many are willing to pay 13.000 NOK?
 - ▶ ...
- The **reservation price** is the largest price that each student would be willing to pay.
- This information can be summarized compactly in a graph.

An example: the rental market

- Let us look at the rental market around Blindern.
- We can start investigating the demand side:
 - How many students are willing to pay 15.000 NOK?
 - How many are willing to pay 14.000 NOK?
 - How many are willing to pay 13.000 NOK?
 - **۱**...
- The **reservation price** is the largest price that each student would be willing to pay.
- This information can be summarized compactly in a graph.

Illustration: demand curve



August 21, 2017

Few more assumptions

- To simplify and avoid jumps, we assume that:
 - there are many students looking to rent;
 - units are homogeneous (say 1-bedroom apartments).

• Then, it is safe to think of the demand curve as smooth.

Few more assumptions

- To simplify and avoid jumps, we assume that:
 - there are many students looking to rent;
 - units are homogeneous (say 1-bedroom apartments).
- Then, it is safe to think of the demand curve as smooth.

Supply side

• In the short run, the number of apartments for rent is fixed.

• Assume that:

- all students are equal: landlords only care about the rent price;
- rental market is flexible: if a new student comes and proposes a larger rent, the landlord can reassign the apartment;
- thus, all landlords will rent at the same price.
- Then, the **supply curve** is vertical.

Supply side

• In the short run, the number of apartments for rent is fixed.

- Assume that:
 - all students are equal: landlords only care about the rent price;
 - rental market is flexible: if a new student comes and proposes a larger rent, the landlord can reassign the apartment;
 - thus, all landlords will rent at the same price.
- Then, the supply curve is vertical.

Supply side

• In the short run, the number of apartments for rent is fixed.

- Assume that:
 - > all students are equal: landlords only care about the rent price;
 - rental market is flexible: if a new student comes and proposes a larger rent, the landlord can reassign the apartment;
 - thus, all landlords will rent at the same price.
- Then, the supply curve is vertical.

Rental market equilibrium

• The equilibrium is defined by:

- the equilibrium number of apartments rented x*; and
- the equilibrium price p*.

• Why equilibrium?

- If price was p > p*, then less apartment would be rented.
- ► The landlords with empty apartments would be willing to rent at a lower price p' < p.</p>
- Only when p = p*, demand meets supply and an equilibrium is reached.

A B A A B A

Rental market equilibrium

- The equilibrium is defined by:
 - the equilibrium number of apartments rented x*; and
 - the equilibrium price p*.
- Why equilibrium?
 - If price was $p > p^*$, then less apartment would be rented.
 - ► The landlords with empty apartments would be willing to rent at a lower price p' < p.</p>
- Only when *p* = *p**, demand meets supply and an equilibrium is reached.

4 E N 4 E N

Rental market equilibrium

- The equilibrium is defined by:
 - the equilibrium number of apartments rented x*; and
 - the equilibrium price p*.
- Why equilibrium?
 - If price was $p > p^*$, then less apartment would be rented.
 - ► The landlords with empty apartments would be willing to rent at a lower price p' < p.</p>
- Only when *p* = *p**, demand meets supply and an equilibrium is reached.

Comparative statics

- Increase in supply:
 - the supply curve shiftes to the right;
 - more apartments are available;
 - equilibrium price decreases.
- Some students jointly rent a house:
 - the demand curve shiftes to the left; and
 - fewer students are willing to rent 1-bedroom apartments;
 - equilibrium price decreases.

• Tax on rentals?

Comparative statics

- Increase in supply:
 - the supply curve shiftes to the right;
 - more apartments are available;
 - equilibrium price decreases.
- Some students jointly rent a house:
 - the demand curve shiftes to the left; and
 - fewer students are willing to rent 1-bedroom apartments;
 - equilibrium price decreases.

• Tax on rentals?

Comparative statics

- Increase in supply:
 - the supply curve shiftes to the right;
 - more apartments are available;
 - equilibrium price decreases.
- Some students jointly rent a house:
 - the demand curve shiftes to the left; and
 - fewer students are willing to rent 1-bedroom apartments;
 - equilibrium price decreases.
- Tax on rentals?

Outline

Introduction

- Course outline
- Economic models
- An example
- Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preferences
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Duality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Consumption bundle

• There are two goods, good 1 and good 2.

• Andrea's consumption bundle is denoted $x \equiv (x_1, x_2)$.

- ► (x₁, x₂) is a vector, i.e. an ordered list of numbers where x₁ is the quantity of good 1 and x₂ is the quantity of good 2.
- (for simplicity) each number is a non-negative real number;
- goods are perfectly divisible and privatly appropriable;
- the consumption space is $X \equiv \mathbb{R}^n_+$ with n = 2;
- for example, you can think of good 1 as milk and good 2 as a composite good representing everything else Andrea might want to purchase.

(日) (周) (日) (日)

Consumption bundle

• There are two goods, good 1 and good 2.

- Andrea's consumption bundle is denoted $x \equiv (x_1, x_2)$.
 - ► (x₁, x₂) is a vector, i.e. an ordered list of numbers where x₁ is the quantity of good 1 and x₂ is the quantity of good 2.
 - (for simplicity) each number is a non-negative real number;
 - goods are perfectly divisible and privatly appropriable;
 - the consumption space is $X \equiv \mathbb{R}^n_+$ with n = 2;
 - for example, you can think of good 1 as milk and good 2 as a composite good representing everything else Andrea might want to purchase.

Consumption prices

- Each good has a price. Let $\boldsymbol{p} \equiv (p_1, p_2)$ be the price vector.
 - ▶ (p₁, p₂) is another vector: p₁ is the price of good 1 and p₂ is the price of good 2.
- What is $p_1 x_1$? it is the money Andrea spends to purchase x_1 quantity of good 1 at price p_1 .
- Similarly, $p_2 x_2$ is the money Andrea spends to purchase x_2 quantity of good 2 at price p_2 .
- We say that (x_1, x_2) is **affordable** for Andrea if he has enough money *m* to purchase such bundle, that is, if:

 $p_1x_1+p_2x_2\leq m.$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Consumption prices

- Each good has a price. Let $\boldsymbol{p} \equiv (p_1, p_2)$ be the price vector.
 - ▶ (p₁, p₂) is another vector: p₁ is the price of good 1 and p₂ is the price of good 2.
- What is $p_1 x_1$? it is the money Andrea spends to purchase x_1 quantity of good 1 at price p_1 .
- Similarly, p₂x₂ is the money Andrea spends to purchase x₂ quantity of good 2 at price p₂.

• We say that (x_1, x_2) is **affordable** for Andrea if he has enough money *m* to purchase such bundle, that is, if:

 $p_1x_1+p_2x_2\leq m.$

イロト イポト イヨト イヨト 二日

Consumption prices

- Each good has a price. Let $\boldsymbol{p} \equiv (p_1, p_2)$ be the price vector.
 - ▶ (p₁, p₂) is another vector: p₁ is the price of good 1 and p₂ is the price of good 2.
- What is $p_1 x_1$? it is the money Andrea spends to purchase x_1 quantity of good 1 at price p_1 .
- Similarly, p₂x₂ is the money Andrea spends to purchase x₂ quantity of good 2 at price p₂.
- We say that (x_1, x_2) is **affordable** for Andrea if he has enough money *m* to purchase such bundle, that is, if:

$$p_1x_1+p_2x_2\leq m.$$

イロト イポト イヨト イヨト 二日

Outline

Introdu

- Course outline
- Economic models
- An example

Budget constraint

- Basic ingredients
- The budget set
- 3 Preferences
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Duality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Budget set

• Then, the **budget set** is the set of all consumption bundles that Andrea can afford at prices (p_1, p_2) and income m. All (x_1, x_2) such that

$$p_1x_1+p_2x_2\leq m.$$

• The **budget line** is the frontier of the budget set. It is the set of all consumption bundles that Andrea can (exactly) buy when spending all her money *m*. All (*x*₁, *x*₂) such that

 $p_1 x_1 + p_2 x_2 = m.$

- A TE N - A TE N

Budget set

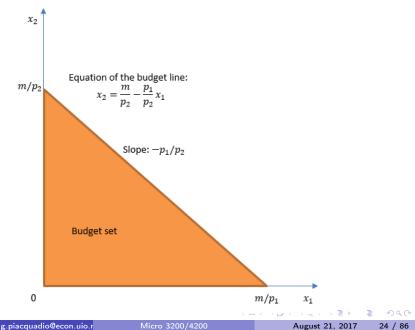
• Then, the **budget set** is the set of all consumption bundles that Andrea can afford at prices (p_1, p_2) and income m. All (x_1, x_2) such that

$$p_1x_1+p_2x_2\leq m.$$

• The **budget line** is the frontier of the budget set. It is the set of all consumption bundles that Andrea can (exactly) buy when spending all her money *m*. All (*x*₁, *x*₂) such that

$$p_1x_1 + p_2x_2 = m.$$

Budget set: illustration



• What happens when *m* increases?

• What happens when *p*₁ decreases?

- What happens with inflaction?
- What happens when changing currency?

- What happens when *m* increases?
- What happens when p_1 decreases?
- What happens with inflaction?
- What happens when changing currency?

- What happens when *m* increases?
- What happens when p_1 decreases?
- What happens with inflaction?
- What happens when changing currency?

- What happens when *m* increases?
- What happens when p_1 decreases?
- What happens with inflaction?
- What happens when changing currency?

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preferences
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Consumers' preferences

- When Andrea faces her budget set, she has a choice to make: which consumption bundle to choose?
- Building on the optimizing principle, the answer is: the bundle she prefers better.
- **Preferences**, denoted \succeq , capture this information:
 - we write $(x_1, x_2) \gtrsim (x'_1, x'_2)$ if Andrea finds the consumption bundle (x_1, x_2) at least as desirable as the consumption bundle (x'_1, x'_2) ;
 - we write $(x_1, x_2) \succ (x'_1, x'_2)$ if Andrea prefers (x_1, x_2) to (x'_1, x'_2)
 - we write $(x_1, x_2) \sim (x'_1, x'_2)$ if Andrea is indifferent between (x_1, x_2) and (x'_1, x'_2) .

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Consumers' preferences

- When Andrea faces her budget set, she has a choice to make: which consumption bundle to choose?
- Building on the optimizing principle, the answer is: the bundle she prefers better.
- **Preferences**, denoted \succeq , capture this information:
 - we write $(x_1, x_2) \succeq (x'_1, x'_2)$ if Andrea finds the consumption bundle (x_1, x_2) at least as desirable as the consumption bundle (x'_1, x'_2) ;
 - we write $(x_1, x_2) \succ (x'_1, x'_2)$ if Andrea prefers (x_1, x_2) to (x'_1, x'_2)
 - we write $(x_1, x_2) \sim (x'_1, x'_2)$ if Andrea is indifferent between (x_1, x_2) and (x'_1, x'_2) .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consumers' preferences

- When Andrea faces her budget set, she has a choice to make: which consumption bundle to choose?
- Building on the optimizing principle, the answer is: the bundle she prefers better.
- **Preferences**, denoted ≿, capture this information:
 - we write $(x_1, x_2) \succeq (x'_1, x'_2)$ if Andrea finds the consumption bundle (x_1, x_2) at least as desirable as the consumption bundle (x'_1, x'_2) ;
 - we write $(x_1, x_2) \succ (x'_1, x'_2)$ if Andrea prefers (x_1, x_2) to (x'_1, x'_2) ;
 - we write $(x_1, x_2) \sim (x'_1, x'_2)$ if Andrea is indifferent between (x_1, x_2) and (x'_1, x'_2) .

Relation between preference symbols

- If $(x_1, x_2) \succeq (x'_1, x'_2)$, but not $(x_1, x_2) \sim (x'_1, x'_2)$, then $(x_1, x_2) \succ (x'_1, x'_2)$.
- If $(x_1, x_2) \succeq (x'_1, x'_2)$ and $(x'_1, x'_2) \succeq (x_1, x_2)$, then $(x_1, x_2) \sim (x'_1, x'_2)$.
- Thus, the strict preference relation \succ and the indifference relation \sim can be derived from the preference relation \succeq .

Relation between preference symbols

- If $(x_1, x_2) \succeq (x'_1, x'_2)$, but not $(x_1, x_2) \sim (x'_1, x'_2)$, then $(x_1, x_2) \succ (x'_1, x'_2)$.
- If $(x_1, x_2) \succeq (x'_1, x'_2)$ and $(x'_1, x'_2) \succeq (x_1, x_2)$, then $(x_1, x_2) \sim (x'_1, x'_2)$.
- Thus, the strict preference relation \succ and the indifference relation \sim can be derived from the preference relation \succeq .

Relation between preference symbols

- If $(x_1, x_2) \succeq (x'_1, x'_2)$, but not $(x_1, x_2) \sim (x'_1, x'_2)$, then $(x_1, x_2) \succ (x'_1, x'_2)$.
- If $(x_1, x_2) \succeq (x'_1, x'_2)$ and $(x'_1, x'_2) \succeq (x_1, x_2)$, then $(x_1, x_2) \sim (x'_1, x'_2)$.
- Thus, the strict preference relation \succ and the indifference relation \sim can be derived from the preference relation \succeq .

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set

Preferences

- Definitions
- Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

• Why imposing assumptions on preferences?

- eliminate unreasonable cases (i.e. $(x_1, x_2) \succ (x'_1, x'_2)$ and $(x'_1, x'_2) \succ (x_1, x_2)$);
- obtain more far reaching results.
- **Complete.** For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$, either
 - $(x_1, x_2) \succeq (x'_1, x'_2);$ or
 - $(x'_1, x'_2) \succeq (x_1, x_2);$ or
 - both (that is $(x_1, x_2) \sim (x'_1, x'_2)$).

A B A A B A

• Why imposing assumptions on preferences?

- eliminate unreasonable cases (i.e. $(x_1, x_2) \succ (x'_1, x'_2)$ and $(x'_1, x'_2) \succ (x_1, x_2)$);
- obtain more far reaching results.
- Complete. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$, either
 - $(x_1, x_2) \succeq (x_1', x_2');$ or
 - $(x'_1, x'_2) \succeq (x_1, x_2);$ or
 - both (that is $(x_1, x_2) \sim (x'_1, x'_2)$).

• **Reflexive.** For each consumption bundle $(x_1, x_2) \in X$,

 $\blacktriangleright (x_1, x_2) \succeq (x_1, x_2).$

- Transitive. For each triplet of consumption bundles $(x_1, x_2), (x'_1, x'_2), (x''_1, x''_2) \in X$,
 - $(x_1, x_2) \succeq (x_1', x_2')$ and $(x_1', x_2') \succeq (x_1'', x_2'')$ implies that $(x_1, x_2) \succeq (x_1'', x_2'')$.

ヨト・イヨト

• **Reflexive.** For each consumption bundle $(x_1, x_2) \in X$,

• $(x_1, x_2) \succeq (x_1, x_2).$

- **Transitive.** For each triplet of consumption bundles $(x_1, x_2), (x'_1, x'_2), (x''_1, x''_2) \in X$,
 - $(x_1, x_2) \succeq (x'_1, x'_2)$ and $(x'_1, x'_2) \succeq (x''_1, x''_2)$ implies that $(x_1, x_2) \succeq (x''_1, x''_2)$.

3

- Consider the consumption bundle (x₁, x₂) ∈ X. The indifference curve through (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x'₁, x'₂) ~ (x₁, x₂).
 - Indifference curves cannot cross;
 - preferences consist of all indifference curves.
- The upper-contour set at (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x'₁, x'₂) ≿ (x₁, x₂).
- The lower-contour set at (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x₁, x₂) ≿ (x'₁, x'₂).
- **Continuous.** For each consumption bundle (*x*₁, *x*₂) ∈ *X*, the upperand lower-contour sets are closed.

(日) (四) (日) (日) (日)

- Consider the consumption bundle (x₁, x₂) ∈ X. The indifference curve through (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x'₁, x'₂) ~ (x₁, x₂).
 - Indifference curves cannot cross;
 - preferences consist of all indifference curves.
- The upper-contour set at (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x'₁, x'₂) ≿ (x₁, x₂).
- The lower-contour set at (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x₁, x₂) ≿ (x'₁, x'₂).
- **Continuous.** For each consumption bundle (*x*₁, *x*₂) ∈ *X*, the upperand lower-contour sets are closed.

イロト 不得下 イヨト イヨト 二日

- Consider the consumption bundle (x₁, x₂) ∈ X. The indifference curve through (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x'₁, x'₂) ~ (x₁, x₂).
 - Indifference curves cannot cross;
 - preferences consist of all indifference curves.
- The upper-contour set at (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x'₁, x'₂) ≿ (x₁, x₂).
- The lower-contour set at (x_1, x_2) is the set of all consumption bundles $(x'_1, x'_2) \in X$ such that $(x_1, x_2) \succeq (x'_1, x'_2)$.
- **Continuous.** For each consumption bundle (*x*₁, *x*₂) ∈ *X*, the upperand lower-contour sets are closed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Consider the consumption bundle (x₁, x₂) ∈ X. The indifference curve through (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x'₁, x'₂) ~ (x₁, x₂).
 - Indifference curves cannot cross;
 - preferences consist of all indifference curves.
- The upper-contour set at (x₁, x₂) is the set of all consumption bundles (x'₁, x'₂) ∈ X such that (x'₁, x'₂) ≿ (x₁, x₂).
- The lower-contour set at (x_1, x_2) is the set of all consumption bundles $(x'_1, x'_2) \in X$ such that $(x_1, x_2) \succeq (x'_1, x'_2)$.
- Continuous. For each consumption bundle (x₁, x₂) ∈ X, the upperand lower-contour sets are closed.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Monotonicity

• Goods, bads, and neutral goods

Satiation

• **Monotonicity.** For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$, if $x_1 \ge x'_1$; $x_2 \ge x'_2$, and $(x_1, x_2) \ne (x'_1, x'_2)$, then $(x_1, x_2) \succ (x'_1, x'_2)$.

< 67 ▶

э

Monotonicity

- Goods, bads, and neutral goods
- Satiation
- Monotonicity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$, if $x_1 \ge x'_1$; $x_2 \ge x'_2$, and $(x_1, x_2) \ne (x'_1, x'_2)$, then $(x_1, x_2) \succ (x'_1, x'_2)$.

Perfect substitutes

- Perfect complements
- Convexity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$ with $(x_1, x_2) \sim (x'_1, x'_2)$ and each $t \in [0, 1]$,

$$(tx_1+(1-t)x'_1, tx_2+(1-t)x'_2) \succeq (x_1, x_2).$$

• Strict convexity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$ with $(x_1, x_2) \sim (x'_1, x'_2)$ and each $t \in (0, 1)$,

$$(tx_1+(1-t)x'_1, tx_2+(1-t)x'_2) \succ (x_1, x_2).$$

ヨトィヨト

< 67 ▶

Perfect substitutes

Perfect complements

• Convexity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$ with $(x_1, x_2) \sim (x'_1, x'_2)$ and each $t \in [0, 1]$,

$$(tx_1+(1-t)x'_1, tx_2+(1-t)x'_2) \succeq (x_1, x_2).$$

• Strict convexity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$ with $(x_1, x_2) \sim (x'_1, x'_2)$ and each $t \in (0, 1)$,

$$(tx_1+(1-t)x'_1, tx_2+(1-t)x'_2) \succ (x_1, x_2).$$

- A TE N - A TE N

< 47 ▶

- Perfect substitutes
- Perfect complements
- Convexity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$ with $(x_1, x_2) \sim (x'_1, x'_2)$ and each $t \in [0, 1]$,

$$(tx_1+(1-t)x'_1,tx_2+(1-t)x'_2) \succeq (x_1,x_2).$$

• Strict convexity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$ with $(x_1, x_2) \sim (x'_1, x'_2)$ and each $t \in (0, 1)$,

$$(tx_1+(1-t)x'_1,tx_2+(1-t)x'_2) \succ (x_1,x_2).$$

э

Image: A matrix

- Perfect substitutes
- Perfect complements
- Convexity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$ with $(x_1, x_2) \sim (x'_1, x'_2)$ and each $t \in [0, 1]$,

$$(tx_1+(1-t)x'_1,tx_2+(1-t)x'_2) \succeq (x_1,x_2).$$

• Strict convexity. For each pair of consumption bundles $(x_1, x_2), (x'_1, x'_2) \in X$ with $(x_1, x_2) \sim (x'_1, x'_2)$ and each $t \in (0, 1)$,

$$(tx_1+(1-t)x'_1,tx_2+(1-t)x'_2)\succ(x_1,x_2).$$

э

Marginal rate of substitution

- The marginal rate of substitution (MRS) expresses the rate at which a consumer, Andrea, is just willing to substitute a good for another one.
- This is a local concept!
- The MRS at (x_1, x_2) is the slope at (x_1, x_2) of the indifference curve through (x_1, x_2) .
- When is the MRS well-defined?
- It can be interpreted as the marginal willingness to pay.

Marginal rate of substitution

- The marginal rate of substitution (MRS) expresses the rate at which a consumer, Andrea, is just willing to substitute a good for another one.
- This is a local concept!
- The MRS at (x_1, x_2) is the slope at (x_1, x_2) of the indifference curve through (x_1, x_2) .
- When is the MRS well-defined?
- It can be interpreted as the marginal willingness to pay.

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preferences
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

The concept

- Utility is a problematic name: its meaning changed over time and is still a big source of confusion.
 - some economists consider it as a measure of happiness or subjective well-being;
 - others take it as a different way to express the same information of preferences.
- We shall go with the second interpretation. A utility function U is a numerical representation of preferences ≿. Then, for each pair (x₁, x₂), (x'₁, x'₂) ∈ X:

 $(x_1, x_2) \succeq (x'_1, x'_2)$ IF and ONLY IF $U(x_1, x_2) \ge U(x'_1, x'_2)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The concept

- Utility is a problematic name: its meaning changed over time and is still a big source of confusion.
 - some economists consider it as a measure of happiness or subjective well-being;
 - others take it as a different way to express the same information of preferences.
- We shall go with the second interpretation. A utility function U is a numerical representation of preferences ≿. Then, for each pair (x₁, x₂), (x'₁, x'₂) ∈ X:

 $(x_1, x_2) \succeq (x'_1, x'_2)$ IF and ONLY IF $U(x_1, x_2) \ge U(x'_1, x'_2)$

Existence and uniqueness of a utility function

Theorem

If preferences \succeq are complete, transitive, and continuous, then there exists a continuous utility function U that represents \succeq .

Theorem

Assume preferences \geq are represented by a utility function U. Then, for each positive monotonic function f, V = f(U) also represents preferences \geq . That is, U is unique up to a positive monotonic transformation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Existence and uniqueness of a utility function

Theorem

If preferences \succeq are complete, transitive, and continuous, then there exists a continuous utility function U that represents \succeq .

Theorem

Assume preferences \succeq are represented by a utility function U. Then, for each positive monotonic function f, V = f(U) also represents preferences \succeq . That is, U is unique up to a positive monotonic transformation.

(人間) トイヨト イヨト 三日

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Examples of utility functions

•
$$U(x_1, x_2) = x_1 x_2;$$

• $U(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$ with $\alpha \in [0, 1];$

•
$$U(x_1, x_2) = ax_1 + bx_2$$
 with $a, b > 0$;

•
$$U(x_1, x_2) = \min[ax_1, bx_2]$$
 with $a, b > 0$;

- $U(x_1, x_2) = x_1 + v(x_2)$ with v and increasing function;
- $U(x_1, x_2) = [a(x_1)^{\rho} + (1-a)x_2^{\rho}]^{\frac{1}{\rho}}$ with $a \in [0,1]$ and $\rho > 0$.

э

Examples of utility functions

•
$$U(x_1, x_2) = x_1 x_2;$$

• $U(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$ with $\alpha \in [0, 1];$

•
$$U(x_1, x_2) = ax_1 + bx_2$$
 with $a, b > 0$;
• $U(x_1, x_2) = \min[ax_1, bx_2]$ with $a, b > 0$;

• $U(x_1, x_2) = x_1 + v(x_2)$ with v and increasing function; • $U(x_1, x_2) = [a(x_1)^{\rho} + (1-a)x_2^{\rho}]^{\frac{1}{\rho}}$ with $a \in [0,1]$ and $\rho > 0$.

,

Examples of utility functions

•
$$U(x_1, x_2) = x_1 x_2;$$

• $U(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$ with $\alpha \in [0, 1];$

•
$$U(x_1, x_2) = x_1 + v(x_2)$$
 with v and increasing function;

•
$$U(x_1, x_2) = [a(x_1)^{\rho} + (1-a)x_2^{\rho}]^{\frac{1}{\rho}}$$
 with $a \in [0,1]$ and $\rho > 0$.

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_1 increases to $x_1 + \Delta x_1$, the utility goes from u to $u + \Delta u$. Then,

 $u + \Delta u = U(x_1 + \Delta x_1, x_2)$

• or, since $u = U(x_1, x_2)$,

$$\Delta u = U(x_1 + \Delta x_1, x_2) - U(x_1, x_2).$$

• Now, divide both sides by Δx_1 :

$$\frac{\Delta u}{\Delta x_1} = \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1}$$

$$MU_1 = \lim_{\Delta x_1 \to 0} \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1} = \frac{\partial U}{\partial x_1}$$

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_1 increases to $x_1 + \Delta x_1$, the utility goes from u to $u + \Delta u$. Then,

$$u + \Delta u = U(x_1 + \Delta x_1, x_2)$$

• or, since
$$u = U(x_1, x_2)$$
,

$$\Delta u = U(x_1 + \Delta x_1, x_2) - U(x_1, x_2).$$

• Now, divide both sides by Δx_1 :

$$\frac{\Delta u}{\Delta x_1} = \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1}$$

$$MU_1 = \lim_{\Delta x_1 \to 0} \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1} = \frac{\partial U}{\partial x_1}$$

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_1 increases to $x_1 + \Delta x_1$, the utility goes from u to $u + \Delta u$. Then,

$$u + \Delta u = U(x_1 + \Delta x_1, x_2)$$

• or, since
$$u = U(x_1, x_2)$$
,

$$\Delta u = U(x_1 + \Delta x_1, x_2) - U(x_1, x_2).$$

• Now, divide both sides by Δx_1 :

$$\frac{\Delta u}{\Delta x_1} = \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1}$$

$$MU_1 = \lim_{\Delta x_1 \to 0} \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1} = \frac{\partial U}{\partial x_1}$$

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_1 increases to $x_1 + \Delta x_1$, the utility goes from u to $u + \Delta u$. Then,

$$u + \Delta u = U(x_1 + \Delta x_1, x_2)$$

• or, since
$$u = U(x_1, x_2)$$
,

$$\Delta u = U(x_1 + \Delta x_1, x_2) - U(x_1, x_2).$$

• Now, divide both sides by Δx_1 :

$$\frac{\Delta u}{\Delta x_1} = \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1}$$

$$MU_1 = \lim_{\Delta x_1 \to 0} \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1} = \frac{\partial U}{\partial x_1}$$

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_1 increases to $x_1 + \Delta x_1$, the utility goes from u to $u + \Delta u$. Then,

$$u + \Delta u = U(x_1 + \Delta x_1, x_2)$$

• or, since
$$u = U(x_1, x_2)$$
,

$$\Delta u = U(x_1 + \Delta x_1, x_2) - U(x_1, x_2).$$

• Now, divide both sides by Δx_1 :

$$\frac{\Delta u}{\Delta x_1} = \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1}$$

$$MU_1 = \lim_{\Delta x_1 \to 0} \frac{U(x_1 + \Delta x_1, x_2) - U(x_1, x_2)}{\Delta x_1} = \frac{\partial U}{\partial x_1}.$$

Marginal rate of substitution (See appendix Ch.4)

 The marginal rate of substitution of good 2 for good 1 was the change in good 2 Δx₂ that was needed to compensate an individual for a marginal change in good 1 Δx₁.

• But the individual needs to remain indifferent, so

 $MU_1 \cdot \Delta x_1 + MU_2 \cdot \Delta x_2 = 0.$

• Rearranging:

$$MRS = \frac{\Delta x_2}{\Delta x_1} = -\frac{MU_1}{MU_2}.$$

Marginal rate of substitution (See appendix Ch.4)

- The marginal rate of substitution of good 2 for good 1 was the change in good 2 Δx₂ that was needed to compensate an individual for a marginal change in good 1 Δx₁.
- But the individual needs to remain indifferent, so

 $MU_1 \cdot \Delta x_1 + MU_2 \cdot \Delta x_2 = 0.$

$$MRS = \frac{\Delta x_2}{\Delta x_1} = -\frac{MU_1}{MU_2}.$$

Marginal rate of substitution (See appendix Ch.4)

- The marginal rate of substitution of good 2 for good 1 was the change in good 2 Δx₂ that was needed to compensate an individual for a marginal change in good 1 Δx₁.
- But the individual needs to remain indifferent, so

$$MU_1 \cdot \Delta x_1 + MU_2 \cdot \Delta x_2 = 0.$$

$$MRS = \frac{\Delta x_2}{\Delta x_1} = -\frac{MU_1}{MU_2}.$$

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

What is the optimal choice of the consumer?

- There are two ways to look at the problem.
 - maximizing utility for a given budget set;
 - minimizing the cost of reaching a certain satisfaction level.
- These problems are one the **dual** of the other.
- We will see that the optimal choices these two approaches identify are closely related to each other.

What is the optimal choice of the consumer?

- There are two ways to look at the problem.
 - maximizing utility for a given budget set;
 - minimizing the cost of reaching a certain satisfaction level.
- These problems are one the dual of the other.
- We will see that the optimal choices these two approaches identify are closely related to each other.

The utility maximization problem

• What is the consumption bundle (x_1^*, x_2^*) that maximizes the utility of Andrea, given prices (p_1, p_2) and money *m*?

• The problem can be written as follows:

$$\max_{\substack{(x_1, x_2) \in X \\ s.t.}} U(x_1, x_2)$$

• The graphic solution is....

The utility maximization problem

- What is the consumption bundle (x_1^*, x_2^*) that maximizes the utility of Andrea, given prices (p_1, p_2) and money *m*?
- The problem can be written as follows:

$$\max_{\substack{(x_1, x_2) \in X \\ s.t. \ p_1 x_1 + p_2 x_2 \le m}} U(x_1, x_2)$$
(1)

• The graphic solution is....

The utility maximization problem

- What is the consumption bundle (x_1^*, x_2^*) that maximizes the utility of Andrea, given prices (p_1, p_2) and money *m*?
- The problem can be written as follows:

$$\max_{\substack{(x_1, x_2) \in X \\ s.t. \ p_1 x_1 + p_2 x_2 \le m}} U(x_1, x_2)$$
(1)

• The graphic solution is....

• First, write the Lagrangian of the maximization problem: $\mathscr{L}(\mathbf{x}, \lambda; \mathbf{p}, m) = U(x_1, x_2) + \lambda [m - p_1 x_1 - p_2 x_2]$ (2)

• The FOCs require that there exists $\lambda^* \ge 0$ such that:

$$MU_i(x_1^*, x_2^*) \le \lambda^* p_i \qquad \text{for each } i = 1,2 \tag{3}$$

$$m \ge p_1 x_1^* + p_2 x_2^* \tag{4}$$

• First, write the Lagrangian of the maximization problem:

$$\mathscr{L}(\mathbf{x},\lambda;\mathbf{p},m) = U(x_1,x_2) + \lambda \left[m - p_1 x_1 - p_2 x_2\right]$$
(2)

• The FOCs require that there exists $\lambda^* \ge 0$ such that:

$$MU_i(x_1^*, x_2^*) \le \lambda^* p_i$$
 for each $i = 1, 2$ (3)

$$m \ge p_1 x_1^* + p_2 x_2^* \tag{4}$$

• Then, if U satisfies monotonicity, then

$$m = p_1 x_1^* + p_2 x_2^*.$$

• If $x_1^*, x_2^* > 0$, then $MU_1(x_1^*, x_2^*) = \lambda^* p_1$ and $MU_2(x_1^*, x_2^*) = \lambda^* p_2$. Thus:

$$\frac{MU_1(x_1^*, x_2^*)}{MU_2(x_1^*, x_2^*)} = \frac{p_1}{p_2}$$
(5)

< □ > < □ > < □ > < □ > < □ > < □ >

• and, for interior solutions, MRS equals goods price ratio!!!

• Then, if U satisfies monotonicity, then

$$m = p_1 x_1^* + p_2 x_2^*.$$

• If $x_1^*, x_2^* > 0$, then $MU_1(x_1^*, x_2^*) = \lambda^* p_1$ and $MU_2(x_1^*, x_2^*) = \lambda^* p_2$. Thus: $\frac{MU_1(x_1^*, x_2^*)}{MU_1(x_1^*, x_2^*)} = \frac{p_1}{2}$

$$MO_2(x_1, x_2) = p_2$$

Image: A matrix

• and, for interior solutions, MRS equals goods price ratio!!!

э

(5)

• Then, if U satisfies monotonicity, then

$$m = p_1 x_1^* + p_2 x_2^*.$$

• If $x_1^*, x_2^* > 0$, then $MU_1(x_1^*, x_2^*) = \lambda^* p_1$ and $MU_2(x_1^*, x_2^*) = \lambda^* p_2$. Thus: $MU_1(x_1^*, x_2^*) = p_1$

$$\frac{MU_1(x_1^*, x_2^*)}{MU_2(x_1^*, x_2^*)} = \frac{p_1}{p_2}$$
(5)

• and, for interior solutions, MRS equals goods price ratio!!!

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Marshallian demand function

- The solution of the utility maximization problem is one (or more) consumption bundles. These depend on the prices (p_1, p_2) and money m.
- Assume there is a single optimum. Let D¹(p₁, p₂, m) be the function that tells the optimal amount of good 1 for each prices and money. Let D²(p₁, p₂, m) be the function that tells the optimal amount of good 2 for each prices and money. These are the Marshallian (or ordinary or Walrasian or uncompensated) demand functions.

Marshallian demand function

- The solution of the utility maximization problem is one (or more) consumption bundles. These depend on the prices (p_1, p_2) and money *m*.
- Assume there is a single optimum. Let D¹(p₁, p₂, m) be the function that tells the optimal amount of good 1 for each prices and money. Let D²(p₁, p₂, m) be the function that tells the optimal amount of good 2 for each prices and money. These are the Marshallian (or ordinary or Walrasian or uncompensated) demand functions.

• The few assumptions we made on preferences are far reaching. Completeness, transitivity, continuity, and strict convexity together imply that the Marshallian demand functions:

• are continuous in prices and money;

• are homogeneous of degree 0 with respect to prices and money;

• satisfy Walras' Law: $p_1D^1(p_1, p_2, m) + p_2D^2(p_1, p_2, m) = m$.

- The few assumptions we made on preferences are far reaching. *Completeness, transitivity, continuity,* and *strict convexity* together imply that the Marshallian demand functions:
- are continuous in prices and money;

• are homogeneous of degree 0 with respect to prices and money;

• satisfy Walras' Law: $p_1D^1(p_1, p_2, m) + p_2D^2(p_1, p_2, m) = m$.

- The few assumptions we made on preferences are far reaching. *Completeness, transitivity, continuity,* and *strict convexity* together imply that the Marshallian demand functions:
- are continuous in prices and money;
- are homogeneous of degree 0 with respect to prices and money;
- satisfy Walras' Law: $p_1 D^1(p_1, p_2, m) + p_2 D^2(p_1, p_2, m) = m$.

- The few assumptions we made on preferences are far reaching. Completeness, transitivity, continuity, and strict convexity together imply that the Marshallian demand functions:
- are continuous in prices and money;
- are homogeneous of degree 0 with respect to prices and money;
- satisfy Walras' Law: $p_1D^1(p_1, p_2, m) + p_2D^2(p_1, p_2, m) = m$.

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

The indirect utility function

• Substituting the the solution of the utility maximization problem into the utility function gives the **indirect utility function**.

- It answers the following question: what is the maximum amount of utility one can reach by choosing optimally the consumption bundle with prices (*p*₁, *p*₂) and money *m*?
- It is thus a function of prices (p_1, p_2) and money m:

 $V(p_1, p_2, m) \equiv U(D^1(p_1, p_2, m), D^2(p_1, p_2, m)).$

The indirect utility function

- Substituting the the solution of the utility maximization problem into the utility function gives the **indirect utility function**.
- It answers the following question: what is the maximum amount of utility one can reach by choosing optimally the consumption bundle with prices (p_1, p_2) and money m?

• It is thus a function of prices (p_1, p_2) and money m:

 $V(p_1, p_2, m) \equiv U(D^1(p_1, p_2, m), D^2(p_1, p_2, m)).$

The indirect utility function

- Substituting the the solution of the utility maximization problem into the utility function gives the **indirect utility function**.
- It answers the following question: what is the maximum amount of utility one can reach by choosing optimally the consumption bundle with prices (p_1, p_2) and money m?
- It is thus a function of prices (p_1, p_2) and money m:

$$V(p_1, p_2, m) \equiv U(D^1(p_1, p_2, m), D^2(p_1, p_2, m)).$$

• Completeness, transitivity, continuity, and strict convexity together imply that the indirect utility function:

• is non-increasing in prices and increasing in money;

• is homogeneous of degree 0 with respect to prices and money;

• satisfy Roy's identity: $x_i^* = -\frac{MV_{p_i}(p_1, p_2, m)}{MV_m}$.

- Completeness, transitivity, continuity, and strict convexity together imply that the indirect utility function:
- is non-increasing in prices and increasing in money;
- is homogeneous of degree 0 with respect to prices and money;

• satisfy **Roy's identity**:
$$x_i^* = -\frac{MV_{p_i}(p_1, p_2, m)}{MV_m}$$
.

- Completeness, transitivity, continuity, and strict convexity together imply that the indirect utility function:
- is non-increasing in prices and increasing in money;
- is homogeneous of degree 0 with respect to prices and money;

• satisfy **Roy's identity**:
$$x_i^* = -\frac{MV_{p_i}(p_1, p_2, m)}{MV_m}$$
.

- Completeness, transitivity, continuity, and strict convexity together imply that the indirect utility function:
- is non-increasing in prices and increasing in money;
- is homogeneous of degree 0 with respect to prices and money;

• satisfy Roy's identity:
$$x_i^* = -\frac{MV_{p_i}(p_1, p_2, m)}{MV_m}$$
.

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function

Example

- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Example 1

•
$$U(x_1, x_2) = x_1 x_2$$
.

- Be smart! Use the equivalent (why?) utility function $\bar{U}(x_1, x_2) = \ln x_1 + \ln x_2$.
- L(x,λ; p, m) = ln x₁ + ln x₂ + λ [m p₁x₁ p₂x₂];
 FOCs:

•
$$M\bar{U}_1(x_1^*, x_2^*) = \frac{1}{x_1^*} \le \lambda^* p_1;$$

•
$$M\bar{U}_1(x_1^*,x_2^*) = \frac{1}{x_2^*} \le \lambda^* p_2;$$

• $m \ge p_1 x_1^* + p_2 x_2^*$.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Example 1

•
$$U(x_1, x_2) = x_1 x_2$$
.

- Be smart! Use the equivalent (why?) utility function $\bar{U}(x_1, x_2) = \ln x_1 + \ln x_2$.
- ℒ(x,λ; p, m) = ln x₁ + ln x₂ + λ [m p₁x₁ p₂x₂];
 FOCs:

•
$$M\bar{U}_1(x_1^*,x_2^*) = \frac{1}{x_1^*} \le \lambda^* p_1;$$

•
$$M\bar{U}_1(x_1^*,x_2^*) = \frac{1}{x_2^*} \le \lambda^* p_2;$$

• $m \ge p_1 x_1^* + p_2 x_2^*$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example 1

•
$$U(x_1, x_2) = x_1 x_2$$
.

- Be smart! Use the equivalent (why?) utility function $\bar{U}(x_1, x_2) = \ln x_1 + \ln x_2$.
- ℒ(x,λ; p, m) = ln x₁ + ln x₂ + λ [m p₁x₁ p₂x₂];
 FOCs:

•
$$M\bar{U}_1(x_1^*,x_2^*) = \frac{1}{x_1^*} \leq \lambda^* p_1;$$

•
$$MU_1(x_1^*, x_2^*) = \frac{1}{x_2^*} \le \lambda^* p_2;$$

• $m \ge p_1 x_1^* + p_2 x_2^*$.

- 20

< 47 ▶

Example 1...

• By monotonicity of \overline{U} : $m = p_1 x_1^* + p_2 x_2^*$.

• Since $x_1^*, x_2^* > 0$ (why?),

$$\frac{\frac{1}{x_1^*}}{\frac{1}{x_2^*}} = \lambda^* p_2$$

• Take the ratio of these two (λ^* cancels out):

$$\frac{x_2^*}{x_1^*} = \frac{p_1}{p_2},$$

or, equivalently, $x_2^* = \frac{p_1}{p_2} x_1^*$.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Example 1...

- By monotonicity of \overline{U} : $m = p_1 x_1^* + p_2 x_2^*$.
- Since $x_1^*, x_2^* > 0$ (why?),

$$\frac{\frac{1}{x_1^*}}{\frac{1}{x_2^*}} = \lambda^* p_1$$

• Take the ratio of these two (λ^* cancels out):

$$\frac{x_2^*}{x_1^*} = \frac{p_1}{p_2},$$

or, equivalently, $x_2^* = \frac{p_1}{p_2} x_1^*$.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Example 1...

- By monotonicity of \overline{U} : $m = p_1 x_1^* + p_2 x_2^*$.
- Since x₁^{*}, x₂^{*} > 0 (why?),

$$rac{1}{x_1^*}=\lambda^*p_1$$

 $rac{1}{x_2^*}=\lambda^*p_2$

• Take the ratio of these two (λ^* cancels out):

$$\frac{x_2^*}{x_1^*} = \frac{p_1}{p_2},$$

or, equivalently, $x_2^* = \frac{p_1}{p_2} x_1^*$.

э

Image: A matrix

Example 1.....

• Substitute in the budget line and solve:

$$m = p_1 x_1^* + p_2 \cdot \frac{p_1}{p_2} x_1^*$$
$$D^1(p_1, p_2, m) = x_1^* = \frac{1}{2} \frac{m}{p_1}$$

• Since $\frac{1}{2}m$ is optimally spent for x_1^* , the other half is spent for x_2^* :

$$D^2(p_1, p_2, m) = x_2^* = \frac{1}{2} \frac{m}{p_2}.$$

• The indirect utility function is:

$$V(p_1, p_2, m) = D^1(p_1, p_2, m) \cdot D^2(p_1, p_2, m) = \frac{1}{4} \frac{m^2}{p_1 p_2}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Example 1.....

• Substitute in the budget line and solve:

$$m = p_1 x_1^* + p_2 \cdot \frac{p_1}{p_2} x_1^*$$
$$D^1(p_1, p_2, m) = x_1^* = \frac{1}{2} \frac{m}{p_1}$$

• Since $\frac{1}{2}m$ is optimally spent for x_1^* , the other half is spent for x_2^* : • $D^2(p_1, p_2, m) = x_2^* = \frac{1}{2}\frac{m}{p_2}$.

• The indirect utility function is:

$$V(p_1, p_2, m) = D^1(p_1, p_2, m) \cdot D^2(p_1, p_2, m) = \frac{1}{4} \frac{m^2}{p_1 p_2}$$

Example 1.....

• Substitute in the budget line and solve:

$$m = p_1 x_1^* + p_2 \cdot \frac{p_1}{p_2} x_1^*$$
$$D^1(p_1, p_2, m) = x_1^* = \frac{1}{2} \frac{m}{p_1}$$

• Since $\frac{1}{2}m$ is optimally spent for x_1^* , the other half is spent for x_2^* : • 1m

$$D^2(p_1,p_2,m)=x_2^*=\frac{1}{2}\frac{m}{p_2}.$$

• The indirect utility function is:

$$V(p_1, p_2, m) = D^1(p_1, p_2, m) \cdot D^2(p_1, p_2, m) = \frac{1}{4} \frac{m^2}{p_1 p_2}.$$

More examples

- $U(x_1, x_2) = ax_1 + bx_2$.
- $U(x_1, x_2) = \min[ax_1, bx_2].$
- Be smart! Draw the utility functions to understand what you are dealing with! Here, the Lagrangian method is not the way to go!

More examples

- $U(x_1, x_2) = ax_1 + bx_2$.
- $U(x_1, x_2) = \min[ax_1, bx_2].$
- Be smart! Draw the utility functions to understand what you are dealing with! Here, the Lagrangian method is not the way to go!

э

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function

• Example

- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

The cost minimization problem

- What is the consumption bundle (x_1^*, x_2^*) that minimizes the money spent by Andrea, given prices (p_1, p_2) and a goal level of utility $u \le U(x_1^*, x_2^*)$?
- The problem can be written as follows:

 $\min_{\substack{(x_1, x_2) \in X \\ s.t.}} p_1 x_1 + p_2 x_2 \\ s.t. \quad u \le U(x_1^*, x_2^*)$

• The graphic solution is....

The cost minimization problem

- What is the consumption bundle (x_1^*, x_2^*) that minimizes the money spent by Andrea, given prices (p_1, p_2) and a goal level of utility $u \le U(x_1^*, x_2^*)$?
- The problem can be written as follows:

$$\min_{\substack{(x_1, x_2) \in X \\ s.t.}} p_1 x_1 + p_2 x_2 \\ s.t. \quad u \le U(x_1^*, x_2^*)$$
 (6)

• The graphic solution is....

The cost minimization problem

- What is the consumption bundle (x_1^*, x_2^*) that minimizes the money spent by Andrea, given prices (p_1, p_2) and a goal level of utility $u \le U(x_1^*, x_2^*)$?
- The problem can be written as follows:

.

$$\min_{\substack{(x_1, x_2) \in X \\ s.t.}} p_1 x_1 + p_2 x_2 \\ s.t. \quad u \le U(x_1^*, x_2^*)$$
 (6)

• The graphic solution is....

• First, write the Lagrangian of the minimization problem: $\mathscr{L}(\mathbf{x}, \lambda; \mathbf{p}, u) = p_1 x_1 + p_2 x_2 + \lambda [u - U(x_1, x_2)]$ (7) • The FOCs require that there exists $\lambda^* \ge 0$ such that: $p_i \ge \lambda^* M U_i(x_1^*, x_2^*)$ for each i = 1, 2 (8) $u \le U(x_1^*, x_2^*)$ (9)

э

• First, write the Lagrangian of the minimization problem:

$$\mathscr{L}(\mathbf{x},\lambda;\mathbf{p},u) = p_1 x_1 + p_2 x_2 + \lambda \left[u - U(x_1,x_2)\right]$$
(7)

• The FOCs require that there exists $\lambda^* \ge 0$ such that:

$$p_i \ge \lambda^* MU_i(x_1^*, x_2^*)$$
 for each $i = 1, 2$ (8)

$$u \le U(x_1^*, x_2^*)$$
 (9)

• Then, if U satisfies monotonicity and $p_1, p_2 > 0$, then

$$u=U(x_1^*,x_2^*).$$

• If $x_1^*, x_2^* > 0$, then $p_1 = \lambda^* M U_1(x_1^*, x_2^*)$ and $p_2 = \lambda^* M U_2(x_1^*, x_2^*)$. Thus: $M U_1(x_1^*, x_2^*) = p_1$

$$\frac{MU_1(x_1^*, x_2^*)}{MU_2(x_1^*, x_2^*)} = \frac{p_1}{p_2}$$
(10)

< □ > < □ > < □ > < □ > < □ > < □ >

• and, for interior solutions, MRS equals goods price ratio!!!

• Then, if U satisfies monotonicity and $p_1, p_2 > 0$, then

$$u=U(x_1^*,x_2^*).$$

• If $x_1^*, x_2^* > 0$, then $p_1 = \lambda^* M U_1(x_1^*, x_2^*)$ and $p_2 = \lambda^* M U_2(x_1^*, x_2^*)$. Thus: $\frac{M U_1(x_1^*, x_2^*)}{M U_2(x_1^*, x_2^*)} = \frac{p_1}{p_2}$ (10)

• and, for interior solutions, MRS equals goods price ratio!!!

イロト 不得下 イヨト イヨト

• Then, if U satisfies monotonicity and $p_1, p_2 > 0$, then

$$u=U(x_1^*,x_2^*).$$

- If $x_1^*, x_2^* > 0$, then $p_1 = \lambda^* M U_1(x_1^*, x_2^*)$ and $p_2 = \lambda^* M U_2(x_1^*, x_2^*)$. Thus: $\frac{M U_1(x_1^*, x_2^*)}{M U_2(x_1^*, x_2^*)} = \frac{p_1}{p_2}$ (10)
- and, for interior solutions, MRS equals goods price ratio!!!

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Hicksian demand function

- The solution of the cost minimization problem is one (or more) consumption bundles. These depend on the prices (p_1, p_2) and the utility level u.
- Assume there is a single optimum. Let $H^1(p_1, p_2, u)$ be the function that tells the optimal amount of good 1 for each prices and utility level. Let $H^2(p_1, p_2, u)$ be the function that tells the optimal amount of good 2 for each prices and utility level. These are the **Hicksian** (or compensated) **demand functions**.

Hicksian demand function

- The solution of the cost minimization problem is one (or more) consumption bundles. These depend on the prices (p_1, p_2) and the utility level u.
- Assume there is a single optimum. Let $H^1(p_1, p_2, u)$ be the function that tells the optimal amount of good 1 for each prices and utility level. Let $H^2(p_1, p_2, u)$ be the function that tells the optimal amount of good 2 for each prices and utility level. These are the **Hicksian** (or compensated) **demand functions**.

• *Completeness, transitivity, continuity,* and *strict convexity* together imply that the Hicksian demand functions:

are continuous in prices and utility;

• are homogeneous of degree 1 with respect to prices;

• satisfy: $U(H^1(p_1, p_2, u), H^2(p_1, p_2, u)) = u$.

• *Completeness, transitivity, continuity,* and *strict convexity* together imply that the Hicksian demand functions:

are continuous in prices and utility;

• are homogeneous of degree 1 with respect to prices;

• satisfy: $U(H^1(p_1, p_2, u), H^2(p_1, p_2, u)) = u$.

- *Completeness, transitivity, continuity,* and *strict convexity* together imply that the Hicksian demand functions:
- are continuous in prices and utility;
- are homogeneous of degree 1 with respect to prices;

• satisfy: $U(H^1(p_1, p_2, u), H^2(p_1, p_2, u)) = u$.

- *Completeness, transitivity, continuity,* and *strict convexity* together imply that the Hicksian demand functions:
- are continuous in prices and utility;
- are homogeneous of degree 1 with respect to prices;

• satisfy:
$$U(H^1(p_1, p_2, u), H^2(p_1, p_2, u)) = u$$
.

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

The cost function

• The **cost function** is the cost of the consumption bundle(s) that solves the cost minimization problem.

- It answers the following question: what is the amount of money needed to choose optimally a consumption bundle that achieves the utility level *u* at prices (*p*₁, *p*₂)?
- Thus, the cost function depends on the prices (*p*₁, *p*₂) and the utility level *u*:

$$C(p_1, p_2, u) \equiv p_1 H^1(p_1, p_2, u) + p_2 H^2(p_1, p_2, u)$$

The cost function

- The **cost function** is the cost of the consumption bundle(s) that solves the cost minimization problem.
- It answers the following question: what is the amount of money needed to choose optimally a consumption bundle that achieves the utility level *u* at prices (*p*₁, *p*₂)?
- Thus, the cost function depends on the prices (p_1, p_2) and the utility level u:

$$C(p_1, p_2, u) \equiv p_1 H^1(p_1, p_2, u) + p_2 H^2(p_1, p_2, u)$$

The cost function

- The **cost function** is the cost of the consumption bundle(s) that solves the cost minimization problem.
- It answers the following question: what is the amount of money needed to choose optimally a consumption bundle that achieves the utility level *u* at prices (*p*₁, *p*₂)?
- Thus, the cost function depends on the prices (p_1, p_2) and the utility level u:

$$C(p_1, p_2, u) \equiv p_1 H^1(p_1, p_2, u) + p_2 H^2(p_1, p_2, u)$$

• *Completeness, transitivity, continuity,* and *strict convexity* together imply that the cost function:

- is non-decreasing in all consumption good prices are strictly increasing in at least one;
- is concave in prices;
- is homogeneous of degree 1 in prices;
- ► satisfies: $\frac{\partial C(p_1,p_2,u)}{\partial p_i} = H^i(p_1,p_2,u)$ with i = 1,2;
- ▶ with monotonicity, it is also strictly increasing in u.

- *Completeness, transitivity, continuity,* and *strict convexity* together imply that the cost function:
 - is non-decreasing in all consumption good prices are strictly increasing in at least one;
 - ▶ is concave in prices;
 - is homogeneous of degree 1 in prices;
 - ► satisfies: $\frac{\partial C(p_1,p_2,u)}{\partial p_i} = H^i(p_1,p_2,u)$ with i = 1,2;
 - ▶ with *monotonicity*, it is also strictly increasing in *u*.

- *Completeness, transitivity, continuity,* and *strict convexity* together imply that the cost function:
 - is non-decreasing in all consumption good prices are strictly increasing in at least one;
 - is concave in prices;
 - is homogeneous of degree 1 in prices;
 - ► satisfies: $\frac{\partial C(p_1,p_2,u)}{\partial p_i} = H^i(p_1,p_2,u)$ with i = 1,2;
 - ▶ with *monotonicity*, it is also strictly increasing in *u*.

- *Completeness, transitivity, continuity,* and *strict convexity* together imply that the cost function:
 - is non-decreasing in all consumption good prices are strictly increasing in at least one;
 - is concave in prices;
 - is homogeneous of degree 1 in prices;
 - ► satisfies: $\frac{\partial C(p_1,p_2,u)}{\partial p_i} = H^i(p_1,p_2,u)$ with i = 1,2;
 - ▶ with *monotonicity*, it is also strictly increasing in *u*.

- *Completeness, transitivity, continuity,* and *strict convexity* together imply that the cost function:
 - is non-decreasing in all consumption good prices are strictly increasing in at least one;
 - is concave in prices;
 - is homogeneous of degree 1 in prices;

▶ satisfies:
$$\frac{\partial C(p_1,p_2,u)}{\partial p_i} = H^i(p_1,p_2,u)$$
 with $i = 1,2$;

with monotonicity, it is also strictly increasing in u.

- *Completeness, transitivity, continuity,* and *strict convexity* together imply that the cost function:
 - is non-decreasing in all consumption good prices are strictly increasing in at least one;
 - is concave in prices;
 - is homogeneous of degree 1 in prices;

▶ satisfies:
$$\frac{\partial C(p_1,p_2,u)}{\partial p_i} = H^i(p_1,p_2,u)$$
 with $i = 1,2$;

• with *monotonicity*, it is also strictly increasing in *u*.

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Duality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

Example 1

• $U(x_1, x_2) = x_1 x_2$.

• You can use again the equivalent function $\overline{U}(x_1, x_2) = \ln x_1 + \ln x_2$. But:

 $u \leq U(x_1, x_2) \Leftrightarrow \ln u \leq \ln x_1 + \ln x_2$

L(x, λ; p, u) = p₁x₁ + p₂x₂ + λ [ln u - ln x₁ - ln x₂];
FOCs:

*p*₁ ≥ λ*
$$\frac{1}{x_1^*}$$
;
 *p*₂ ≥ λ* $\frac{1}{x_2^*}$;
 ln *u* ≤ ln *x*₁* + ln *x*₂*

э

ヨトィヨト

< 17 ►

Example 1

•
$$U(x_1, x_2) = x_1 x_2$$
.

• You can use again the equivalent function $\bar{U}(x_1, x_2) = \ln x_1 + \ln x_2$. But:

 $u \leq U(x_1, x_2) \Leftrightarrow \ln u \leq \ln x_1 + \ln x_2$

L(x, λ; p, u) = p₁x₁ + p₂x₂ + λ [ln u - ln x₁ - ln x₂];
FOCs:

*p*₁ ≥ λ*
$$\frac{1}{x_1^*}$$
;
 *p*₂ ≥ λ* $\frac{1}{x_2^*}$;
 ln *u* ≤ ln x_1^* + ln x_2^*

э

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example 1

•
$$U(x_1, x_2) = x_1 x_2$$
.

• You can use again the equivalent function $\overline{U}(x_1, x_2) = \ln x_1 + \ln x_2$. But:

 $u \leq U(x_1, x_2) \Leftrightarrow \ln u \leq \ln x_1 + \ln x_2$

•
$$\mathscr{L}(\mathbf{x}, \lambda; \mathbf{p}, u) = p_1 x_1 + p_2 x_2 + \lambda [\ln u - \ln x_1 - \ln x_2];$$

• FOCs:

▶
$$p_1 \ge \lambda^* \frac{1}{x_1^*};$$

▶ $p_2 \ge \lambda^* \frac{1}{x_2^*};$
▶ $\ln u \le \ln x_1^* + \ln x_2^*.$

- ∢ ⊢⊒ →

э

Example 1...

- By monotonicity of \overline{U} and $p_1, p_2 > 0$: $\ln u = \ln x_1^* + \ln x_2^*$.
- Since $x_1^*, x_2^* > 0$ (why?),

$$p_1 = \lambda^* \frac{1}{x_1^*}$$
$$p_2 = \lambda^* \frac{1}{x_2^*}$$

• Take the ratio of these two (λ^* cancels out):

$$\frac{x_2^*}{x_1^*} = \frac{p_1}{p_2}.$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 1...

• By monotonicity of \overline{U} and $p_1, p_2 > 0$: $\ln u = \ln x_1^* + \ln x_2^*$. • Since $x_1^*, x_2^* > 0$ (why?),

$$p_1 = \lambda^* \frac{1}{x_1^*}$$
$$p_2 = \lambda^* \frac{1}{x_2^*}$$

• Take the ratio of these two (λ^* cancels out):

$$\frac{x_2^*}{x_1^*} = \frac{p_1}{p_2}.$$

э

A B M A B M

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example 1...

- By monotonicity of \overline{U} and $p_1, p_2 > 0$: $\ln u = \ln x_1^* + \ln x_2^*$.
- Since $x_1^*, x_2^* > 0$ (why?),

$$p_1 = \lambda^* rac{1}{x_1^*} p_2 = \lambda^* rac{1}{x_2^*}$$

• Take the ratio of these two (λ^* cancels out):

$$\frac{x_2^*}{x_1^*} = \frac{p_1}{p_2}$$

Image: A matrix

Example 1.....

• Substitute in the utility constraint and solve:

$$\ln u = \ln x_1^* + \ln \left[\frac{p_1}{p_2} x_1^*\right]$$
$$H^1(p_1, p_2, u) = x_1^* = \sqrt{\frac{p_2}{p_1}} u$$
$$\text{Since } x_2^* = \frac{p_1}{p_2} x_1^*:$$
$$H^2(p_1, p_2, u) = x_2^* = \sqrt{\frac{p_1}{p_2}} u.$$

• The cost function is:

$$C(p_1, p_2, u) = p_1 H^1(p_1, p_2, u) + p_2 H^2(p_1, p_2, u)$$

= $2\sqrt{p_1 p_2 u}$

< 47 ▶

э

Example 1.....

• Substitute in the utility constraint and solve:

$$\ln u = \ln x_1^* + \ln \left[\frac{p_1}{p_2} x_1^*\right]$$
$$H^1(p_1, p_2, u) = x_1^* = \sqrt{\frac{p_2}{p_1}u}$$
$$\text{Since } x_2^* = \frac{p_1}{p_2} x_1^*:$$
$$H^2(p_1, p_2, u) = x_2^* = \sqrt{\frac{p_1}{p_2}u}.$$

• The cost function is:

$$C(p_1, p_2, u) = p_1 H^1(p_1, p_2, u) + p_2 H^2(p_1, p_2, u)$$

= $2\sqrt{p_1 p_2 u}$

э

∃ ► < ∃ ►</p>

Image: A matrix

Example 1.....

• Substitute in the utility constraint and solve:

$$\ln u = \ln x_1^* + \ln \left[\frac{p_1}{p_2} x_1^*\right]$$
$$H^1(p_1, p_2, u) = x_1^* = \sqrt{\frac{p_2}{p_1}u}$$
$$\text{Since } x_2^* = \frac{p_1}{p_2} x_1^*:$$
$$H^2(p_1, p_2, u) = x_2^* = \sqrt{\frac{p_1}{p_2}u}.$$

• The cost function is:

$$C(p_1, p_2, u) = p_1 H^1(p_1, p_2, u) + p_2 H^2(p_1, p_2, u)$$

= $2\sqrt{p_1 p_2 u}$

э

A B M A B M

Image: A matrix

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Duality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

• How are demands, indirect utility, and cost function related?

- $H^{i}(p_{1}, p_{2}, u) = D^{i}(p_{1}, p_{2}, C(p_{1}, p_{2}, u));$
- $D^{i}(p_{1}, p_{2}, m) = H^{i}(p_{1}, p_{2}, V(p_{1}, p_{2}, m));$
- $V(p_1, p_2, C(p_1, p_2, u)) = u;$
- $C(p_1, p_2, V(p_1, p_2, m)) = m.$

- How are demands, indirect utility, and cost function related?
 - $H^{i}(p_{1}, p_{2}, u) = D^{i}(p_{1}, p_{2}, C(p_{1}, p_{2}, u));$
 - $D^{i}(p_{1}, p_{2}, m) = H^{i}(p_{1}, p_{2}, V(p_{1}, p_{2}, m));$
 - $V(p_1, p_2, C(p_1, p_2, u)) = u;$
 - $C(p_1, p_2, V(p_1, p_2, m)) = m.$

э

- How are demands, indirect utility, and cost function related?
 - $H^{i}(p_{1}, p_{2}, u) = D^{i}(p_{1}, p_{2}, C(p_{1}, p_{2}, u));$
 - $D^{i}(p_{1}, p_{2}, m) = H^{i}(p_{1}, p_{2}, V(p_{1}, p_{2}, m));$
 - $V(p_1, p_2, C(p_1, p_2, u)) = u;$
 - $C(p_1, p_2, V(p_1, p_2, m)) = m.$

3

- How are demands, indirect utility, and cost function related?
 - $H^{i}(p_{1}, p_{2}, u) = D^{i}(p_{1}, p_{2}, C(p_{1}, p_{2}, u));$
 - $D^{i}(p_{1},p_{2},m) = H^{i}(p_{1},p_{2},V(p_{1},p_{2},m));$
 - $V(p_1, p_2, C(p_1, p_2, u)) = u;$
 - $C(p_1, p_2, V(p_1, p_2, m)) = m.$

3

- How are demands, indirect utility, and cost function related?
 - $H^{i}(p_{1}, p_{2}, u) = D^{i}(p_{1}, p_{2}, C(p_{1}, p_{2}, u));$
 - $D^{i}(p_{1},p_{2},m) = H^{i}(p_{1},p_{2},V(p_{1},p_{2},m));$
 - $V(p_1, p_2, C(p_1, p_2, u)) = u;$
 - $C(p_1, p_2, V(p_1, p_2, m)) = m.$

3

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Duality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

- Having a solution for each prices and each level of money allows us to study what happens when changing these parameters of the decision problem.
- We start with a change of the money level: how does the Marshallian demand change when money changes?

• if
$$\frac{\partial D'}{\partial m} \ge 0$$
, then *i* is a **normal good**.

• if
$$\frac{\partial D'}{\partial m} < 0$$
, then *i* is an **inferior good**.

- Having a solution for each prices and each level of money allows us to study what happens when changing these parameters of the decision problem.
- We start with a change of the money level: how does the Marshallian demand change when money changes?

▶ if
$$\frac{\partial D^i}{\partial m} \ge 0$$
, then *i* is a **normal good**.
▶ if $\frac{\partial D^i}{\partial m} < 0$, then *i* is an **inferior good**

- Having a solution for each prices and each level of money allows us to study what happens when changing these parameters of the decision problem.
- We start with a change of the money level: how does the Marshallian demand change when money changes?

• if
$$\frac{\partial D^i}{\partial m} \ge 0$$
, then *i* is a **normal good**.

• if
$$\frac{\partial D'}{\partial m} < 0$$
, then *i* is an **inferior good**.

Price effects

- What happens on the demand of good *i* when the price of good *j* changes?
- Let us start from our previous observation that:

$$H^{i}(\mathbf{p}, u) = D^{i}(\mathbf{p}, C(\mathbf{p}, u))$$

• Take the derivative w.r.t. *p_j*:

$$\frac{\partial H^{i}(\mathbf{p}, u)}{\partial p_{j}} \equiv H^{i}_{j}(\mathbf{p}, u) = \frac{\partial D^{i}(\mathbf{p}, C(\mathbf{p}, u))}{\partial p_{j}} = = \frac{\partial D^{i}(\mathbf{p}, m)}{\partial p_{j}} + \frac{\partial D^{i}(\mathbf{p}, C(\mathbf{p}, u))}{\partial m} \frac{\partial C(\mathbf{p}, u)}{\partial p_{j}} = = D^{i}_{j}(\mathbf{p}, m) + D^{i}_{m}(\mathbf{p}, m) C_{j}(\mathbf{p}, u).$$

Price effects

- What happens on the demand of good *i* when the price of good *j* changes?
- Let us start from our previous observation that:

$$H^{i}(\mathbf{p}, u) = D^{i}(\mathbf{p}, C(\mathbf{p}, u))$$

• Take the derivative w.r.t. *p_j*:

$$\frac{\partial H^{i}(\mathbf{p}, u)}{\partial p_{j}} \equiv H^{i}_{j}(\mathbf{p}, u) = \frac{\partial D^{i}(\mathbf{p}, C(\mathbf{p}, u))}{\partial p_{j}} = = \frac{\partial D^{i}(\mathbf{p}, m)}{\partial p_{j}} + \frac{\partial D^{i}(\mathbf{p}, C(\mathbf{p}, u))}{\partial m} \frac{\partial C(\mathbf{p}, u)}{\partial p_{j}} = = D^{i}_{j}(\mathbf{p}, m) + D^{i}_{m}(\mathbf{p}, m) C_{j}(\mathbf{p}, u).$$

Price effects

- What happens on the demand of good *i* when the price of good *j* changes?
- Let us start from our previous observation that:

$$H^{i}(\mathbf{p}, u) = D^{i}(\mathbf{p}, C(\mathbf{p}, u))$$

• Take the derivative w.r.t. p_j:

$$\frac{\partial H^{i}(\mathbf{p}, u)}{\partial p_{j}} \equiv H^{i}_{j}(\mathbf{p}, u) = \frac{\partial D^{i}(\mathbf{p}, C(\mathbf{p}, u))}{\partial p_{j}} = \\ = \frac{\partial D^{i}(\mathbf{p}, m)}{\partial p_{j}} + \frac{\partial D^{i}(\mathbf{p}, C(\mathbf{p}, u))}{\partial m} \frac{\partial C(\mathbf{p}, u)}{\partial p_{j}} = \\ = D^{i}_{j}(\mathbf{p}, m) + D^{i}_{m}(\mathbf{p}, m) C_{j}(\mathbf{p}, u).$$

Price effects...

• But since
$$x_j^* = \frac{\partial C(\mathbf{p}, v)}{\partial p_j} = C_j(\mathbf{p}, u)$$
, we get the Slutsky equation:
 $D_j^i(\mathbf{p}, m) = H_j^i(\mathbf{p}, v) - x_j^* D_m^i(\mathbf{p}, m)$

• The total effect of a price change $D_j^i(\mathbf{p}, m)$ is the sum of a substitution effect $H_i^i(\mathbf{p}, v)$ and an income effect $-x_i^* D_m^i(\mathbf{p}, m)$.

э

< 🗗 🕨

Price effects...

• But since
$$x_j^* = \frac{\partial C(\mathbf{p}, v)}{\partial p_j} = C_j(\mathbf{p}, u)$$
, we get the Slutsky equation:
 $D_j^i(\mathbf{p}, m) = H_j^i(\mathbf{p}, v) - x_j^* D_m^i(\mathbf{p}, m)$

• The total effect of a price change $D_j^i(\mathbf{p}, m)$ is the sum of a substitution effect $H_i^i(\mathbf{p}, v)$ and an income effect $-x_i^* D_m^i(\mathbf{p}, m)$.

- To repeat, if $D_m^i(\mathbf{p}, m)$ is negative, the ordinary demand for good *i* is decreasing with income: then *i* is an **inferior good**.
- If $D_m^i(\mathbf{p}, m)$ is non-negative, the ordinary demand for good *i* is non-decreasing with income: then *i* is a **normal good**.

- To repeat, if $D_m^i(\mathbf{p}, m)$ is negative, the ordinary demand for good *i* is decreasing with income: then *i* is an **inferior good**.
- If $D_m^i(\mathbf{p}, m)$ is non-negative, the ordinary demand for good *i* is non-decreasing with income: then *i* is a **normal good**.

Substitution effects

•
$$H_{j}^{i}(\mathbf{p}, \mathbf{v}) = \frac{\partial \frac{\partial C(\mathbf{p}, \mathbf{v})}{\partial p_{i}}}{\partial p_{j}} \equiv C_{ij}(\mathbf{p}, \mathbf{v}) = C_{ji}(\mathbf{p}, \mathbf{v}) \equiv \frac{\partial \frac{\partial C(\mathbf{p}, \mathbf{v})}{\partial p_{j}}}{\partial p_{i}} = H_{i}^{j}(\mathbf{p}, \mathbf{v})$$

• Thus: the substitution effects are symmetric!

- If Hⁱ_j (p, v) > 0, goods i and j are net substitutes: an increase in price of good j increases the Hicksian demand for good i.
- If Hⁱ_j (p, v) < 0, goods i and j are net complements: an increase in price of good j decreases the Hicksian demand for good i.

Substitution effects

•
$$H_{j}^{i}(\mathbf{p}, \mathbf{v}) = \frac{\partial \frac{\partial C(\mathbf{p}, \mathbf{v})}{\partial p_{i}}}{\partial p_{j}} \equiv C_{ij}(\mathbf{p}, \mathbf{v}) = C_{ji}(\mathbf{p}, \mathbf{v}) \equiv \frac{\partial \frac{\partial C(\mathbf{p}, \mathbf{v})}{\partial p_{j}}}{\partial p_{i}} = H_{i}^{j}(\mathbf{p}, \mathbf{v})$$

• Thus: the substitution effects are symmetric!

- If Hⁱ_j (p, v) > 0, goods i and j are net substitutes: an increase in price of good j increases the Hicksian demand for good i.
- If Hⁱ_j(p, v) < 0, goods i and j are net complements: an increase in price of good j decreases the Hicksian demand for good i.

Substitution effects

•
$$H_{j}^{i}(\mathbf{p}, \mathbf{v}) = \frac{\partial \frac{\partial C(\mathbf{p}, \mathbf{v})}{\partial p_{i}}}{\partial p_{j}} \equiv C_{ij}(\mathbf{p}, \mathbf{v}) = C_{ji}(\mathbf{p}, \mathbf{v}) \equiv \frac{\partial \frac{\partial C(\mathbf{p}, \mathbf{v})}{\partial p_{j}}}{\partial p_{i}} = H_{i}^{j}(\mathbf{p}, \mathbf{v})$$

- Thus: the substitution effects are symmetric!
- If Hⁱ_j (p, v) > 0, goods i and j are net substitutes: an increase in price of good j increases the Hicksian demand for good i.
- If Hⁱ_j(**p**, v) < 0, goods i and j are **net complements**: an increase in price of good j **decreases** the Hicksian demand for good i.

The own price effect

• We can look at the effect of a variation of the price of good *i* on the demand of good *i*:

$$D_i^i(\mathbf{p},m) = H_i^i(\mathbf{p},v) - x_i^* D_m^i(\mathbf{p},m)$$

- By the concavity of the cost function $H_i^i(\mathbf{p}, v) = C_{ii}(\mathbf{p}, v) < 0$.
- What about the income effect? the income effect can be both positive or negative.
- If both Dⁱ_m(**p**, m) < 0 (inferior good) and x^{*}_iD^j_m(**p**, m) < Hⁱ_i(**p**, v) < 0, then the negative income effect dominates the substitution effect and the total effect is positive, i.e. Dⁱ_i(**p**, m) > 0: increasing the price of good *i* increases the demand of good *i*. Then *i* is a Giffen good.
- If i is a normal good, Dⁱ_i(p, m) < 0: demand decreases when the price increases.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

The own price effect

• We can look at the effect of a variation of the price of good *i* on the demand of good *i*:

$$D_i^i(\mathbf{p},m) = H_i^i(\mathbf{p},v) - x_i^* D_m^i(\mathbf{p},m)$$

- By the concavity of the cost function $H_i^i(\mathbf{p}, v) = C_{ii}(\mathbf{p}, v) < 0$.
- What about the income effect? the income effect can be both positive or negative.
- If both Dⁱ_m(**p**, m) < 0 (inferior good) and x^{*}_iDⁱ_m(**p**, m) < Hⁱ_i(**p**, v) < 0, then the negative income effect dominates the substitution effect and the total effect is positive, i.e. Dⁱ_i(**p**, m) > 0: increasing the price of good *i* increases the demand of good *i*. Then *i* is a Giffen good.
- If i is a normal good, Dⁱ_i(p, m) < 0: demand decreases when the price increases.

э

< □ > < □ > < □ > < □ > < □ > < □ >

The own price effect

• We can look at the effect of a variation of the price of good *i* on the demand of good *i*:

$$D_i^i(\mathbf{p},m) = H_i^i(\mathbf{p},v) - x_i^* D_m^i(\mathbf{p},m)$$

- By the concavity of the cost function $H_i^i(\mathbf{p}, v) = C_{ii}(\mathbf{p}, v) < 0$.
- What about the income effect? the income effect can be both positive or negative.
- If both Dⁱ_m(**p**, m) < 0 (inferior good) and x^{*}_iDⁱ_m(**p**, m) < Hⁱ_i(**p**, v) < 0, then the negative income effect dominates the substitution effect and the total effect is positive, i.e. Dⁱ_i(**p**, m) > 0: increasing the price of good *i* increases the demand of good *i*. Then *i* is a Giffen good.
- If i is a normal good, Dⁱ_i(**p**, m) < 0: demand decreases when the price increases.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Ouality relations and comparative statics

(日) (同) (目) (日)

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

• Assume price of good 1 decreases from \bar{p}_1 to p'_1 . How to measure the benefit of the price change on a consumer?

• graphically.

- Algebraically. Using the consumer's surplus CS.
- The consumer's surplus at prices \bar{p}_1 is:

$$CS(\bar{p}_1,p_2,m) = \int_{\bar{p}_1}^{\infty} D^i(p_1,p_2,m) dp_1.$$

$$\Delta CS = CS(\bar{p}_1, p_2, m) - CS(p'_1, p_2, m) = \int_{p'_1}^{\bar{p}_1} D^1(p_1, p_2, m) dp_1.$$

• Assume price of good 1 decreases from \bar{p}_1 to p'_1 . How to measure the benefit of the price change on a consumer?

• graphically.

- Algebraically. Using the consumer's surplus CS.
- The consumer's surplus at prices \bar{p}_1 is:

$$CS(\bar{p}_1,p_2,m) = \int_{\bar{p}_1}^{\infty} D^i(p_1,p_2,m) dp_1.$$

$$\Delta CS = CS(\bar{p}_1, p_2, m) - CS(p'_1, p_2, m) = \int_{p'_1}^{\bar{p}_1} D^1(p_1, p_2, m) dp_1.$$

- Assume price of good 1 decreases from \bar{p}_1 to p'_1 . How to measure the benefit of the price change on a consumer?
- graphically.
- Algebraically. Using the consumer's surplus CS.
- The consumer's surplus at prices \bar{p}_1 is:

$$CS(\bar{p}_1,p_2,m) = \int_{\bar{p}_1}^{\infty} D^i(p_1,p_2,m) dp_1.$$

$$\Delta CS = CS(\bar{p}_1, p_2, m) - CS(p'_1, p_2, m) = \int_{p'_1}^{\bar{p}_1} D^1(p_1, p_2, m) dp_1.$$

- Assume price of good 1 decreases from \bar{p}_1 to p'_1 . How to measure the benefit of the price change on a consumer?
- graphically.
- Algebraically. Using the consumer's surplus CS.
- The consumer's surplus at prices \bar{p}_1 is:

$$CS(\bar{p}_1,p_2,m) = \int_{\bar{p}_1}^{\infty} D^i(p_1,p_2,m) dp_1.$$

$$\Delta CS = CS(\bar{p}_1, p_2, m) - CS(p'_1, p_2, m) \\ = \int_{p'_1}^{\bar{p}_1} D^1(p_1, p_2, m) dp_1.$$

Outline

Introduction

- Course outline
- Economic models
- An example
- 2 Budget constraint
 - Basic ingredients
 - The budget set
- 3 Preference
 - Definitions
 - Properties

Utility

- The utility function
- Examples and MRS
- Choice: utility maximization
 - The consumer's problem

- The Marshallian demand function
- The indirect utility function
- Example
- 6 Choice: cost minimization
 - The consumer's problem
 - The Hicksian demand function
 - The cost function
 - Example
- Duality relations and comparative statics

イロト イ理ト イヨト イヨト

- Duality relations
- Comparative statics
- 8 Consumer's surplus
 - Consumer's surplus
 - Other measures

2 further measures: compensated variation

- What is the money change that would make the consumer indifferent between the "initial" consumption D¹ (p
 ₁, p₂, m), D² (p
 ₁, p₂, m) and a consumption bundle at prices p₁'?
- the compensated variation CV is such that

$$v = V\left(p_1', p_2, m - CV
ight)$$
;

$$CV\left(\bar{p}_{1}\rightarrow p_{1}'\right)=C\left(\bar{p}_{1},p_{2},v\right)-C\left(p_{1}',p_{2},v\right).$$

2 further measures: compensated variation

- What is the money change that would make the consumer indifferent between the "initial" consumption D¹(p
 ₁, p₂, m), D²(p
 ₁, p₂, m) and a consumption bundle at prices p₁'?
- the compensated variation CV is such that

$$\mathbf{v}=V\left(\mathbf{p}_{1}^{\prime},\mathbf{p}_{2},\mathbf{m}-\mathbf{C}V
ight)$$
 ;

$$CV(\bar{p}_1 \to p'_1) = C(\bar{p}_1, p_2, v) - C(p'_1, p_2, v).$$

2 further measures: equivalent variation

- What is the money change that would make the consumer indifferent between the "final" consumption D¹(p'₁, p₂, m), (p'₁, p₂, m) and a consumption bundle at prices p
 ₁?
- the equivalent variation EV is such that

$$v' = V(\bar{p}_1, p_2, m + EV);$$

$$EV\left(\mathbf{p}\rightarrow\mathbf{p}'\right)=C\left(\bar{p}_{1},p_{2},v'\right)-C\left(p_{1}',p_{2},v'\right).$$

2 further measures: equivalent variation

- What is the money change that would make the consumer indifferent between the "final" consumption D¹(p'₁, p₂, m), (p'₁, p₂, m) and a consumption bundle at prices p
 ₁?
- the equivalent variation EV is such that

$$v' = V(\bar{p}_1, p_2, m + EV);$$

$$EV\left(\mathbf{p} \rightarrow \mathbf{p}'\right) = C\left(\bar{p}_{1}, p_{2}, v'\right) - C\left(p'_{1}, p_{2}, v'\right).$$