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Inputs and Outputs

Firms are the economic actors that produce and supply commodities
to the market.

The technology of a firm can then be defined as the set of
production processes that a firm can perform.

A production process is an (instantaneous) transformation of
inputs–commodities that are consumed by production–into
outputs–commodities that result from production.
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Examples 1

What are the combinations of inputs and outputs that are feasible?
Given a vector of inputs, what is the largest amoung of outputs the
firm can produce?

With 1 input and 1 output, a typical production function looks like:

y ≤ f (x) ,

where y is output, x is input, and f is the production function.

Examples: f (x) = αx ; f (x) =
√
x ; f (x) = x2 +1.
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Examples 2

With 2 inputs and 1 output, a typical production function looks like:

y ≤ f (x1,x2) ,

which we can represent in the 2-dimensional input space (isoquants!).

Examples: f (x1,x2) = min{x1,x2}; f (x1,x2) = x1 + x2;
f (x1,x2) = Axα

1 x
β

2 .
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Property 1.

Property 1. Impossibility of free production.
f (0,0)≤ 0
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Property 2.

Property 2. Possibility of inaction.
0≤ f (0,0)

P. Piacquadio (p.g.piacquadio@econ.uio.no) Micro 3200/4200 September 14, 2017 8 / 41



Input requirement set and q-isoquant.

Define the “input requirement set (for output y)” as follows:

Z (y)≡ {(x1,x2) |y ≤ f (x1,x2)} (1)

Formally, the y-isoquant:

{(x1,x2) |y = f (x1,x2)} (2)
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Property 3.

Property 3. Free disposal.
For each y ∈ R+, if x ′1 ≥ x1, x ′2 ≥ x2, and y ≤ f (x1,x2), then y ≤ f (x ′1,x

′
2).
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Properties 4 and 5.

Property 4. Convexity of the input requirement set.
For each y ∈ R+, each pair (x1,x2) ,(x ′1,x

′
2) ∈ Z (y), and each t ∈ [0,1], it

holds that t (x1,x2) + (1− t)(x ′1,x
′
2) ∈ Z (y).

Property 5. Strict convexity of the input requirement set.
For each y ∈ R+, each pair (x1,x2) ,(x ′1,x

′
2) ∈ Z (y), and each t ∈ (0,1), it

holds that t (x1,x2) + (1− t)(x ′1,x
′
2) ∈ IntZ (y).
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Marginal product of input i.

The marginal product of an input i = 1,2 describes the marginal
increase of f (x1,x2) when marginally increasing xi .

Mathematically, this can be written as

∆y

∆x1
=

f (x1 + ∆x1,x2)− f (x1,x2)

∆x1
,

when ∆x1→ 0. If φ is differentiable, the marginal product is the
derivative of f w.r.t. xi evaluated at (x1,x2) and is denoted by
MPi (x1,x2).
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Technical rate of substitution.
The technical rate of substitution (TRS) of input i for input j (at
z) is defined as:

TRS (x1,x2)≡ ∆x2

∆x1
, (3)

such that production is unchanged.

By first order approximation,

∆y ∼= MP1∆x1 +MP2∆x2 = 0,

solving, this gives:

TRS (x1,x2) =−MP1 (x1,x2)

MP2 (x1,x2)

It reflects the relative value of the inputs (in terms of production) and
corresponds to the slope of the y-isoquant at (x1,x2).
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Properties 6 and 7.

Property 6. Homotheticity.
For each (x1,x2) and each t > 0, it holds that TRS (x1,x2) = TRS (tx1, tx2).

Property 7. Homogeneity of degree r.
For each (x1,x2) and each t > 0, it holds that f (tx1, tx2) = tr f (x1,x2).
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Properties 8, 9, and 10.

Property 8. Increasing returns to scale (IRTS).
For each (x1,x2) and each t > 1, it holds that f (tx1, tx2) > tf (x1,x2).

Property 9. Decreasing returns to scale (DRTS).
For each (x1,x2) and each t > 1, it holds that f (tx1, tx2) < tf (x1,x2).

Property 10. Constant returns to scale (CRTS).
For each (x1,x2) and each t > 0, it holds that f (tx1, tx2) = tf (x1,x2).
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The optimization problem

We split the optimization problem of the firm in two parts:

1 Cost minimization (choosing (x1,x2) for given y);
2 Output optimization (choosing y , given the cost-minimizing input

choices).
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The cost minimization problem

Let quantity y ∈ R+ be the output that a firm wants to bring to the
market.
The firm wants to minimize the cost of producing y . How to do it?

graphically....

Algebraically. Solve the following minimization problem:

minx1,x2 w1x1 +w2x2
s.t. y ≤ f (x1,x2)
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The Lagrangian and FOCs

L (x1,x2,λ ;w1,w2,y) = w1x1 +w2x2 + λ (y − f (x1,x2)) (4)

The FOCs (allowing for corner solutions!) require that:

λ
∗MPi (x∗1 ,x

∗
2)≤ wi for i = 1,2 (5)

y ≤ f (x∗1 ,x
∗
2) (6)
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The Lagrangian and FOCs

Thus, if x∗i > 0 (implying that λ ∗MPi (x∗1 ,x
∗
2) = wi ), a necessary

condition for cost minimization is that:

MPj (x∗1 ,x
∗
2)

MPi (x∗1 ,x
∗
2)
≤

wj

wi
(7)

or (for interior solutions): TRS equals input price ratio.
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Conditional demand and cost function

The conditional demand function for input i is:

x∗i = H i (w1,w2,y) (8)

Substituting these conditional demands in the cost minimization
problem, we get the relationship between the total cost and the input
prices w and the output choice q. This cost function is defined by:

C (w1,w2,y)≡ w1x
∗
1 +w2x

∗
2 = w1H

1 (w1,w2,y) +w2H
2 (w1,w2,y)

(9)
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Exercise: cost minimization problem (1)

Determine the cost function for the firm with production function
f (x1,x2) = (x1x2)

1
3 .

The minimization problem is:

minx1,x2 w1x1 +w2x2

s.t. q ≤ φ (x1,x2) = (x1x2)
1
3

Write the Lagrangian:

L (x1,x2,λ ;w1,w2,y) = w1x1 +w2x2 + λ

(
y − (x1x2)

1
3

)
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Exercise: cost minimization problem (2)

The FOCs are: 
λ ∗MP1 (x∗1 ,x

∗
2)≤ w1

λ ∗MP2 (x∗1 ,x
∗
2)≤ w2

y ≤ (x∗1x
∗
2)

1
3

Since f is increasing in x1 and x2 and x1,x2 6= 0 (WHY?):
λ ∗ 1

3 (x∗1)−
2
3 (x∗2)

1
3 = w1

λ ∗ 1
3 (x∗1)

1
3 (x∗2)−

2
3 = w2

y = (x∗1x
∗
2)

1
3
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Exercise: cost minimization problem (3)

Dividing the first by the second FOC (and taking the cubic power of
the third one), gives: {

x∗2
x∗1

= w1
w2

y3 = x∗1x
∗
2

And, solving for x∗2 :

x∗2 =
w1

w2
x∗1 =

w1

w2

y3

x∗2

Thus:
(x∗2)2 = y3w1

w2

and the conditional demand function of input 2 is:

x∗2 = H2 (w1,w2,y) = y
3
2

√
w1

w2
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Exercise: cost minimization problem (4)
Since x∗2 = w1

w2
x∗1 , substituting x∗2 = y

3
2

√
w1
w2

gives the conditional

demand function of input 1:

x∗1 = H1 (w1,w2,y) = y
3
2

√
w2

w1

The cost function is defined as:

C (w1,w2,y)≡ w1x
∗
1 +w2x

∗
2 = w1H

1 (w1,w2,y) +w2H
2 (w1,w2,y)

Thus, substituting:

C (w1,w2,y) = w1y
3
2

√
w2

w1
+w2y

3
2

√
w1

w2

And, simplifying,

C (w1,w2,y) = 2
√

y3w1w2.
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demand function of input 1:

x∗1 = H1 (w1,w2,y) = y
3
2

√
w2

w1

The cost function is defined as:

C (w1,w2,y)≡ w1x
∗
1 +w2x

∗
2 = w1H

1 (w1,w2,y) +w2H
2 (w1,w2,y)

Thus, substituting:

C (w1,w2,y) = w1y
3
2

√
w2

w1
+w2y

3
2

√
w1

w2

And, simplifying,

C (w1,w2,y) = 2
√

y3w1w2.
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Properties of the cost function

Increasing in all input prices and strictly increasing in at least one; if f
is continuous, then also strictly increasing in output y .

The cost function is homogeneous of degree 1 in prices, i.e. changing
all prices by 10% increases total cost by 10%.

The cost function is concave in input prices.

[Shephard’s Lemma] ∂C(w1,w2,y)
∂wi

= x∗i = H i (w1,w2,q), i.e. the cost
increase when marginally changing the input price is exactly the
compensated input demand!
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The output optimization problem

Now that we know how a firm chooses inputs for production, we are
left with the following problem:

max
y∈R+

py −C (w1,w2,y) (10)

The first order conditions are:{
p = Cy (w1,w2,y

∗) if y∗ > 0
p < Cy (w1,w2,y

∗) if y∗ = 0
(11)

The second order condition is:

Cyy (w1,w2,y
∗)≥ 0 (12)
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Furthermore...

Our firm needs to be aware that even when profits are maximized,
these might not be positive... so we should further require that Π≥ 0
or:

py −C (w1,w2,y)≥ 0 (13)

or that average cost is lower than p (C(w1,w2,y)
y ≤ p).
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Demands and supply functions

We can define the firm’s supply function as the relationship between
the optimal quantity produced and the market prices of inputs and
output:

y = S (w1,w2,p) (14)

Remember that we already defined the conditional demand function
for input i as:

xi = H i (w1,w2,y) (15)

We can now substitute (14) in (15) to obtain the unconditional
demand function for input i :

xi = D i (w1,w2,p)≡ H i (w1,w2,S (w1,w2,p)) (16)
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Outline

1 Technology

2 Cost minimization

3 Profit maximization

4 The firm supply
Comparative statics

5 Multiproduct firms
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Slope of the supply function
When y∗ > 0, the FOC for the output optimization problem requires
that:

p = Cy (w1,w2,y
∗)

Substituting the supply function for y∗ = S (w1,w2,p) gives:

p = Cy (w1,w2,S (w1,w2,p))

Now take the derivative wrt p:

1 = Cyy (w1,w2,S (w1,w2,p))Sp (w1,w2,p)

Rearrange and obtain:

Sp (w1,w2,p) =
1

Cyy (w1,w2,S (w1,w2,p))
≥ 0 (17)

Thus, the slope of the supply function is positive! Why? by the
SOC...
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Output price effect on input demand
Consider the uncompensated demand for input x∗i = D i (w1,w2,p) and
take the derivative wrt output price p. Remember that
D i (w1,w2,p)≡ H i (w1,w2,S (w1,w2,p)).

D i
p (w1,w2,p) = H i

y (w1,w2,y
∗)Sp (w1,w2,p)

By the Shephard’s Lemma, ∂C(w1,w2,y)
∂wi

= H i (w1,w2,y). Thus

H i
y (w1,w2,y) =

∂

(
∂C(w1,w2,y)

∂wi

)
∂y =

∂Cy (w1,w2,y)
∂wi

(cross derivatives are
equal!). Substituting in the previous gives:

D i
p (w1,w2,p) =

∂Cy (w1,w2,y
∗)

∂wi
Sp (w1,w2,p) (18)

How does uncompensated demand change with output price? If wi

increases the marginal cost of output, then an increase of the output
price would imply a larger use of input i .
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Input price effect on input demand (1)
Consider the uncompensated demand for input x∗i = D i (w1,w2,p) and
take the derivative wrt input price wj . (Again, start from the identity
D i (w1,w2,p)≡ H i (w1,w2,S (w1,w2,p))).

D i
j (w1,w2,p) = H i

j (w1,w2,y
∗) +H i

y (w1,w2,y
∗)Sj (w1,w2,p)

As before, by the Shephard’s Lemma, ∂C(w1,w2,y)
∂wi

= H i (w1,w2,y).

Thus H i
y (w1,w2,y) =

∂

(
∂C(w1,w2,y)

∂wi

)
∂y =

∂Cy (w1,w2,y)
∂wi

(cross derivatives
are equal!).

Furthermore, differentiate the FOC p = Cy (w1,w2,S (w1,w2,p)) wrt
wj to obtain:

0 =
∂Cy (w1,w2,y

∗)

∂wj
+Cyy (w1,w2,y

∗)Sj (w1,w2,p)
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Input price effect on input demand (2)

Substitute to get

D i
j (w1,w2,p) = H i

j (w1,w2,y
∗)−

Ciy (w1,w2,y
∗)Cjy (w1,w2,y

∗)

Cyy (w1,w2,y∗)
(19)

How does uncompensated demand change with the price of another
input? Two effects: a substitution effect H i

j (w1,w2,y
∗) and an

output effect Ciy (w1,w2,y
∗)Cjy (w1,w2,y

∗)
Cyy (w1,w2,y∗)

.
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Implication 1

Let us first concentrate on H i
j (w1,w2,y

∗).

Shephard’s lemma implies that H i (w1,w2,y) = Ci (w1,w2,y).

Thus, H i
j (w1,w2,y

∗) = Cij (w1,w2,y
∗).

But by symmetry of the cross derivatives,
Cij (w1,w2,y

∗) = Cji (w1,w2,y
∗).

Moreover, H j
i (w1,w2,y

∗) = Cji (w1,w2,y
∗). Thus:

H i
j (w1,w2,y

∗) = H j
i (w1,w2,y

∗), i.e. the substitution effect is
symmetric!

Check the output effect... it is also symmetric, thus also
D i
j (w1,w2,p) = D j

i (w1,w2,p), the total effect is symmetric.
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D i
j (w1,w2,p) = D j

i (w1,w2,p), the total effect is symmetric.
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Implication 2

Look now at the effect of wi on the demand of input i .

D i
i (w1,w2,p) = H i

i (w1,w2,q
∗)−

[Ciy (w1,w2,y
∗)]2

Cyy (w1,w2,y∗)
(20)

H i
i (w1,w2,y) = Cii (w1,w2,y) (by Shephard’s Lemma and taking the

derivative).

By concavity of the cost function (SOC for an optimum),
Cii (w1,w2,y

∗)≤ 0. Thus, H i
i (w1,w2,y

∗)≤ 0.

But Cyy (w1,w2,y
∗)≥ 0 (again from the SOC) and also the squared

term is larger than 0; thus:

D i
i (w1,w2,p)≤ 0, i.e. the unconditional demand for input i is

decreasing in the own price.
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Many products, many inputs...

Up to now, we have studied the case of a firm producing a single
output y. What if the firm could produce many goods at the same
time?

Abstractly, all commodities (inputs or outputs) could be produced. So,
let us write a (large) vector y ≡ (y1, ...,yn) ∈ Rn of all commodities.

Then good yn is a net output if yn > 0; it is net input if yn > 0.
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Production technology and MRT

We can now write the technology as an implicit inequality:

F (y)≤ 0 (21)

where the function F is non-decreasing in each of the yi .

We define the marginal rate of transformation of netput i into
netput j by:

MRTij ≡
MFj (y)

MFi (y)
(22)

P. Piacquadio (p.g.piacquadio@econ.uio.no) Micro 3200/4200 September 14, 2017 37 / 41



Production technology and MRT

We can now write the technology as an implicit inequality:

F (y)≤ 0 (21)

where the function F is non-decreasing in each of the yi .

We define the marginal rate of transformation of netput i into
netput j by:

MRTij ≡
MFj (y)

MFi (y)
(22)

P. Piacquadio (p.g.piacquadio@econ.uio.no) Micro 3200/4200 September 14, 2017 37 / 41



Objective of the firm

Our firm still wants to maximize profits (now much simplified):

Π =
n

∑
i=1

piyi (23)

subject to F (y)≤ 0.

Proceeding as before, we can write the Lagrangean of the
maximization problem:

L (y,λ ;p)≡
n

∑
i=1

piyi −λF (y) (24)
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Optimality conditions

Deriving wrt each yi and λ , we get the following FOCs:

pi ≥ λ
∗Fi

(
y*
)

for each i = 1, ...,n (25)

F (y∗)≤ 0 (26)

If y∗i > 0, for each j the following holds at the optimum:

MFj (y∗)
MFi (y∗)

≤
pj
pi

(27)

or, equivalently, MRT equals output price ratio.
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The netput and profit functions

As before we can write the optimal choice of yi as a function of the
prices: y∗i ≡ yi (p).

Subsituting these netput functions in the profit, we get the profit
function:

Π(p)≡
n

∑
i=1

piy
∗
i =

n

∑
i=1

piyi (p) (28)
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Properties of the profit function

Non-decreasing in all net-put prices.

The profit function is homogeneous of degree 1 in prices, i.e. changing
all prices by 10% increases total cost by 10%.

The profit function is convex in net-put prices.

[Hotelling’s Lemma] ∂Π(p)
∂pi

= y∗i , i.e. the marginal profit increase for
marginally changing the netput price is exactly the optimal quantity of
netput i !
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