Microeconomics 3200/4200:

Part 1

P. Piacquadio
p.g.piacquadio@econ.uio.no

August 21, 2017

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Course outline: part 1

- Part 1 is about microeconomics:
- short introduction (Lecture 1);
- consumer theory (Lectures 1-4);
- partial equilibrium (Lecture 5);
- production theory (Lectures 6-8);
- uncertainty (Lecture 9).

Course outline: part 2

- Part 2 is about game theory (Lectures 10-16);
- with Professor Geir Asheim.

Seminars

- Seminar teachers are:
- Torje Hegna (torje.hegna@econ.uio.no); and
- Seongbong Hong (seongbong.hong@econ.uio.no).

Exam

- (Final) written examination on December 15th at 14:30 (3 hours).
- Compulsory assignment will be available in FRONTER:
- 2 tests:

夫 "micro," 3 Oct at 9:00 to Oct 5 at 15:00; and

* "game theory," 7 Nov at 9:00 to 9 Nov at 15:00.
- each test consists of 10 multiple-choice questions;
- to pass the compulsory assignment you must:
» submit answers to both tests;
\star answer correctly $11 /(10+10)$ questions.
- For more information, see course page.

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics

8 Consumer's surplus

- Consumer's surplus
- Other measures

Economic models

- Economics is about almost everything:
- Varian writes: "economics proceeds by developing models of social phenomena."
- Why models?
- Two basic principles:
- optimization principle;
- equilibrium principle.

Economic models

- Economics is about almost everything:
- Varian writes: "economics proceeds by developing models of social phenomena."
- Why models?
- Two basic principles:
- optimization principle;
- equilibrium principle.

Economic models

- Economics is about almost everything:
- Varian writes: "economics proceeds by developing models of social phenomena."
- Why models?
- Two basic principles:
- optimization principle;
- equilibrium principle.

The optimization principle

- People try to do what is best for them, given the available alternatives.
- This is quite reasonable.
- The assumption tells that if Andrea decides to spend her savings on a new bike, it must be true that it is in her best interest to do so...
- ...given her information about the available alternatives, given her quantity of saving, given the prices of commodities, given what her friends decided to do, etc.

The optimization principle

- People try to do what is best for them, given the available alternatives.
- This is quite reasonable.
- The assumption tells that if Andrea decides to spend her savings on a new bike, it must be true that it is in her best interest to do so...
- ...given her information about the available alternatives, given her quantity of saving, given the prices of commodities, given what her friends decided to do, etc.

The optimization principle

- People try to do what is best for them, given the available alternatives.
- This is quite reasonable.
- The assumption tells that if Andrea decides to spend her savings on a new bike, it must be true that it is in her best interest to do so...
- ...given her information about the available alternatives, given her quantity of saving, given the prices of commodities, given what her friends decided to do, etc.

The equilibrium principle

- Prices adjust and ensure that the "demand" meets its "supply."
- This is somewhat more demanding.
- Sometimes prices adjust too slowly or too much. Sometimes other things happen before reaching the equilibrium, so that differences in demand and supply may increase.
- In general, however, the prices of most goods are fairly stable...so we accept the equilibrium principle.

The equilibrium principle

- Prices adjust and ensure that the "demand" meets its "supply."
- This is somewhat more demanding.
- Sometimes prices adjust too slowly or too much. Sometimes other things happen before reaching the equilibrium, so that differences in demand and supply may increase.
- In general, however, the prices of most goods are fairly stable...so we accept the equilibrium principle.

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

An example: the rental market

- Let us look at the rental market around Blindern.
- We can start investigating the demand side:
- How many students are willing to pay 15.000 NOK ?
- How many are willing to pay 14.000 NOK?
- How many are willing to pay 13.000 NOK?
- The reservation price is the largest price that each student would be willing to pay.
- This information can be summarized compactly in a graph.

An example: the rental market

- Let us look at the rental market around Blindern.
- We can start investigating the demand side:
- How many students are willing to pay 15.000 NOK?
- How many are willing to pay 14.000 NOK?
- How many are willing to pay 13.000 NOK?
- ...
- The reservation price is the largest price that each student would be willing to pay.
- This information can be summarized compactly in a graph.

An example: the rental market

- Let us look at the rental market around Blindern.
- We can start investigating the demand side:
- How many students are willing to pay 15.000 NOK?
- How many are willing to pay 14.000 NOK?
- How many are willing to pay 13.000 NOK?
- ...
- The reservation price is the largest price that each student would be willing to pay.
- This information can be summarized compactly in a graph.

Illustration: demand curve

Few more assumptions

- To simplify and avoid jumps, we assume that:
- there are many students looking to rent;
- units are homogeneous (say 1-bedroom apartments).
- Then, it is safe to think of the demand curve as smooth.

Few more assumptions

- To simplify and avoid jumps, we assume that:
- there are many students looking to rent;
- units are homogeneous (say 1-bedroom apartments).
- Then, it is safe to think of the demand curve as smooth.

Supply side

- In the short run, the number of apartments for rent is fixed.
- Assume that:
- all students are equal: landlords only care about the rent price;
- rental market is flexible: if a new student comes and proposes a larger rent, the landlord can reassign the apartment;
- thus, all landlords will rent at the same price.
- Then, the supply curve is vertical.

Supply side

- In the short run, the number of apartments for rent is fixed.
- Assume that:
- all students are equal: landlords only care about the rent price;
- rental market is flexible: if a new student comes and proposes a larger rent, the landlord can reassign the apartment;
- thus, all landlords will rent at the same price.
- Then, the supply curve is vertical.

Supply side

- In the short run, the number of apartments for rent is fixed.
- Assume that:
- all students are equal: landlords only care about the rent price;
- rental market is flexible: if a new student comes and proposes a larger rent, the landlord can reassign the apartment;
- thus, all landlords will rent at the same price.
- Then, the supply curve is vertical.

Rental market equilibrium

- The equilibrium is defined by:
- the equilibrium number of apartments rented x^{*}; and
- the equilibrium price p^{*}.
- Why equilibrium?
- If price was $p>p$, then less apartment would be rented
- The landlords with empty apartments would be willing to rent at a lower price $p^{\prime}<p$.
- Only when $p=p *$, demand meets supply and an equilibrium is reached.

Rental market equilibrium

- The equilibrium is defined by:
- the equilibrium number of apartments rented x^{*}; and
- the equilibrium price p^{*}.
- Why equilibrium?
- If price was $p>p^{*}$, then less apartment would be rented.
- The landlords with empty apartments would be willing to rent at a lower price $p^{\prime}<p$.
- Only when $p=p *$, demand meets supply and an equilibrium is reached.

Rental market equilibrium

- The equilibrium is defined by:
- the equilibrium number of apartments rented x^{*}; and
- the equilibrium price p^{*}.
- Why equilibrium?
- If price was $p>p^{*}$, then less apartment would be rented.
- The landlords with empty apartments would be willing to rent at a lower price $p^{\prime}<p$.
- Only when $p=p *$, demand meets supply and an equilibrium is reached.

Comparative statics

- Increase in supply:
- the supply curve shiftes to the right;
- more apartments are available;
- equilibrium price decreases.
- Some students jointly rent a house:
- the demand curve shiftes to the left; and
- fewer students are willing to rent 1-bedroom apartments;
- equilibrium price decreases.
- Tax on rentals?

Comparative statics

- Increase in supply:
- the supply curve shiftes to the right;
- more apartments are available;
- equilibrium price decreases.
- Some students jointly rent a house:
- the demand curve shiftes to the left; and
- fewer students are willing to rent 1-bedroom apartments;
- equilibrium price decreases.
- Tax on rentals?

Comparative statics

- Increase in supply:
- the supply curve shiftes to the right;
- more apartments are available;
- equilibrium price decreases.
- Some students jointly rent a house:
- the demand curve shiftes to the left; and
- fewer students are willing to rent 1-bedroom apartments;
- equilibrium price decreases.
- Tax on rentals?

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Consumption bundle

- There are two goods, good 1 and good 2 .
- Andrea's consumption bundle is denoted $\boldsymbol{x} \equiv\left(x_{1}, x_{2}\right)$.
- $\left(x_{1}, x_{2}\right)$ is a vector, i.e. an ordered list of numbers where x_{1} is the quantity of good 1 and x_{2} is the quantity of good 2 .
- (for simplicity) each number is a non-negative real number;
- goods are perfectly divisible and privatly appropriable;
- the consumption space is $X \equiv \mathbb{R}_{+}^{n}$ with $n=2$;
- for example, you can think of good 1 as milk and good 2 as a composite good representing everything else Andrea might want to purchase.

Consumption bundle

- There are two goods, good 1 and good 2 .
- Andrea's consumption bundle is denoted $\boldsymbol{x} \equiv\left(x_{1}, x_{2}\right)$.
- $\left(x_{1}, x_{2}\right)$ is a vector, i.e. an ordered list of numbers where x_{1} is the quantity of good 1 and x_{2} is the quantity of good 2 .
- (for simplicity) each number is a non-negative real number;
- goods are perfectly divisible and privatly appropriable;
- the consumption space is $X \equiv \mathbb{R}_{+}^{n}$ with $n=2$;
- for example, you can think of good 1 as milk and good 2 as a composite good representing everything else Andrea might want to purchase.

Consumption prices

- Each good has a price. Let $\boldsymbol{p} \equiv\left(p_{1}, p_{2}\right)$ be the price vector.
- $\left(p_{1}, p_{2}\right)$ is another vector: p_{1} is the price of good 1 and p_{2} is the price of good 2.
- What is $p_{1} x_{1}$? it is the money Andrea spends to purchase x_{1} quantity of good 1 at price p_{1}.
- Similarly, $p_{2} x_{2}$ is the money Andrea spends to purchase x_{2} quantity of good 2 at price p_{2}.
- We say that $\left(x_{1}, x_{2}\right)$ is affordable for Andrea if he has enough money m to purchase such bundle, that is, if:
$p_{1} x_{1}+p_{2} x_{2} \leq m$.

Consumption prices

- Each good has a price. Let $\boldsymbol{p} \equiv\left(p_{1}, p_{2}\right)$ be the price vector.
- $\left(p_{1}, p_{2}\right)$ is another vector: p_{1} is the price of good 1 and p_{2} is the price of good 2.
- What is $p_{1} x_{1}$? it is the money Andrea spends to purchase x_{1} quantity of good 1 at price p_{1}.
- Similarly, $p_{2} x_{2}$ is the money Andrea spends to purchase x_{2} quantity of $\operatorname{good} 2$ at price p_{2}.
- We say that $\left(x_{1}, x_{2}\right)$ is affordable for Andrea if he has enough money m to purchase such bundle, that is, if:
$p_{1} x_{1}+p_{2} x_{2} \leq m$.

Consumption prices

- Each good has a price. Let $\boldsymbol{p} \equiv\left(p_{1}, p_{2}\right)$ be the price vector.
- $\left(p_{1}, p_{2}\right)$ is another vector: p_{1} is the price of good 1 and p_{2} is the price of good 2.
- What is $p_{1} x_{1}$? it is the money Andrea spends to purchase x_{1} quantity of good 1 at price p_{1}.
- Similarly, $p_{2} x_{2}$ is the money Andrea spends to purchase x_{2} quantity of $\operatorname{good} 2$ at price p_{2}.
- We say that $\left(x_{1}, x_{2}\right)$ is affordable for Andrea if he has enough money m to purchase such bundle, that is, if:

$$
p_{1} x_{1}+p_{2} x_{2} \leq m
$$

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(b) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Budget set

- Then, the budget set is the set of all consumption bundles that Andrea can afford at prices $\left(p_{1}, p_{2}\right)$ and income m. All $\left(x_{1}, x_{2}\right)$ such that

$$
p_{1} x_{1}+p_{2} x_{2} \leq m
$$

> - The budget line is the frontier of the budget set. It is the set of all consumption bundles that Andrea can (exactly) buy when spending all her money m. All $\left(x_{1}, x_{2}\right)$ such that

$p_{1} x_{1}+p_{2} x_{2}=m$.

Budget set

- Then, the budget set is the set of all consumption bundles that Andrea can afford at prices $\left(p_{1}, p_{2}\right)$ and income m. All $\left(x_{1}, x_{2}\right)$ such that

$$
p_{1} x_{1}+p_{2} x_{2} \leq m
$$

- The budget line is the frontier of the budget set. It is the set of all consumption bundles that Andrea can (exactly) buy when spending all her money m. All $\left(x_{1}, x_{2}\right)$ such that

$$
p_{1} x_{1}+p_{2} x_{2}=m
$$

Budget set: illustration

Comparative statics

- What happens when m increases?
- What happens when p_{1} decreases?
- What happens with inflaction?
- What happens when changing currency?

Comparative statics

- What happens when m increases?
- What happens when p_{1} decreases?
- What happens with inflaction?
- What happens when changing currency?

Comparative statics

- What happens when m increases?
- What happens when p_{1} decreases?
- What happens with inflaction?
- What happens when changing currency?

Comparative statics

- What happens when m increases?
- What happens when p_{1} decreases?
- What happens with inflaction?
- What happens when changing currency?

Outline

(1) Introduction

- Course outline
- Economic models
- An example
D. Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(b) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Consumers' preferences

- When Andrea faces her budget set, she has a choice to make: which consumption bundle to choose?
- Building on the optimizing principle, the answer is: the bundle she prefers better.
- Preferences, denoted \succsim, capture this information:

Consumers' preferences

- When Andrea faces her budget set, she has a choice to make: which consumption bundle to choose?
- Building on the optimizing principle, the answer is: the bundle she prefers better.
- Preferences, denoted \succsim, capture this information:

Consumers' preferences

- When Andrea faces her budget set, she has a choice to make: which consumption bundle to choose?
- Building on the optimizing principle, the answer is: the bundle she prefers better.
- Preferences, denoted \succsim, capture this information:
- we write $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ if Andrea finds the consumption bundle (x_{1}, x_{2}) at least as desirable as the consumption bundle ($x_{1}^{\prime}, x_{2}^{\prime}$);
- we write $\left(x_{1}, x_{2}\right) \succ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ if Andrea prefers $\left(x_{1}, x_{2}\right)$ to $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$;
- we write $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ if Andrea is indifferent between $\left(x_{1}, x_{2}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.

Relation between preference symbols

- If $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, but not $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then $\left(x_{1}, x_{2}\right) \succ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- If $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)$, then $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- Thus, the strict preference relation \succ and the indifference relation \sim can be derived from the preference relation \succsim.

Relation between preference symbols

- If $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, but not $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then $\left(x_{1}, x_{2}\right) \succ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- If $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)$, then $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- Thus, the strict preference relation \succ and the indifference relation \sim can be derived from the preference relation \succsim.

Relation between preference symbols

- If $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, but not $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then $\left(x_{1}, x_{2}\right) \succ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- If $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)$, then $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- Thus, the strict preference relation \succ and the indifference relation \sim can be derived from the preference relation \succsim.

Outline

(1) Introduction

- Course outline
- Economic models
- An example
D. Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(b) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Assumptions about preferences

- Why imposing assumptions on preferences?
- eliminate unreasonable cases (i.e. $\left(x_{1}, x_{2}\right) \succ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left.\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succ\left(x_{1}, x_{2}\right)\right)$;
- obtain more far reaching results.
- Complete. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$, either

Assumptions about preferences

- Why imposing assumptions on preferences?
- eliminate unreasonable cases (i.e. $\left(x_{1}, x_{2}\right) \succ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left.\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succ\left(x_{1}, x_{2}\right)\right)$;
- obtain more far reaching results.
- Complete. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$, either
- $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$; or
- $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)$; or
- both (that is $\left.\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right)$.

Assumptions about preferences

- Reflexive. For each consumption bundle $\left(x_{1}, x_{2}\right) \in X$,
- $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}, x_{2}\right)$.
- Transitive. For each triplet of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right),\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right) \in X$,

Assumptions about preferences

- Reflexive. For each consumption bundle $\left(x_{1}, x_{2}\right) \in X$,
- $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}, x_{2}\right)$.
- Transitive. For each triplet of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right),\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right) \in X$,
- $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)$ implies that $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)$.

More on preferences

- Consider the consumption bundle $\left(x_{1}, x_{2}\right) \in X$. The indifference curve through $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \sim\left(x_{1}, x_{2}\right)$.
- Indifference curves cannot cross;
- preferences consist of all indifference curves.
- The upper-contour set at $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)$.
- The lower-contour set at $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- Continuous. For each consumption bundle $\left(x_{1}, x_{2}\right) \in X$, the upperand lower-contour sets are closed.

More on preferences

- Consider the consumption bundle $\left(x_{1}, x_{2}\right) \in X$. The indifference curve through $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \sim\left(x_{1}, x_{2}\right)$.
- Indifference curves cannot cross;
- preferences consist of all indifference curves.
- The upper-contour set at $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)$.
- The lower-contour set at $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$
- Continuous. For each consumption bundle $\left(x_{1}, x_{2}\right) \in X$, the upperand lower-contour sets are closed.

More on preferences

- Consider the consumption bundle $\left(x_{1}, x_{2}\right) \in X$. The indifference curve through $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \sim\left(x_{1}, x_{2}\right)$.
- Indifference curves cannot cross;
- preferences consist of all indifference curves.
- The upper-contour set at $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)$.
- The lower-contour set at $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- Continuous. and lower-contour sets are closed.

More on preferences

- Consider the consumption bundle $\left(x_{1}, x_{2}\right) \in X$. The indifference curve through $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \sim\left(x_{1}, x_{2}\right)$.
- Indifference curves cannot cross;
- preferences consist of all indifference curves.
- The upper-contour set at $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)$.
- The lower-contour set at $\left(x_{1}, x_{2}\right)$ is the set of all consumption bundles $\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ such that $\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.
- Continuous. For each consumption bundle $\left(x_{1}, x_{2}\right) \in X$, the upperand lower-contour sets are closed.

Monotonicity

- Goods, bads, and neutral goods
- Satiation
- Monotonicity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$, if $x_{1} \geq x_{1}^{\prime} ; x_{2} \geq x_{2}^{\prime}$, and $\left(x_{1}, x_{2}\right) \neq\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then $\left(x_{1}, x_{2}\right) \succ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.

Monotonicity

- Goods, bads, and neutral goods
- Satiation
- Monotonicity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$, if $x_{1} \geq x_{1}^{\prime} ; x_{2} \geq x_{2}^{\prime}$, and $\left(x_{1}, x_{2}\right) \neq\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$, then $\left(x_{1}, x_{2}\right) \succ\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.

Convexity

- Perfect substitutes
- Perfect complements
- Convexity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ with $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and each $t \in[0,1]$,

$$
\left(t x_{1}+(1-t) x_{1}^{\prime}, t x_{2}+(1-t) x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right)
$$

- Strict convexity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ with $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and each $t \in(0.1)$,

$$
\left(t x_{1}+(1-t) x_{1}^{\prime}, t x_{2}+(1-t) x_{2}^{\prime}\right) \succ\left(x_{1}, x_{2}\right)
$$

Convexity

- Perfect substitutes
- Perfect complements
- Convexity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ with $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and each $t \in[0,1]$,

$$
\left(t x_{1}+(1-t) x_{1}^{\prime}, t x_{2}+(1-t) x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right) .
$$

- Strict convexity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ with $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and each $t \in(0.1)$,

$$
\left(t x_{1}+(1-t) x_{1}^{\prime}, t x_{2}+(1-t) x_{2}^{\prime}\right) \succ\left(x_{1}, x_{2}\right) .
$$

Convexity

- Perfect substitutes
- Perfect complements
- Convexity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ with $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and each $t \in[0,1]$,

$$
\left(t x_{1}+(1-t) x_{1}^{\prime}, t x_{2}+(1-t) x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right) .
$$

- Strict convexity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ with $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and each $t \in$
$\left(t x_{1}+(1-t) x_{1}^{\prime}, t x_{2}+(1-t) x_{2}^{\prime}\right)-\left(x_{1}, x_{2}\right)$.

Convexity

- Perfect substitutes
- Perfect complements
- Convexity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ with $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and each $t \in[0,1]$,

$$
\left(t x_{1}+(1-t) x_{1}^{\prime}, t x_{2}+(1-t) x_{2}^{\prime}\right) \succsim\left(x_{1}, x_{2}\right) .
$$

- Strict convexity. For each pair of consumption bundles $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$ with $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ and each $t \in(0,1)$,

$$
\left(t x_{1}+(1-t) x_{1}^{\prime}, t x_{2}+(1-t) x_{2}^{\prime}\right) \succ\left(x_{1}, x_{2}\right) .
$$

Marginal rate of substitution

- The marginal rate of substitution (MRS) expresses the rate at which a consumer, Andrea, is just willing to substitute a good for another one.
- This is a local concept!
- The MRS at $\left(x_{1}, x_{2}\right)$ is the slope at $\left(x_{1}, x_{2}\right)$ of the indifference curve through (x_{1}, x_{2}).
- When is the MRS well-defined?
- It can be interpreted as the marginal willingness to pay.

Marginal rate of substitution

- The marginal rate of substitution (MRS) expresses the rate at which a consumer, Andrea, is just willing to substitute a good for another one.
- This is a local concept!
- The MRS at $\left(x_{1}, x_{2}\right)$ is the slope at $\left(x_{1}, x_{2}\right)$ of the indifference curve through $\left(x_{1}, x_{2}\right)$.
- When is the MRS well-defined?
- It can be interpreted as the marginal willingness to pay.

Outline

(1) Introduction

- Course outline
- Economic models
- An example
D. Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties

4) Utility

- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(b) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

The concept

- Utility is a problematic name: its meaning changed over time and is still a big source of confusion.
- some economists consider it as a measure of happiness or subjective well-being;
- others take it as a different way to express the same information of preferences.
- We shall go with the second interpretation. A utility function U is a numerical representation of preferences \succsim. Then, for each pair $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X_{\text {: }}$

The concept

- Utility is a problematic name: its meaning changed over time and is still a big source of confusion.
- some economists consider it as a measure of happiness or subjective well-being;
- others take it as a different way to express the same information of preferences.
- We shall go with the second interpretation. A utility function U is a numerical representation of preferences \succsim. Then, for each pair $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in X$:

$$
\begin{gathered}
\left(x_{1}, x_{2}\right) \succsim\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \\
\text { IF and ONLY IF } \\
U\left(x_{1}, x_{2}\right) \geq U\left(x_{1}^{\prime}, x_{2}^{\prime}\right)
\end{gathered}
$$

Existence and uniqueness of a utility function

Theorem

If preferences \succsim are complete, transitive, and continuous, then there exists a continuous utility function U that represents \succsim.

> Theorem
> Assume preferences \succsim are represented by a utility function U. Then, for each positive monotonic function $f, V=f(U)$ also represents preferences That is, U is unique up to a positive monotonic transformation.

Existence and uniqueness of a utility function

Theorem

If preferences \succsim are complete, transitive, and continuous, then there exists a continuous utility function U that represents \succsim.

Theorem

Assume preferences \succsim are represented by a utility function U. Then, for each positive monotonic function $f, V=f(U)$ also represents preferences \succsim. That is, U is unique up to a positive monotonic transformation.

Outline

。
Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties

(4) Utility

- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Examples of utility functions

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$;
- $U\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$ with $\alpha \in[0,1]$;
- $U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$ with $a, b>0$;
- $U\left(x_{1}, x_{2}\right)=\min \left[a x_{1}, b x_{2}\right]$ with $a, b>0$
- $U\left(x_{1}, x_{2}\right)=x_{1}+v\left(x_{2}\right)$ with v and increasing function;

Examples of utility functions

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$;
- $U\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$ with $\alpha \in[0,1]$;
- $U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$ with $a, b>0$;
- $U\left(x_{1}, x_{2}\right)=\min \left[a x_{1}, b x_{2}\right]$ with $a, b>0$;
- $U\left(x_{1}, x_{2}\right)=x_{1}+v\left(x_{2}\right)$ with v and increasing function;

Examples of utility functions

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$;
- $U\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$ with $\alpha \in[0,1]$;
- $U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$ with $a, b>0$;
- $U\left(x_{1}, x_{2}\right)=\min \left[a x_{1}, b x_{2}\right]$ with $a, b>0$;
- $U\left(x_{1}, x_{2}\right)=x_{1}+v\left(x_{2}\right)$ with v and increasing function;
- $U\left(x_{1}, x_{2}\right)=\left[a\left(x_{1}\right)^{\rho}+(1-a) x_{2}^{\rho}\right]^{\frac{1}{\rho}}$ with $a \in[0,1]$ and $\rho>0$.

Marginal utility (See appendix Ch.4)

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_{1} increases to $x_{1}+\Delta x_{1}$, the utility goes from u to $u+\Delta u$. Then,

- or, since $u=U\left(x_{1}, x_{2}\right)$,

- Now, divide both sides by Δx_{1} :

- The marginal utility is $\frac{\Delta u}{\Delta x_{1}}$ at the limit for Δx_{1} going to zero:

Marginal utility (See appendix Ch.4)

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_{1} increases to $x_{1}+\Delta x_{1}$, the utility goes from u to $u+\Delta u$. Then,

$$
u+\Delta u=U\left(x_{1}+\Delta x_{1}, x_{2}\right)
$$

- or, since $u=U\left(x_{1}, x_{2}\right)$,

- Now, divide both sides by Δx_{1} :

- The marginal utility is $\frac{\Delta u}{\Delta x_{1}}$ at the limit for Δx_{1} going to zero:

Marginal utility (See appendix Ch.4)

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_{1} increases to $x_{1}+\Delta x_{1}$, the utility goes from u to $u+\Delta u$. Then,

$$
u+\Delta u=U\left(x_{1}+\Delta x_{1}, x_{2}\right)
$$

- or, since $u=U\left(x_{1}, x_{2}\right)$,

$$
\Delta u=U\left(x_{1}+\Delta x_{1}, x_{2}\right)-U\left(x_{1}, x_{2}\right) .
$$

- Now, divide both sides by Δx_{1} :

Marginal utility (See appendix Ch.4)

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_{1} increases to $x_{1}+\Delta x_{1}$, the utility goes from u to $u+\Delta u$. Then,

$$
u+\Delta u=U\left(x_{1}+\Delta x_{1}, x_{2}\right)
$$

- or, since $u=U\left(x_{1}, x_{2}\right)$,

$$
\Delta u=U\left(x_{1}+\Delta x_{1}, x_{2}\right)-U\left(x_{1}, x_{2}\right) .
$$

- Now, divide both sides by Δx_{1} :

$$
\frac{\Delta u}{\Delta x_{1}}=\frac{U\left(x_{1}+\Delta x_{1}, x_{2}\right)-U\left(x_{1}, x_{2}\right)}{\Delta x_{1}}
$$

Marginal utility (See appendix Ch.4)

- If the function U is differentiable, then the derivative U wrt the quantity of the good gives the marginal utility.
- If x_{1} increases to $x_{1}+\Delta x_{1}$, the utility goes from u to $u+\Delta u$. Then,

$$
u+\Delta u=U\left(x_{1}+\Delta x_{1}, x_{2}\right)
$$

- or, since $u=U\left(x_{1}, x_{2}\right)$,

$$
\Delta u=U\left(x_{1}+\Delta x_{1}, x_{2}\right)-U\left(x_{1}, x_{2}\right) .
$$

- Now, divide both sides by Δx_{1} :

$$
\frac{\Delta u}{\Delta x_{1}}=\frac{U\left(x_{1}+\Delta x_{1}, x_{2}\right)-U\left(x_{1}, x_{2}\right)}{\Delta x_{1}}
$$

- The marginal utility is $\frac{\Delta u}{\Delta x_{1}}$ at the limit for Δx_{1} going to zero:

$$
M U_{1}=\lim _{\Delta x_{1} \rightarrow 0} \frac{U\left(x_{1}+\Delta x_{1}, x_{2}\right)-U\left(x_{1}, x_{2}\right)}{\Delta x_{1}}=\frac{\partial U}{\partial x_{1}} .
$$

Marginal rate of substitution (See appendix Ch.4)

- The marginal rate of substitution of good 2 for good 1 was the change in good $2 \Delta x_{2}$ that was needed to compensate an individual for a marginal change in good $1 \Delta x_{1}$.
- But the individual needs to remain indifferent, so

- Rearranging:

Marginal rate of substitution (See appendix Ch.4)

- The marginal rate of substitution of good 2 for good 1 was the change in good $2 \Delta x_{2}$ that was needed to compensate an individual for a marginal change in good $1 \Delta x_{1}$.
- But the individual needs to remain indifferent, so

$$
M U_{1} \cdot \Delta x_{1}+M U_{2} \cdot \Delta x_{2}=0
$$

- Rearranging:

Marginal rate of substitution (See appendix Ch.4)

- The marginal rate of substitution of good 2 for good 1 was the change in good $2 \Delta x_{2}$ that was needed to compensate an individual for a marginal change in good $1 \Delta x_{1}$.
- But the individual needs to remain indifferent, so

$$
M U_{1} \cdot \Delta x_{1}+M U_{2} \cdot \Delta x_{2}=0
$$

- Rearranging:

$$
M R S=\frac{\Delta x_{2}}{\Delta x_{1}}=-\frac{M U_{1}}{M U_{2}} .
$$

Outline

O

Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics

8 Consumer's surplus

- Consumer's surplus
- Other measures

What is the optimal choice of the consumer?

- There are two ways to look at the problem.
- maximizing utility for a given budget set;
- minimizing the cost of reaching a certain satisfaction level.
- These problems are one the dual of the other.
- We will see that the optimal choices these two approaches identify are closely related to each other.

What is the optimal choice of the consumer?

- There are two ways to look at the problem.
- maximizing utility for a given budget set;
- minimizing the cost of reaching a certain satisfaction level.
- These problems are one the dual of the other.
- We will see that the optimal choices these two approaches identify are closely related to each other.

The utility maximization problem

- What is the consumption bundle $\left(x_{1}^{*}, x_{2}^{*}\right)$ that maximizes the utility of Andrea, given prices $\left(p_{1}, p_{2}\right)$ and money m ?
- The problem can be written as follows:

- The graphic solution is....

The utility maximization problem

- What is the consumption bundle $\left(x_{1}^{*}, x_{2}^{*}\right)$ that maximizes the utility of Andrea, given prices $\left(p_{1}, p_{2}\right)$ and money m ?
- The problem can be written as follows:

$$
\begin{array}{rl}
\max _{\left(x_{1}, x_{2}\right) \in X} & U\left(x_{1}, x_{2}\right) \tag{1}\\
\text { s.t. } & p_{1} x_{1}+p_{2} x_{2} \leq m
\end{array}
$$

- The graphic solution is....

The utility maximization problem

- What is the consumption bundle $\left(x_{1}^{*}, x_{2}^{*}\right)$ that maximizes the utility of Andrea, given prices $\left(p_{1}, p_{2}\right)$ and money m ?
- The problem can be written as follows:

$$
\begin{array}{rl}
\max _{\left(x_{1}, x_{2}\right) \in X} & U\left(x_{1}, x_{2}\right) \tag{1}\\
\text { s.t. } & p_{1} x_{1}+p_{2} x_{2} \leq m
\end{array}
$$

- The graphic solution is....

The algebraic solution

- First, write the Lagrangian of the maximization problem:

$$
\begin{equation*}
\mathscr{L}(\mathbf{x}, \lambda ; \mathbf{p}, m)=U\left(x_{1}, x_{2}\right)+\lambda\left[m-p_{1} x_{1}-p_{2} x_{2}\right] \tag{2}
\end{equation*}
$$

- The FOCs require that there exists $\lambda^{*} \geq 0$ such that:

The algebraic solution

- First, write the Lagrangian of the maximization problem:

$$
\begin{equation*}
\mathscr{L}(\mathbf{x}, \lambda ; \mathbf{p}, m)=U\left(x_{1}, x_{2}\right)+\lambda\left[m-p_{1} x_{1}-p_{2} x_{2}\right] \tag{2}
\end{equation*}
$$

- The FOCs require that there exists $\lambda^{*} \geq 0$ such that:

$$
\begin{gather*}
M U_{i}\left(x_{1}^{*}, x_{2}^{*}\right) \leq \lambda^{*} p_{i} \quad \text { for each } i=1,2 \tag{3}\\
m \geq p_{1} x_{1}^{*}+p_{2} x_{2}^{*} \tag{4}
\end{gather*}
$$

The algebraic solution

- Then, if U satisfies monotonicity, then

$$
m=p_{1} x_{1}^{*}+p_{2} x_{2}^{*}
$$

- If $x_{1}^{*}, x_{2}^{*}>0$, then $M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=\lambda^{*} p_{1}$ and $M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)=\lambda^{*} p_{2}$.

- and, for interior solutions, MRS equals goods price ratio!!!

The algebraic solution

- Then, if U satisfies monotonicity, then

$$
m=p_{1} x_{1}^{*}+p_{2} x_{2}^{*}
$$

- If $x_{1}^{*}, x_{2}^{*}>0$, then $M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=\lambda^{*} p_{1}$ and $M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)=\lambda^{*} p_{2}$.

Thus:

$$
\begin{equation*}
\frac{M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}=\frac{p_{1}}{p_{2}} \tag{5}
\end{equation*}
$$

The algebraic solution

- Then, if U satisfies monotonicity, then

$$
m=p_{1} x_{1}^{*}+p_{2} x_{2}^{*}
$$

- If $x_{1}^{*}, x_{2}^{*}>0$, then $M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=\lambda^{*} p_{1}$ and $M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)=\lambda^{*} p_{2}$.

Thus:

$$
\begin{equation*}
\frac{M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}=\frac{p_{1}}{p_{2}} \tag{5}
\end{equation*}
$$

- and, for interior solutions, MRS equals goods price ratio!!!

Outline

O

Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics

8 Consumer's surplus

- Consumer's surplus
- Other measures

Marshallian demand function

- The solution of the utility maximization problem is one (or more) consumption bundles. These depend on the prices (p_{1}, p_{2}) and money m.
- Assume there is a single optimum. Let $D^{1}\left(p_{1}, p_{2}, m\right)$ be the function that tells the optimal amount of good 1 for each prices and money. Let $D^{2}\left(p_{1}, p_{2}, m\right)$ be the function that tells the optimal amount of good 2 for each prices and money. These are the Marshallian (or ordinary or Walrasian or uncompensated) demand functions.

Marshallian demand function

- The solution of the utility maximization problem is one (or more) consumption bundles. These depend on the prices (p_{1}, p_{2}) and money m.
- Assume there is a single optimum. Let $D^{1}\left(p_{1}, p_{2}, m\right)$ be the function that tells the optimal amount of good 1 for each prices and money. Let $D^{2}\left(p_{1}, p_{2}, m\right)$ be the function that tells the optimal amount of good 2 for each prices and money. These are the Marshallian (or ordinary or Walrasian or uncompensated) demand functions.

Properties of the Marshallian demand functions

- The few assumptions we made on preferences are far reaching. Completeness, transitivity, continuity, and strict convexity together imply that the Marshallian demand functions:
- are continuous in prices and money;
- are homogeneous of degree 0 with respect to prices and money;
- satisfy Walras' Law: $p_{1} D^{1}\left(p_{1}, p_{2}, m\right)+p_{2} D^{2}\left(p_{1}, p_{2}, m\right)=m$.

Properties of the Marshallian demand functions

- The few assumptions we made on preferences are far reaching. Completeness, transitivity, continuity, and strict convexity together imply that the Marshallian demand functions:
- are continuous in prices and money;
- are homogeneous of degree 0 with respect to prices and money;
- satisfy Walras' Law: $p_{1} D^{1}\left(p_{1}, p_{2}, m\right)+p_{2} D^{2}\left(p_{1}, p_{2}, m\right)=m$.

Properties of the Marshallian demand functions

- The few assumptions we made on preferences are far reaching. Completeness, transitivity, continuity, and strict convexity together imply that the Marshallian demand functions:
- are continuous in prices and money;
- are homogeneous of degree 0 with respect to prices and money;
- satisfy Walras' Law: $p_{1} D^{1}\left(p_{1}, p_{2}, m\right)+p_{2} D^{2}\left(p_{1}, p_{2}, m\right)=m$.

Properties of the Marshallian demand functions

- The few assumptions we made on preferences are far reaching. Completeness, transitivity, continuity, and strict convexity together imply that the Marshallian demand functions:
- are continuous in prices and money;
- are homogeneous of degree 0 with respect to prices and money;
- satisfy Walras' Law: $p_{1} D^{1}\left(p_{1}, p_{2}, m\right)+p_{2} D^{2}\left(p_{1}, p_{2}, m\right)=m$.

Outline

O
Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

The indirect utility function

- Substituting the the solution of the utility maximization problem into the utility function gives the indirect utility function.
- It answers the following question: what is the maximum amount of utility one can reach by choosing optimally the consumption bundle with prices $\left(p_{1}, p_{2}\right)$ and money m ?
- It is thus a function of prices $\left(p_{1}, p_{2}\right)$ and money m :

$$
V\left(p_{1}, p_{2}, m\right) \equiv U\left(D^{1}\left(p_{1}, p_{2}, m\right), D^{2}\left(p_{1}, p_{2}, m\right)\right) .
$$

The indirect utility function

- Substituting the the solution of the utility maximization problem into the utility function gives the indirect utility function.
- It answers the following question: what is the maximum amount of utility one can reach by choosing optimally the consumption bundle with prices $\left(p_{1}, p_{2}\right)$ and money m ?
- It is thus a function of prices $\left(p_{1}, p_{2}\right)$ and money m :

$$
V\left(p_{1}, p_{2}, m\right) \equiv U\left(D^{1}\left(p_{1}, p_{2}, m\right), D^{2}\left(p_{1}, p_{2}, m\right)\right)
$$

The indirect utility function

- Substituting the the solution of the utility maximization problem into the utility function gives the indirect utility function.
- It answers the following question: what is the maximum amount of utility one can reach by choosing optimally the consumption bundle with prices $\left(p_{1}, p_{2}\right)$ and money m ?
- It is thus a function of prices $\left(p_{1}, p_{2}\right)$ and money m :

$$
V\left(p_{1}, p_{2}, m\right) \equiv U\left(D^{1}\left(p_{1}, p_{2}, m\right), D^{2}\left(p_{1}, p_{2}, m\right)\right)
$$

Properties of the indirect utility function

- Completeness, transitivity, continuity, and strict convexity together imply that the indirect utility function:
- is non-increasing in prices and increasing in money;
- is homogeneous of degree 0 with respect to prices and money;
- satisfy Roy's identity: $x_{i}^{*}=-\frac{M V_{p_{i}}\left(p_{1}, p_{2}, m\right)}{M V_{m}}$

Properties of the indirect utility function

- Completeness, transitivity, continuity, and strict convexity together imply that the indirect utility function:
- is non-increasing in prices and increasing in money;
- is homogeneous of degree 0 with respect to prices and money;
- satisfy Roy's identity: $x_{i}^{*}=-\frac{M V_{p_{i}}\left(p_{1}, p_{2}, m\right)}{M V_{m}}$

Properties of the indirect utility function

- Completeness, transitivity, continuity, and strict convexity together imply that the indirect utility function:
- is non-increasing in prices and increasing in money;
- is homogeneous of degree 0 with respect to prices and money;

Properties of the indirect utility function

- Completeness, transitivity, continuity, and strict convexity together imply that the indirect utility function:
- is non-increasing in prices and increasing in money;
- is homogeneous of degree 0 with respect to prices and money;
- satisfy Roy's identity: $x_{i}^{*}=-\frac{M V_{p_{i}}\left(p_{1}, p_{2}, m\right)}{M V_{m}}$.

Outline

O
Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Example 1

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.
- Be smart! Use the equivalent (why?) utility function $\bar{U}\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$.
- $\mathscr{L}(\mathbf{x}, \lambda ; \mathbf{p}, m)=\ln x_{1}+\ln x_{2}+\lambda\left[m-p_{1} x_{1}-p_{2} x_{2}\right]$;
- FOCs:
- $M \bar{U}_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=\frac{1}{x_{1}^{*}} \leq \lambda^{*} p_{1} ;$
- $M \bar{U}_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=\frac{1}{x_{2}^{*}} \leq \lambda^{*} p_{2}$;
- $m \geq p_{1} x_{1}^{*}+p_{2} x_{2}^{*}$.

Example 1

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.
- Be smart! Use the equivalent (why?) utility function $\bar{U}\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$.
- $\mathscr{L}(\mathrm{x}, \lambda ; \mathrm{p}, m)=\ln x_{1}+\ln x_{2}+\lambda\left[m-p_{1} x_{1}-p_{2} x_{2}\right]$;

Example 1

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.
- Be smart! Use the equivalent (why?) utility function $\bar{U}\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$.
- $\mathscr{L}(\mathbf{x}, \lambda ; \mathbf{p}, m)=\ln x_{1}+\ln x_{2}+\lambda\left[m-p_{1} x_{1}-p_{2} x_{2}\right]$;
- FOCs:
- $M \bar{U}_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=\frac{1}{x_{1}^{*}} \leq \lambda^{*} p_{1} ;$
- $M \bar{U}_{1}\left(x_{1}^{*}, x_{2}^{*}\right)=\frac{1}{x_{2}^{*}} \leq \lambda^{*} p_{2}$;
- $m \geq p_{1} x_{1}^{*}+p_{2} x_{2}^{*}$.

Example 1...

- By monotonicity of $\bar{U}: m=p_{1} x_{1}^{*}+p_{2} x_{2}^{*}$.
- Since $x_{1}^{*}, x_{2}^{*}>0$ (why?),

$$
\begin{aligned}
& \frac{1}{x_{1}^{*}}=\lambda^{*} p_{1} \\
& \frac{1}{x_{2}^{*}}=\lambda^{*} p_{2}
\end{aligned}
$$

- Take the ratio of these two $\left(\lambda^{*}\right.$ cancels out):

or, equivalently, $x_{2}^{*}=\frac{p_{1}}{p_{2}} x_{1}^{*}$.

Example 1...

- By monotonicity of $\bar{U}: m=p_{1} x_{1}^{*}+p_{2} x_{2}^{*}$.
- Since $x_{1}^{*}, x_{2}^{*}>0$ (why?),

$$
\begin{aligned}
& \frac{1}{x_{1}^{*}}=\lambda^{*} p_{1} \\
& \frac{1}{x_{2}^{*}}=\lambda^{*} p_{2}
\end{aligned}
$$

- Take the ratio of these two (λ^{*} cancels out):

Example 1...

- By monotonicity of $\bar{U}: m=p_{1} x_{1}^{*}+p_{2} x_{2}^{*}$.
- Since $x_{1}^{*}, x_{2}^{*}>0$ (why?),

$$
\begin{aligned}
& \frac{1}{x_{1}^{*}}=\lambda^{*} p_{1} \\
& \frac{1}{x_{2}^{*}}=\lambda^{*} p_{2}
\end{aligned}
$$

- Take the ratio of these two (λ^{*} cancels out):

$$
\frac{x_{2}^{*}}{x_{1}^{*}}=\frac{p_{1}}{p_{2}}
$$

or, equivalently, $x_{2}^{*}=\frac{p_{1}}{p_{2}} x_{1}^{*}$.

Example 1......

- Substitute in the budget line and solve:

$$
\begin{gathered}
m=p_{1} x_{1}^{*}+p_{2} \cdot \frac{p_{1}}{p_{2}} x_{1}^{*} \\
D^{1}\left(p_{1}, p_{2}, m\right)=x_{1}^{*}=\frac{1}{2} \frac{m}{p_{1}}
\end{gathered}
$$

- Since $\frac{1}{2} m$ is optimally spent for x_{1}^{*}, the other half is spent for x_{2}^{*} :

- The indirect utility function is:

$$
V\left(p_{1}, p_{2}, m\right)=D^{1}\left(p_{1}, p_{2}, m\right) \cdot D^{2}\left(p_{1}, p_{2}, m\right)=\frac{1}{4} \frac{m^{2}}{p_{1} p_{2}} .
$$

Example 1......

- Substitute in the budget line and solve:

$$
\begin{gathered}
m=p_{1} x_{1}^{*}+p_{2} \cdot \frac{p_{1}}{p_{2}} x_{1}^{*} \\
D^{1}\left(p_{1}, p_{2}, m\right)=x_{1}^{*}=\frac{1}{2} \frac{m}{p_{1}}
\end{gathered}
$$

- Since $\frac{1}{2} m$ is optimally spent for x_{1}^{*}, the other half is spent for x_{2}^{*} :
-

$$
D^{2}\left(p_{1}, p_{2}, m\right)=x_{2}^{*}=\frac{1}{2} \frac{m}{p_{2}}
$$

- The indirect utility function is:

Example 1......

- Substitute in the budget line and solve:

$$
\begin{gathered}
m=p_{1} x_{1}^{*}+p_{2} \cdot \frac{p_{1}}{p_{2}} x_{1}^{*} \\
D^{1}\left(p_{1}, p_{2}, m\right)=x_{1}^{*}=\frac{1}{2} \frac{m}{p_{1}}
\end{gathered}
$$

- Since $\frac{1}{2} m$ is optimally spent for x_{1}^{*}, the other half is spent for x_{2}^{*} :

$$
D^{2}\left(p_{1}, p_{2}, m\right)=x_{2}^{*}=\frac{1}{2} \frac{m}{p_{2}}
$$

- The indirect utility function is:

$$
V\left(p_{1}, p_{2}, m\right)=D^{1}\left(p_{1}, p_{2}, m\right) \cdot D^{2}\left(p_{1}, p_{2}, m\right)=\frac{1}{4} \frac{m^{2}}{p_{1} p_{2}} .
$$

More examples

- $U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$.
- $U\left(x_{1}, x_{2}\right)=\min \left[a x_{1}, b x_{2}\right]$.
- Be smart! Draw the utility functions to understand what you are dealing with! Here, the Lagrangian method is not the way to go!

More examples

- $U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$.
- $U\left(x_{1}, x_{2}\right)=\min \left[a x_{1}, b x_{2}\right]$.
- Be smart! Draw the utility functions to understand what you are dealing with! Here, the Lagrangian method is not the way to go!

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

The cost minimization problem

- What is the consumption bundle $\left(x_{1}^{*}, x_{2}^{*}\right)$ that minimizes the money spent by Andrea, given prices $\left(p_{1}, p_{2}\right)$ and a goal level of utility $u \leq U\left(x_{1}^{*}, x_{2}^{*}\right)$?
- The problem can be written as follows:
$\min _{\left(x_{1}, x_{2}\right) \in x} \quad p_{1} x_{1}+p_{2} x_{2}$
- The graphic solution is....

The cost minimization problem

- What is the consumption bundle $\left(x_{1}^{*}, x_{2}^{*}\right)$ that minimizes the money spent by Andrea, given prices $\left(p_{1}, p_{2}\right)$ and a goal level of utility $u \leq U\left(x_{1}^{*}, x_{2}^{*}\right) ?$
- The problem can be written as follows:

$$
\begin{align*}
\min _{\left(x_{1}, x_{2}\right) \in X} & p_{1} x_{1}+p_{2} x_{2} \tag{6}\\
\text { s.t. } & u \leq U\left(x_{1}^{*}, x_{2}^{*}\right)
\end{align*}
$$

The cost minimization problem

- What is the consumption bundle $\left(x_{1}^{*}, x_{2}^{*}\right)$ that minimizes the money spent by Andrea, given prices $\left(p_{1}, p_{2}\right)$ and a goal level of utility $u \leq U\left(x_{1}^{*}, x_{2}^{*}\right) ?$
- The problem can be written as follows:

$$
\begin{align*}
\min _{\left(x_{1}, x_{2}\right) \in X} & p_{1} x_{1}+p_{2} x_{2} \tag{6}\\
\text { s.t. } & u \leq U\left(x_{1}^{*}, x_{2}^{*}\right)
\end{align*}
$$

- The graphic solution is....

The algebraic solution

- First, write the Lagrangian of the minimization problem:

$$
\begin{equation*}
\mathscr{L}(\mathbf{x}, \boldsymbol{\lambda} ; \mathbf{p}, u)=p_{1} x_{1}+p_{2} x_{2}+\lambda\left[u-U\left(x_{1}, x_{2}\right)\right] \tag{7}
\end{equation*}
$$

- The FOCs require that there exists $\lambda^{*} \geq 0$ such that:

$$
p_{i} \geq \lambda^{*} M U_{i}\left(x_{1}^{*}, x_{2}^{*}\right) \quad \text { for each } i=1,2
$$

The algebraic solution

- First, write the Lagrangian of the minimization problem:

$$
\begin{equation*}
\mathscr{L}(\mathbf{x}, \boldsymbol{\lambda} ; \mathbf{p}, u)=p_{1} x_{1}+p_{2} x_{2}+\boldsymbol{\lambda}\left[u-U\left(x_{1}, x_{2}\right)\right] \tag{7}
\end{equation*}
$$

- The FOCs require that there exists $\lambda^{*} \geq 0$ such that:

$$
\begin{gather*}
p_{i} \geq \lambda^{*} M U_{i}\left(x_{1}^{*}, x_{2}^{*}\right) \quad \text { for each } i=1,2 \tag{8}\\
u \leq U\left(x_{1}^{*}, x_{2}^{*}\right) \tag{9}
\end{gather*}
$$

The algebraic solution

- Then, if U satisfies monotonicity and $p_{1}, p_{2}>0$, then

$$
u=U\left(x_{1}^{*}, x_{2}^{*}\right)
$$

- If $x_{1}^{*}, x_{2}^{*}>0$, then $p_{1}=\lambda^{*} M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)$ and $p_{2}=\lambda^{*} M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)$.

- and, for interior solutions, MRS equals goods price ratio!!!

The algebraic solution

- Then, if U satisfies monotonicity and $p_{1}, p_{2}>0$, then

$$
u=U\left(x_{1}^{*}, x_{2}^{*}\right)
$$

- If $x_{1}^{*}, x_{2}^{*}>0$, then $p_{1}=\lambda^{*} M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)$ and $p_{2}=\lambda^{*} M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)$.

Thus:

$$
\begin{equation*}
\frac{M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}=\frac{p_{1}}{p_{2}} \tag{10}
\end{equation*}
$$

- and, for interior solutions, MRS equals goods price ratio!!!

The algebraic solution

- Then, if U satisfies monotonicity and $p_{1}, p_{2}>0$, then

$$
u=U\left(x_{1}^{*}, x_{2}^{*}\right) .
$$

- If $x_{1}^{*}, x_{2}^{*}>0$, then $p_{1}=\lambda^{*} M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)$ and $p_{2}=\lambda^{*} M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)$. Thus:

$$
\begin{equation*}
\frac{M U_{1}\left(x_{1}^{*}, x_{2}^{*}\right)}{M U_{2}\left(x_{1}^{*}, x_{2}^{*}\right)}=\frac{p_{1}}{p_{2}} \tag{10}
\end{equation*}
$$

- and, for interior solutions, MRS equals goods price ratio!!!

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics

8 Consumer's surplus

- Consumer's surplus
- Other measures

Hicksian demand function

- The solution of the cost minimization problem is one (or more) consumption bundles. These depend on the prices (p_{1}, p_{2}) and the utility level u.
- Assume there is a single optimum. Let $H^{1}\left(p_{1}, p_{2}, u\right)$ be the function that tells the optimal amount of good 1 for each prices and utility level. Let $H^{2}\left(p_{1}, p_{2}, u\right)$ be the function that tells the optimal amount of good 2 for each prices and utility level. These are the Hicksian (or compensated) demand functions.

Hicksian demand function

- The solution of the cost minimization problem is one (or more) consumption bundles. These depend on the prices (p_{1}, p_{2}) and the utility level u.
- Assume there is a single optimum. Let $H^{1}\left(p_{1}, p_{2}, u\right)$ be the function that tells the optimal amount of good 1 for each prices and utility level. Let $H^{2}\left(p_{1}, p_{2}, u\right)$ be the function that tells the optimal amount of good 2 for each prices and utility level. These are the Hicksian (or compensated) demand functions.

Properties of the Hicksian demand functions

- Completeness, transitivity, continuity, and strict convexity together imply that the Hicksian demand functions:
- are continuous in prices and utility;
- are homogeneous of degree 1 with respect to prices;
- satisfy: $U\left(H^{1}\left(p_{1}, p_{2}, u\right), H^{2}\left(p_{1}, p_{2}, u\right)\right)=u$.

Properties of the Hicksian demand functions

- Completeness, transitivity, continuity, and strict convexity together imply that the Hicksian demand functions:
- are continuous in prices and utility;
- are homogeneous of degree 1 with respect to prices;
- satisfy: $U\left(H^{1}\left(p_{1}, p_{2}, u\right), H^{2}\left(p_{1}, p_{2}, u\right)\right)=u$.

Properties of the Hicksian demand functions

- Completeness, transitivity, continuity, and strict convexity together imply that the Hicksian demand functions:
- are continuous in prices and utility;
- are homogeneous of degree 1 with respect to prices;
- satisfy: $U\left(H^{1}\left(p_{1}, p_{2}, u\right), H^{2}\left(p_{1}, p_{2}, u\right)\right)=u$.

Properties of the Hicksian demand functions

- Completeness, transitivity, continuity, and strict convexity together imply that the Hicksian demand functions:
- are continuous in prices and utility;
- are homogeneous of degree 1 with respect to prices;
- satisfy: $U\left(H^{1}\left(p_{1}, p_{2}, u\right), H^{2}\left(p_{1}, p_{2}, u\right)\right)=u$.

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(3) Consumer's surplus
- Consumer's surplus
- Other measures

The cost function

- The cost function is the cost of the consumption bundle(s) that solves the cost minimization problem.
- It answers the following question: what is the amount of money needed to choose optimally a consumption bundle that achieves the utility level u at prices $\left(p_{1}, p_{2}\right)$?
- Thus, the cost function depends on the prices $\left(p_{1}, p_{2}\right)$ and the utility level u :

$$
C\left(p_{1}, p_{2}, u\right) \equiv p_{1} H^{1}\left(p_{1}, p_{2}, u\right)+p_{2} H^{2}\left(p_{1}, p_{2}, u\right)
$$

The cost function

- The cost function is the cost of the consumption bundle(s) that solves the cost minimization problem.
- It answers the following question: what is the amount of money needed to choose optimally a consumption bundle that achieves the utility level u at prices $\left(p_{1}, p_{2}\right)$?
- Thus, the cost function depends on the prices $\left(p_{1}, p_{2}\right)$ and the utility

$$
C\left(p_{1}, p_{2}, u\right) \equiv p_{1} H^{1}\left(p_{1}, p_{2}, u\right)+p_{2} H^{2}\left(p_{1}, p_{2}, u\right)
$$

The cost function

- The cost function is the cost of the consumption bundle(s) that solves the cost minimization problem.
- It answers the following question: what is the amount of money needed to choose optimally a consumption bundle that achieves the utility level u at prices $\left(p_{1}, p_{2}\right)$?
- Thus, the cost function depends on the prices $\left(p_{1}, p_{2}\right)$ and the utility level u :

$$
C\left(p_{1}, p_{2}, u\right) \equiv p_{1} H^{1}\left(p_{1}, p_{2}, u\right)+p_{2} H^{2}\left(p_{1}, p_{2}, u\right)
$$

Properties of the cost function

- Completeness, transitivity, continuity, and strict convexity together imply that the cost function:

```
\(\Rightarrow\) is non-decreasing in all consumption good prices are strictly increasing
in at least one;
- is concave in prices;
- is homogeneous of degree 1 in prices;
s satisfies: \(\frac{\partial C\left(p_{1}, p_{2}, u\right)}{\partial p_{i}}=H^{i}\left(p_{1}, p_{2}, u\right)\) with \(i=1,2\);
- with monotonicity, it is also strictly increasing in \(u\).
```


Properties of the cost function

- Completeness, transitivity, continuity, and strict convexity together imply that the cost function:
- is non-decreasing in all consumption good prices are strictly increasing in at least one;
- is concave in prices;
- is homogeneous of degree 1 in prices;
- satisfies: $\frac{\partial C\left(p_{1}, p_{2}, u\right)}{\partial p_{i}}=H^{i}\left(p_{1}, p_{2}, u\right)$ with $i=1,2$;
- with monotonicity, it is also strictly increasing in u.

Properties of the cost function

- Completeness, transitivity, continuity, and strict convexity together imply that the cost function:
- is non-decreasing in all consumption good prices are strictly increasing in at least one;
- is concave in prices;
- is homogeneous of degree 1 in prices;
- satisfies: $\frac{\partial C\left(p_{1}, p_{2}, u\right)}{\partial p_{i}}=H^{i}\left(p_{1}, p_{2}, u\right)$ with $i=1,2$;
- with monotonicity, it is also strictly increasing in u.

Properties of the cost function

- Completeness, transitivity, continuity, and strict convexity together imply that the cost function:
- is non-decreasing in all consumption good prices are strictly increasing in at least one;
- is concave in prices;
- is homogeneous of degree 1 in prices;
- satisfies: $\frac{\partial C\left(p_{1}, p_{2}, u\right)}{\partial p_{i}}=H^{i}\left(p_{1}, p_{2}, u\right)$ with $i=1,2$;
- with monotonicity, it is also strictly increasing in u.

Properties of the cost function

- Completeness, transitivity, continuity, and strict convexity together imply that the cost function:
- is non-decreasing in all consumption good prices are strictly increasing in at least one;
- is concave in prices;
- is homogeneous of degree 1 in prices;
- satisfies: $\frac{\partial C\left(p_{1}, p_{2}, u\right)}{\partial p_{i}}=H^{i}\left(p_{1}, p_{2}, u\right)$ with $i=1,2$;
- with monotonicity, it is also strictly increasing in u.

Properties of the cost function

- Completeness, transitivity, continuity, and strict convexity together imply that the cost function:
- is non-decreasing in all consumption good prices are strictly increasing in at least one;
- is concave in prices;
- is homogeneous of degree 1 in prices;
- satisfies: $\frac{\partial C\left(p_{1}, p_{2}, u\right)}{\partial p_{i}}=H^{i}\left(p_{1}, p_{2}, u\right)$ with $i=1,2$;
- with monotonicity, it is also strictly increasing in u.

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(2) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Example 1

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.
- You can use again the equivalent function $\bar{U}\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$. But:

$$
u \leq U\left(x_{1}, x_{2}\right) \Leftrightarrow \ln u \leq \ln x_{1}+\ln x_{2}
$$

- $\mathscr{L}(\mathbf{x}, \lambda ; \mathbf{p}, u)=p_{1} x_{1}+p_{2} x_{2}+\lambda\left[\ln u-\ln x_{1}-\ln x_{2}\right]$;
- FOCs:

```
\({ }^{-} p_{1} \geq \lambda * \frac{1}{x_{1}^{*}} ;\)
- \(p_{2} \geq \lambda^{*} \frac{1}{x_{2}^{*}}\);
- \(\ln u \leq \ln x_{1}^{*}+\ln x_{2}^{*}\).
```


Example 1

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.
- You can use again the equivalent function $\bar{U}\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$. But:

$$
u \leq U\left(x_{1}, x_{2}\right) \Leftrightarrow \ln u \leq \ln x_{1}+\ln x_{2}
$$

- $\mathscr{L}(\mathbf{x}, \lambda ; \mathbf{p}, u)=p_{1} x_{1}+p_{2} x_{2}+\lambda\left[\ln u-\ln x_{1}-\ln x_{2}\right]$;
- FOCs:

Example 1

- $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}$.
- You can use again the equivalent function $\bar{U}\left(x_{1}, x_{2}\right)=\ln x_{1}+\ln x_{2}$. But:

$$
u \leq U\left(x_{1}, x_{2}\right) \Leftrightarrow \ln u \leq \ln x_{1}+\ln x_{2}
$$

- $\mathscr{L}(\mathbf{x}, \lambda ; \mathbf{p}, u)=p_{1} x_{1}+p_{2} x_{2}+\lambda\left[\ln u-\ln x_{1}-\ln x_{2}\right]$;
- FOCs:
- $p_{1} \geq \lambda^{*} \frac{1}{x_{1}^{*}}$;
- $p_{2} \geq \lambda^{*} \frac{1}{x_{2}^{*}}$;
- $\ln u \leq \ln x_{1}^{*}+\ln x_{2}^{*}$.

Example 1...

- By monotonicity of \bar{U} and $p_{1}, p_{2}>0: \ln u=\ln x_{1}^{*}+\ln x_{2}^{*}$.
- Since $x_{1}^{*}, x_{2}^{*}>0$ (why?),

- Take the ratio of these two (λ^{*} cancels out):

Example 1...

- By monotonicity of \bar{U} and $p_{1}, p_{2}>0: \ln u=\ln x_{1}^{*}+\ln x_{2}^{*}$.
- Since $x_{1}^{*}, x_{2}^{*}>0$ (why?),

$$
\begin{aligned}
& p_{1}=\lambda^{*} \frac{1}{x_{1}^{*}} \\
& p_{2}=\lambda^{*} \frac{1}{x_{2}^{*}}
\end{aligned}
$$

- Take the ratio of these two (λ^{*} cancels out):

Example 1...

- By monotonicity of \bar{U} and $p_{1}, p_{2}>0: \ln u=\ln x_{1}^{*}+\ln x_{2}^{*}$.
- Since $x_{1}^{*}, x_{2}^{*}>0$ (why?),

$$
\begin{aligned}
& p_{1}=\lambda * \frac{1}{\chi_{1}^{*}} \\
& p_{2}=\lambda \frac{1}{x_{2}^{*}}
\end{aligned}
$$

- Take the ratio of these two (λ^{*} cancels out):

$$
\frac{x_{2}^{*}}{x_{1}^{*}}=\frac{p_{1}}{p_{2}} .
$$

Example 1......

- Substitute in the utility constraint and solve:

$$
\begin{gathered}
\ln u=\ln x_{1}^{*}+\ln \left[\frac{p_{1}}{p_{2}} x_{1}^{*}\right] \\
H^{1}\left(p_{1}, p_{2}, u\right)=x_{1}^{*}=\sqrt{\frac{p_{2}}{p_{1}} u}
\end{gathered}
$$

- Since $x_{2}^{*}=\frac{p_{1}}{p_{2}} x_{1}^{*}$:

- The cost function is:

$$
\begin{gathered}
C\left(p_{1}, p_{2}, u\right)=p_{1} H^{1}\left(p_{1}, p_{2}, u\right)+p_{2} H^{2}\left(p_{1}, p_{2}, u\right) \\
=2 \sqrt{p_{1} p_{2} u}
\end{gathered}
$$

Example 1......

- Substitute in the utility constraint and solve:

$$
\begin{gathered}
\ln u=\ln x_{1}^{*}+\ln \left[\frac{p_{1}}{p_{2}} x_{1}^{*}\right] \\
H^{1}\left(p_{1}, p_{2}, u\right)=x_{1}^{*}=\sqrt{\frac{p_{2}}{p_{1}} u}
\end{gathered}
$$

- Since $x_{2}^{*}=\frac{p_{1}}{p_{2}} x_{1}^{*}$:

$$
H^{2}\left(p_{1}, p_{2}, u\right)=x_{2}^{*}=\sqrt{\frac{p_{1}}{p_{2}} u} .
$$

- The cost function is:

$$
\begin{gathered}
C^{\prime}\left(p_{1}, p_{2}, u\right)=p_{1} H^{1}\left(p_{1}, p_{2}, u\right)+p_{2} H^{2}\left(p_{1}, p_{2}, u\right) \\
=2 \sqrt{p_{1} p_{2} u}
\end{gathered}
$$

Example 1......

- Substitute in the utility constraint and solve:

$$
\begin{gathered}
\ln u=\ln x_{1}^{*}+\ln \left[\frac{p_{1}}{p_{2}} x_{1}^{*}\right] \\
H^{1}\left(p_{1}, p_{2}, u\right)=x_{1}^{*}=\sqrt{\frac{p_{2}}{p_{1}} u}
\end{gathered}
$$

- Since $x_{2}^{*}=\frac{p_{1}}{p_{2}} x_{1}^{*}$:

$$
H^{2}\left(p_{1}, p_{2}, u\right)=x_{2}^{*}=\sqrt{\frac{p_{1}}{p_{2}} u} .
$$

- The cost function is:

$$
\begin{gathered}
C\left(p_{1}, p_{2}, u\right)=p_{1} H^{1}\left(p_{1}, p_{2}, u\right)+p_{2} H^{2}\left(p_{1}, p_{2}, u\right) \\
=2 \sqrt{p_{1} p_{2} u}
\end{gathered}
$$

Outline

(1) Introduction

- Course outline
- Economic models
- An example
D. Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(b) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Identities

- How are demands, indirect utility, and cost function related?

$$
\begin{aligned}
& H^{i}\left(p_{1}, p_{2}, u\right)=D^{i}\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right) \\
& D^{i}\left(p_{1}, p_{2}, m\right)=H^{i}\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right) \\
& V\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)=u \\
& C\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right)=m
\end{aligned}
$$

Identities

- How are demands, indirect utility, and cost function related?
- $H^{i}\left(p_{1}, p_{2}, u\right)=D^{i}\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)$;
- $D^{i}\left(p_{1}, p_{2}, m\right)=H^{i}\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right) ;$
- $V\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)=u ;$
$=C^{\prime}\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right)=m$.

Identities

- How are demands, indirect utility, and cost function related?
- $H^{i}\left(p_{1}, p_{2}, u\right)=D^{i}\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)$;
- $D^{i}\left(p_{1}, p_{2}, m\right)=H^{i}\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right) ;$
- $V\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)=u ;$
- $C\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right)=m$.

Identities

- How are demands, indirect utility, and cost function related?
- $H^{i}\left(p_{1}, p_{2}, u\right)=D^{i}\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)$;
- $D^{i}\left(p_{1}, p_{2}, m\right)=H^{i}\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right) ;$
- $V\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)=u ;$
- $C\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right)=m$.

Identities

- How are demands, indirect utility, and cost function related?
- $H^{i}\left(p_{1}, p_{2}, u\right)=D^{i}\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)$;
- $D^{i}\left(p_{1}, p_{2}, m\right)=H^{i}\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right) ;$
- $V\left(p_{1}, p_{2}, C\left(p_{1}, p_{2}, u\right)\right)=u ;$
- $C\left(p_{1}, p_{2}, V\left(p_{1}, p_{2}, m\right)\right)=m$.

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(b) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(b) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

Income effects

- Having a solution for each prices and each level of money allows us to study what happens when changing these parameters of the decision problem.
- We start with a change of the money level: how does the Marshallian demand change when money changes?
- if $\frac{\partial D^{i}}{\partial m} \geq 0$, then i is a normal good.
- if $\frac{\partial D^{i}}{\partial m}<0$, then i is an inferior good.

Income effects

- Having a solution for each prices and each level of money allows us to study what happens when changing these parameters of the decision problem.
- We start with a change of the money level: how does the Marshallian demand change when money changes?
- if $\frac{\partial D^{i}}{\partial m} \geq 0$, then i is a normal good.
- if $\frac{\partial D^{i}}{\partial m}<0$, then i is an inferior good.

Income effects

- Having a solution for each prices and each level of money allows us to study what happens when changing these parameters of the decision problem.
- We start with a change of the money level: how does the Marshallian demand change when money changes?
- if $\frac{\partial D^{i}}{\partial m} \geq 0$, then i is a normal good.
- if $\frac{\partial D^{i}}{\partial m}<0$, then i is an inferior good.

Price effects

- What happens on the demand of good i when the price of good j changes?
- Let us start from our previous observation that:

$$
H^{i}(\mathbf{p}, u)=D^{i}(\mathbf{p}, C(\mathbf{p}, u))
$$

- Take the derivative w.r.t. p_{j} :

$$
\begin{aligned}
& \frac{\partial u^{i}(p, u)}{\partial p_{j}} \equiv H_{j}^{i}(p, u)=\frac{\partial D^{i}(p, C(p, u))}{\partial p_{j}}= \\
& =\frac{\partial D^{i}(p, m)}{\partial p_{j}}+\frac{\partial D^{i}(p, C(p, u))}{\partial m} \frac{\partial C(p, u)}{\partial p_{j}}= \\
& =D_{j}^{i}(p, m)+D_{m}^{i}(p, m) C_{j}(p, u)
\end{aligned}
$$

Price effects

- What happens on the demand of good i when the price of good j changes?
- Let us start from our previous observation that:

$$
H^{i}(\mathbf{p}, u)=D^{i}(\mathbf{p}, C(\mathbf{p}, u))
$$

- Take the derivative w.r.t. p_{j} :

Price effects

- What happens on the demand of good i when the price of good j changes?
- Let us start from our previous observation that:

$$
H^{i}(\mathbf{p}, u)=D^{i}(\mathbf{p}, C(\mathbf{p}, u))
$$

- Take the derivative w.r.t. p_{j} :

$$
\begin{aligned}
& \frac{\partial H^{i}(\mathbf{p}, u)}{\partial p_{j}} \equiv H_{j}^{i}(\mathbf{p}, u)=\frac{\partial D^{i}(\mathbf{p}, C(\mathbf{p}, u))}{\partial p_{j}}= \\
& =\frac{\partial D^{i}(\mathbf{p}, m)}{\partial p_{j}}+\frac{\partial D^{i}(\mathbf{p}, C(\mathbf{p}, u))}{\partial m} \frac{\partial C(\mathbf{p}, u)}{\partial p_{j}}= \\
& =D_{j}^{i}(\mathbf{p}, m)+D_{m}^{i}(\mathbf{p}, m) C_{j}(\mathbf{p}, u)
\end{aligned}
$$

Price effects...

- But since $x_{j}^{*}=\frac{\partial C(\mathbf{p}, v)}{\partial p_{j}}=C_{j}(\mathbf{p}, u)$, we get the Slutsky equation:

$$
D_{j}^{i}(\mathbf{p}, m)=H_{j}^{i}(\mathbf{p}, v)-x_{j}^{*} D_{m}^{i}(\mathbf{p}, m)
$$

- The total effect of a price change $D_{j}^{i}(\mathbf{p}, m)$ is the sum of a substitution effect $H_{j}^{i}(\mathbf{p}, v)$ and an income effect $-x_{j}^{*} D_{m}^{i}(\mathbf{p}, m)$.

Price effects...

- But since $x_{j}^{*}=\frac{\partial C(\mathbf{p}, v)}{\partial p_{j}}=C_{j}(\mathbf{p}, u)$, we get the Slutsky equation:

$$
D_{j}^{i}(\mathbf{p}, m)=H_{j}^{i}(\mathbf{p}, v)-x_{j}^{*} D_{m}^{i}(\mathbf{p}, m)
$$

- The total effect of a price change $D_{j}^{i}(\mathbf{p}, m)$ is the sum of a substitution effect $H_{j}^{i}(\mathbf{p}, v)$ and an income effect $-x_{j}^{*} D_{m}^{i}(\mathbf{p}, m)$.

Income effects

- To repeat, if $D_{m}^{i}(\mathbf{p}, m)$ is negative, the ordinary demand for good i is decreasing with income: then i is an inferior good.
- If $D_{m}^{i}(\mathbf{p}, m)$ is non-negative, the ordinary demand for good i is
non-decreasing with income: then i is a normal good. $4 \square>$ 品

Income effects

- To repeat, if $D_{m}^{i}(\mathbf{p}, m)$ is negative, the ordinary demand for good i is decreasing with income: then i is an inferior good.
- If $D_{m}^{i}(\mathbf{p}, m)$ is non-negative, the ordinary demand for good i is non-decreasing with income: then i is a normal good.

Substitution effects

- $H_{j}^{i}(\mathbf{p}, v)=\frac{\frac{\partial C(p, v)}{\partial p_{i}}}{\partial P_{j}} \equiv C_{i j}(\mathbf{p}, v)=C_{j i}(\mathbf{p}, v) \equiv \frac{\frac{\partial \partial(p, v)}{\partial p_{j}}}{\partial P_{i}}=H_{i}^{j}(\mathbf{p}, v)$
- Thus: the substitution effects are symmetric!
- If $H_{j}^{i}(\mathbf{p}, v)>0$, goods i and j are net substitutes: an increase in price of good j increases the Hicksian demand for good i.
- If $H_{j}^{i}(p, v)<0$, goods i and j are net complements: an increase in price of good j decreases the Hicksian demand for good i.

Substitution effects

- $H_{j}^{i}(\mathbf{p}, v)=\frac{\partial \frac{\partial C(\mathbf{p}, v)}{\partial p_{i}}}{\partial p_{j}} \equiv C_{i j}(\mathbf{p}, v)=C_{j i}(\mathbf{p}, v) \equiv \frac{\partial \frac{\partial C(\mathbf{p}, v)}{\partial p_{j}}}{\partial p_{i}}=H_{i}^{j}(\mathbf{p}, v)$
- Thus: the substitution effects are symmetric!

Substitution effects

- $H_{j}^{i}(\mathbf{p}, v)=\frac{\partial \frac{\partial C(\mathbf{p}, v)}{\partial p_{i}}}{\partial p_{j}} \equiv C_{i j}(\mathbf{p}, v)=C_{j i}(\mathbf{p}, v) \equiv \frac{\partial \frac{\partial C(\mathbf{p}, v)}{\partial p_{j}}}{\partial p_{i}}=H_{i}^{j}(\mathbf{p}, v)$
- Thus: the substitution effects are symmetric!
- If $H_{j}^{i}(\mathbf{p}, v)>0$, goods i and j are net substitutes: an increase in price of good j increases the Hicksian demand for good i.
- If $H_{j}^{i}(\mathbf{p}, v)<0$, goods i and j are net complements: an increase in price of good j decreases the Hicksian demand for good i.

The own price effect

- We can look at the effect of a variation of the price of good i on the demand of good i :

$$
D_{i}^{i}(\mathbf{p}, m)=H_{i}^{i}(\mathbf{p}, v)-x_{i}^{*} D_{m}^{i}(\mathbf{p}, m)
$$

- By the concavity of the cost function $H_{i}^{i}(\mathbf{p}, v)=C_{i i}(\mathbf{p}, v)<0$.
- What about the income effect? the income effect can be both positive or negative.
- If both $D_{m}^{i}(p, m)<0$ (inferior good) and $x_{i}^{*} D_{m}^{i}(p, m)<H_{i}^{i}(p, v)<0$, then the negative income effect dominates the substitution effect and the total effect is positive, i.e. $D_{i}^{i}(\mathbf{p}, m)>0$: increasing the price of good i increases the demand of good i. Then i is a Giffen good.
- If i is a normal good, $D_{i}^{i}(\mathbf{p}, m)<0$: demand decreases when the price increases.

The own price effect

- We can look at the effect of a variation of the price of good i on the demand of good i :

$$
D_{i}^{i}(\mathbf{p}, m)=H_{i}^{i}(\mathbf{p}, v)-x_{i}^{*} D_{m}^{i}(\mathbf{p}, m)
$$

- By the concavity of the cost function $H_{i}^{i}(\mathbf{p}, v)=C_{i i}(\mathbf{p}, v)<0$.
- What about the income effect? the income effect can be both positive or negative.
- If both $D_{m}^{i}(\mathbf{p}, m)<0$ (inferior good) and $x_{i}^{*} D_{m}^{i}(\mathbf{p}, m)<H_{i}^{i}(\mathbf{p}, v)<0$, then the negative income effect dominates the substitution effect and the total effect is positive, i.e. $D_{i}^{i}(p, m)>0$: increasing the price of good i increases the demand of good i. Then i is a Giffen good - If i is a normal good, $D_{i}^{i}(\mathbf{p}, m)<0$: demand decreases when the price increases.

The own price effect

- We can look at the effect of a variation of the price of good i on the demand of good i :

$$
D_{i}^{i}(\mathbf{p}, m)=H_{i}^{i}(\mathbf{p}, v)-x_{i}^{*} D_{m}^{i}(\mathbf{p}, m)
$$

- By the concavity of the cost function $H_{i}^{i}(\mathbf{p}, v)=C_{i i}(\mathbf{p}, v)<0$.
- What about the income effect? the income effect can be both positive or negative.
- If both $D_{m}^{i}(\mathbf{p}, m)<0$ (inferior good) and $x_{i}^{*} D_{m}^{i}(\mathbf{p}, m)<H_{i}^{i}(\mathbf{p}, v)<0$, then the negative income effect dominates the substitution effect and the total effect is positive, i.e. $D_{i}^{i}(\mathbf{p}, m)>0$: increasing the price of good i increases the demand of good i. Then i is a Giffen good.
- If i is a normal good, $D_{i}^{i}(\mathbf{p}, m)<0$: demand decreases when the price increases.

Outline

(1) Introduction

- Course outline
- Economic models
- An example
(b) Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(b) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

The consumer's surplus

- Assume price of good 1 decreases from \bar{p}_{1} to p_{1}^{\prime}. How to measure the benefit of the price change on a consumer?
- graphically.
- Algebraically. Using the consumer's surplus CS
- The consumer's surplus at prices \bar{p}_{1} is:

$$
C S\left(\bar{p}_{1}, p_{2}, m\right)=\int_{\bar{p}_{1}}^{\infty} D^{i}\left(p_{1}, p_{2}, m\right) d p_{1} .
$$

- Thus, the welfare gain for the price reduction is:

$$
\begin{aligned}
\Delta C S & =C S^{\prime}\left(\bar{p}_{1}, p_{2}, m\right)-C S^{\prime}\left(p_{1}^{\prime}, p_{2}, m\right) \\
& =\int_{p_{1}^{\prime}}^{\bar{p}_{1}} D^{1}\left(p_{1}, p_{2}, m\right) d p_{1} .
\end{aligned}
$$

The consumer's surplus

- Assume price of good 1 decreases from \bar{p}_{1} to p_{1}^{\prime}. How to measure the benefit of the price change on a consumer?
- graphically.
- Algebraically. Using the consumer's surplus CS
- The consumer's surplus at prices \bar{p}_{1} is:

$$
C S\left(\bar{p}_{1}, p_{2}, m\right)=\int_{\bar{p}_{1}}^{\infty} D^{i}\left(p_{1}, p_{2}, m\right) d p_{1} .
$$

- Thus, the welfare gain for the price reduction is:

$$
\begin{aligned}
\triangle C S & =C S^{(}\left(\bar{p}_{1}, p_{2}, m\right)-C S\left(p_{1}^{\prime}, p_{2}, m\right) \\
& =\int_{p_{1}^{1}}^{\bar{p}_{1}} D^{1}\left(p_{1}, p_{2}, m\right) d p_{1} .
\end{aligned}
$$

The consumer's surplus

- Assume price of good 1 decreases from \bar{p}_{1} to p_{1}^{\prime}. How to measure the benefit of the price change on a consumer?
- graphically.
- Algebraically. Using the consumer's surplus CS.
- The consumer's surplus at prices \bar{p}_{1} is:

$$
C S\left(\bar{p}_{1}, p_{2}, m\right)=\int_{\bar{p}_{1}}^{\infty} D^{i}\left(p_{1}, p_{2}, m\right) d p_{1}
$$

- Thus, the welfare gain for the price reduction is:

The consumer's surplus

- Assume price of good 1 decreases from \bar{p}_{1} to p_{1}^{\prime}. How to measure the benefit of the price change on a consumer?
- graphically.
- Algebraically. Using the consumer's surplus CS.
- The consumer's surplus at prices \bar{p}_{1} is:

$$
C S\left(\bar{p}_{1}, p_{2}, m\right)=\int_{\bar{p}_{1}}^{\infty} D^{i}\left(p_{1}, p_{2}, m\right) d p_{1}
$$

- Thus, the welfare gain for the price reduction is:

$$
\begin{aligned}
\Delta C S & =C S\left(\bar{p}_{1}, p_{2}, m\right)-C S\left(p_{1}^{\prime}, p_{2}, m\right) \\
& =\int_{p_{1}^{\prime}}^{\bar{p}_{1}} D^{1}\left(p_{1}, p_{2}, m\right) d p_{1}
\end{aligned}
$$

Outline

(1) Introduction

- Course outline
- Economic models
- An example
D. Budget constraint
- Basic ingredients
- The budget set
(3) Preferences
- Definitions
- Properties
(4) Utility
- The utility function
- Examples and MRS
(5) Choice: utility maximization
- The consumer's problem
- The Marshallian demand function
- The indirect utility function
- Example
(6) Choice: cost minimization
- The consumer's problem
- The Hicksian demand function
- The cost function
- Example
(7) Duality relations and comparative statics
- Duality relations
- Comparative statics
(8) Consumer's surplus
- Consumer's surplus
- Other measures

2 further measures: compensated variation

- What is the money change that would make the consumer indifferent between the "initial" consumption $D^{1}\left(\bar{p}_{1}, p_{2}, m\right), D^{2}\left(\bar{p}_{1}, p_{2}, m\right)$ and a consumption bundle at prices p_{1}^{\prime} ?
- the compensated variation CV is such that

$$
v=V\left(p_{1}^{\prime}, p_{2}, m-C V\right) ;
$$

2 further measures: compensated variation

- What is the money change that would make the consumer indifferent between the "initial" consumption $D^{1}\left(\bar{p}_{1}, p_{2}, m\right), D^{2}\left(\bar{p}_{1}, p_{2}, m\right)$ and a consumption bundle at prices p_{1}^{\prime} ?
- the compensated variation CV is such that

$$
v=V\left(p_{1}^{\prime}, p_{2}, m-C V\right)
$$

- or

$$
C V\left(\bar{p}_{1} \rightarrow p_{1}^{\prime}\right)=C\left(\bar{p}_{1}, p_{2}, v\right)-C\left(p_{1}^{\prime}, p_{2}, v\right) .
$$

2 further measures: equivalent variation

- What is the money change that would make the consumer indifferent between the "final" consumption $D^{1}\left(p_{1}^{\prime}, p_{2}, m\right),\left(p_{1}^{\prime}, p_{2}, m\right)$ and a consumption bundle at prices \bar{p}_{1} ?
- the equivalent variation EV is such that

$$
v^{\prime}=V\left(\bar{p}_{1}, p_{2}, m+E V\right)
$$

$$
E V\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=C\left(\bar{p}_{1}, p_{2}, v^{\prime}\right)-C\left(p_{1}^{\prime}, p_{2}, v^{\prime}\right) .
$$

2 further measures: equivalent variation

- What is the money change that would make the consumer indifferent between the "final" consumption $D^{1}\left(p_{1}^{\prime}, p_{2}, m\right),\left(p_{1}^{\prime}, p_{2}, m\right)$ and a consumption bundle at prices \bar{p}_{1} ?
- the equivalent variation EV is such that

$$
v^{\prime}=V\left(\bar{p}_{1}, p_{2}, m+E V\right)
$$

- or

$$
E V\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=C\left(\bar{p}_{1}, p_{2}, v^{\prime}\right)-C\left(p_{1}^{\prime}, p_{2}, v^{\prime}\right) .
$$

