Microeconomics 3200/4200:

Part 1

P. Piacquadio
p.g.piacquadio@econ.uio.no

September 14, 2017

Outline

(1) Technology
(2) Cost minimization
(3) Profit maximization
(4) The firm supply

- Comparative statics
(5) Multiproduct firms

Inputs and Outputs

- Firms are the economic actors that produce and supply commodities to the market.
- The technology of a firm can then be defined as the set of production processes that a firm can perform.
- A production process is an (instantaneous) transformation of inputs-commodities that are consumed by production-into outputs-commodities that result from production.

Inputs and Outputs

- Firms are the economic actors that produce and supply commodities to the market.
- The technology of a firm can then be defined as the set of production processes that a firm can perform.
- A production process is an (instantaneous) transformation of inputs-commodities that are consumed by production-into outputs-commodities that result from production.

Inputs and Outputs

- Firms are the economic actors that produce and supply commodities to the market.
- The technology of a firm can then be defined as the set of production processes that a firm can perform.
- A production process is an (instantaneous) transformation of inputs-commodities that are consumed by production-into outputs-commodities that result from production.

Inputs and Outputs

- Firms are the economic actors that produce and supply commodities to the market.
- The technology of a firm can then be defined as the set of production processes that a firm can perform.
- A production process is an (instantaneous) transformation of inputs-commodities that are consumed by production-into outputs-commodities that result from production.

Inputs and Outputs

- Firms are the economic actors that produce and supply commodities to the market.
- The technology of a firm can then be defined as the set of production processes that a firm can perform.
- A production process is an (instantaneous) transformation of inputs-commodities that are consumed by production-into outputs-commodities that result from production.

Inputs and Outputs

- Firms are the economic actors that produce and supply commodities to the market.
- The technology of a firm can then be defined as the set of production processes that a firm can perform.
- A production process is an (instantaneous) transformation of inputs-commodities that are consumed by production-into outputs-commodities that result from production.

Examples 1

- What are the combinations of inputs and outputs that are feasible?
- Given a vector of inputs, what is the largest amoung of outputs the firm can produce?
- With 1 input and 1 output, a typical production function looks like:

where y is output, x is input, and f is the production function.
- Examples: $f(x)=\alpha x ; f(x)=\sqrt{x} ; f(x)=x^{2}+1$.

Examples 1

- What are the combinations of inputs and outputs that are feasible?
- Given a vector of inputs, what is the largest amoung of outputs the firm can produce?
- With 1 input and 1 output, a typical production function looks like:

$$
y \leq f(x)
$$

where y is output, x is input, and f is the production function.

- Examples: $f(x)=\alpha x ; f(x)=\sqrt{x} ; f(x)=x^{2}+1$.

Examples 1

- What are the combinations of inputs and outputs that are feasible?
- Given a vector of inputs, what is the largest amoung of outputs the firm can produce?
- With 1 input and 1 output, a typical production function looks like:

$$
y \leq f(x)
$$

where y is output, x is input, and f is the production function.

- Examples: $f(x)=\alpha x ; f(x)=\sqrt{x} ; f(x)=x^{2}+1$.

Examples 2

- With 2 inputs and 1 output, a typical production function looks like:

$$
y \leq f\left(x_{1}, x_{2}\right)
$$

which we can represent in the 2-dimensional input space (isoquants!).

- Examples: $f\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\} ; f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$; $f\left(x_{1}, x_{2}\right)=A x_{1}^{\alpha} x_{2}^{\beta}$.

Examples 2

- With 2 inputs and 1 output, a typical production function looks like:

$$
y \leq f\left(x_{1}, x_{2}\right)
$$

which we can represent in the 2-dimensional input space (isoquants!).

- Examples: $f\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\} ; f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$; $f\left(x_{1}, x_{2}\right)=A x_{1}^{\alpha} x_{2}^{\beta}$.

Property 1.

Property 1 . Impossibility of free production.
$f(0,0) \leq 0$

Property 2.

Property 2. Possibility of inaction.
 $0 \leq f(0,0)$

Input requirement set and q-isoquant.

Define the "input requirement set (for output y)" as follows:

$$
\begin{equation*}
Z(y) \equiv\left\{\left(x_{1}, x_{2}\right) \mid y \leq f\left(x_{1}, x_{2}\right)\right\} \tag{1}
\end{equation*}
$$

Formally, the y-isoquant:

$\left\{\left(x_{1}, x_{2}\right) \mid y=f\left(x_{1}, x_{2}\right)\right\}$

Input requirement set and q-isoquant.

Define the "input requirement set (for output y)" as follows:

$$
\begin{equation*}
Z(y) \equiv\left\{\left(x_{1}, x_{2}\right) \mid y \leq f\left(x_{1}, x_{2}\right)\right\} \tag{1}
\end{equation*}
$$

Formally, the y-isoquant:

$$
\begin{equation*}
\left\{\left(x_{1}, x_{2}\right) \mid y=f\left(x_{1}, x_{2}\right)\right\} \tag{2}
\end{equation*}
$$

Property 3.

Property 3. Free disposal.

For each $y \in \mathbb{R}_{+}$, if $x_{1}^{\prime} \geq x_{1}, x_{2}^{\prime} \geq x_{2}$, and $y \leq f\left(x_{1}, x_{2}\right)$, then $y \leq f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$.

Properties 4 and 5.

Property 4. Convexity of the input requirement set.
For each $y \in \mathbb{R}_{+}$, each pair $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in Z(y)$, and each $t \in[0,1]$, it holds that $t\left(x_{1}, x_{2}\right)+(1-t)\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in Z(y)$.

Properties 4 and 5.

Property 4. Convexity of the input requirement set.
For each $y \in \mathbb{R}_{+}$, each pair $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in Z(y)$, and each $t \in[0,1]$, it holds that $t\left(x_{1}, x_{2}\right)+(1-t)\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in Z(y)$.

Property 5 . Strict convexity of the input requirement set.
For each $y \in \mathbb{R}_{+}$, each pair $\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in Z(y)$, and each $t \in(0,1)$, it holds that $t\left(x_{1}, x_{2}\right)+(1-t)\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in \operatorname{Int} Z(y)$.

Marginal product of input i .

- The marginal product of an input $i=1,2$ describes the marginal increase of $f\left(x_{1}, x_{2}\right)$ when marginally increasing x_{i}.
- Mathematically, this can be written as

when $\Delta x_{1} \rightarrow 0$. If ϕ is differentiable, the marginal product is the derivative of f w.r.t. x_{i} evaluated at $\left(x_{1}, x_{2}\right)$ and is denoted by $M P_{i}\left(x_{1}, x_{2}\right)$.

Marginal product of input i .

- The marginal product of an input $i=1,2$ describes the marginal increase of $f\left(x_{1}, x_{2}\right)$ when marginally increasing x_{i}.
- Mathematically, this can be written as

$$
\frac{\Delta y}{\Delta x_{1}}=\frac{f\left(x_{1}+\Delta x_{1}, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{\Delta x_{1}}
$$

when $\Delta x_{1} \rightarrow 0$. If ϕ is differentiable, the marginal product is the derivative of f w.r.t. x_{i} evaluated at $\left(x_{1}, x_{2}\right)$ and is denoted by $M P_{i}\left(x_{1}, x_{2}\right)$.

Technical rate of substitution.

- The technical rate of substitution (TRS) of input i for input j (at z) is defined as:

$$
\begin{equation*}
\operatorname{TRS}\left(x_{1}, x_{2}\right) \equiv \frac{\Delta x_{2}}{\Delta x_{1}} \tag{3}
\end{equation*}
$$

such that production is unchanged.

- By first order approximation,

$$
\Delta y \cong M P_{1} \Delta x_{1}+M P_{2} \Delta x_{2}=0
$$

solving, this gives:

- It reflects the relative value of the inputs (in terms of production) and corresponds to the slope of the y-isoquant at $\left(x_{1}, x_{2}\right)$.

Technical rate of substitution.

- The technical rate of substitution (TRS) of input i for input j (at z) is defined as:

$$
\begin{equation*}
\operatorname{TRS}\left(x_{1}, x_{2}\right) \equiv \frac{\Delta x_{2}}{\Delta x_{1}} \tag{3}
\end{equation*}
$$

such that production is unchanged.

- By first order approximation,

$$
\Delta y \cong M P_{1} \Delta x_{1}+M P_{2} \Delta x_{2}=0
$$

solving, this gives:

$$
\operatorname{TRS}\left(x_{1}, x_{2}\right)=-\frac{M P_{1}\left(x_{1}, x_{2}\right)}{M P_{2}\left(x_{1}, x_{2}\right)}
$$

- It reflects the relative value of the inputs (in terms of production) and corresponds to the slope of the y-isoquant at $\left(x_{1}, x_{2}\right)$.

Properties 6 and 7.

Property 6. Homotheticity.
For each $\left(x_{1}, x_{2}\right)$ and each $t>0$, it holds that $\operatorname{TRS}\left(x_{1}, x_{2}\right)=\operatorname{TRS}\left(t x_{1}, t x_{2}\right)$.

Properties 6 and 7.

Property 6. Homotheticity.
For each $\left(x_{1}, x_{2}\right)$ and each $t>0$, it holds that $\operatorname{TRS}\left(x_{1}, x_{2}\right)=\operatorname{TRS}\left(t x_{1}, t x_{2}\right)$.

Property 7. Homogeneity of degree r.
For each (x_{1}, x_{2}) and each $t>0$, it holds that $f\left(t x_{1}, t x_{2}\right)=t^{r} f\left(x_{1}, x_{2}\right)$.

Properties 8, 9, and 10.

Property 8. Increasing returns to scale (IRTS).
For each (x_{1}, x_{2}) and each $t>1$, it holds that $f\left(t x_{1}, t x_{2}\right)>t f\left(x_{1}, x_{2}\right)$.

Properties 8, 9, and 10.

Property 8. Increasing returns to scale (IRTS).
For each (x_{1}, x_{2}) and each $t>1$, it holds that $f\left(t x_{1}, t x_{2}\right)>t f\left(x_{1}, x_{2}\right)$.

Property 9. Decreasing returns to scale (DRTS).
For each (x_{1}, x_{2}) and each $t>1$, it holds that $f\left(t x_{1}, t x_{2}\right)<t f\left(x_{1}, x_{2}\right)$.

Properties 8, 9, and 10.

Property 8. Increasing returns to scale (IRTS).
For each (x_{1}, x_{2}) and each $t>1$, it holds that $f\left(t x_{1}, t x_{2}\right)>t f\left(x_{1}, x_{2}\right)$.

Property 9. Decreasing returns to scale (DRTS).
For each (x_{1}, x_{2}) and each $t>1$, it holds that $f\left(t x_{1}, t x_{2}\right)<t f\left(x_{1}, x_{2}\right)$.

Property 10. Constant returns to scale (CRTS).

For each $\left(x_{1}, x_{2}\right)$ and each $t>0$, it holds that $f\left(t x_{1}, t x_{2}\right)=t f\left(x_{1}, x_{2}\right)$.

The optimization problem

- We split the optimization problem of the firm in two parts:
(1) Cost minimization (choosing $\left(x_{1}, x_{2}\right)$ for given y);
(3) Output optimization (choosing y, given the cost-minimizing input choices).

The optimization problem

- We split the optimization problem of the firm in two parts:
(1) Cost minimization (choosing $\left(x_{1}, x_{2}\right)$ for given y);
(2) Output optimization (choosing y, given the cost-minimizing input choices).

The cost minimization problem

- Let quantity $y \in \mathbb{R}_{+}$be the output that a firm wants to bring to the market.
- The firm wants to minimize the cost of producing y. How to do it?
- graphically....
- Algebraically. Solve the following minimization problem:
$\min _{x_{1}, x_{2}} w_{1} x_{1}+w_{2} x_{2}$

The cost minimization problem

- Let quantity $y \in \mathbb{R}_{+}$be the output that a firm wants to bring to the market.
- The firm wants to minimize the cost of producing y. How to do it?
- graphically....
- Algebraically. Solve the following minimization problem:
$\min _{x_{1}, x_{2}} w_{1} x_{1}+w_{2} x_{2}$

The cost minimization problem

- Let quantity $y \in \mathbb{R}_{+}$be the output that a firm wants to bring to the market.
- The firm wants to minimize the cost of producing y. How to do it?
- graphically....
- Algebraically. Solve the following minimization problem:

$$
\begin{aligned}
\min _{x_{1}, x_{2}} & w_{1} x_{1}+w_{2} x_{2} \\
\text { s.t. } & y \leq f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

The Lagrangian and FOCs

$\mathscr{L}\left(x_{1}, x_{2}, \lambda ; w_{1}, w_{2}, y\right)=w_{1} x_{1}+w_{2} x_{2}+\lambda\left(y-f\left(x_{1}, x_{2}\right)\right)$

- The FOCs (allowing for corner solutions!) require that:

$$
\lambda^{*} M P_{i}\left(x_{1}^{*}, x_{2}^{*}\right) \leq w_{i} \quad \text { for } i=1,2
$$

The Lagrangian and FOCs

$$
\begin{equation*}
\mathscr{L}\left(x_{1}, x_{2}, \lambda ; w_{1}, w_{2}, y\right)=w_{1} x_{1}+w_{2} x_{2}+\lambda\left(y-f\left(x_{1}, x_{2}\right)\right) \tag{4}
\end{equation*}
$$

- The FOCs (allowing for corner solutions!) require that:

$$
\begin{gather*}
\lambda^{*} M P_{i}\left(x_{1}^{*}, x_{2}^{*}\right) \leq w_{i} \quad \text { for } i=1,2 \tag{5}\\
y \leq f\left(x_{1}^{*}, x_{2}^{*}\right) \tag{6}
\end{gather*}
$$

The Lagrangian and FOCs

- Thus, if $x_{i}^{*}>0$ (implying that $\lambda^{*} M P_{i}\left(x_{1}^{*}, x_{2}^{*}\right)=w_{i}$), a necessary condition for cost minimization is that:

$$
\begin{equation*}
\frac{M P_{j}\left(x_{1}^{*}, x_{2}^{*}\right)}{M P_{i}\left(x_{1}^{*}, x_{2}^{*}\right)} \leq \frac{w_{j}}{w_{i}} \tag{7}
\end{equation*}
$$

- or (for interior solutions): TRS equals input price ratio.

The Lagrangian and FOCs

- Thus, if $x_{i}^{*}>0$ (implying that $\lambda^{*} M P_{i}\left(x_{1}^{*}, x_{2}^{*}\right)=w_{i}$), a necessary condition for cost minimization is that:

$$
\begin{equation*}
\frac{M P_{j}\left(x_{1}^{*}, x_{2}^{*}\right)}{M P_{i}\left(x_{1}^{*}, x_{2}^{*}\right)} \leq \frac{w_{j}}{w_{i}} \tag{7}
\end{equation*}
$$

- or (for interior solutions): TRS equals input price ratio.

Conditional demand and cost function

- The conditional demand function for input i is:

$$
\begin{equation*}
x_{i}^{*}=H^{i}\left(w_{1}, w_{2}, y\right) \tag{8}
\end{equation*}
$$

- Substituting these conditional demands in the cost minimization problem, we get the relationship between the total cost and the input prices w and the output choice q. This cost function is defined by:

Conditional demand and cost function

- The conditional demand function for input i is:

$$
\begin{equation*}
x_{i}^{*}=H^{i}\left(w_{1}, w_{2}, y\right) \tag{8}
\end{equation*}
$$

- Substituting these conditional demands in the cost minimization problem, we get the relationship between the total cost and the input prices w and the output choice q . This cost function is defined by:

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right) \equiv w_{1} x_{1}^{*}+w_{2} x_{2}^{*}=w_{1} H^{1}\left(w_{1}, w_{2}, y\right)+w_{2} H^{2}\left(w_{1}, w_{2}, y\right) \tag{9}
\end{equation*}
$$

Exercise: cost minimization problem (1)

- Determine the cost function for the firm with production function $f\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{3}}$.
- The minimization problem is:

- Write the Lagrangian:

$$
\mathscr{L}\left(x_{1}, x_{2}, \lambda ; w_{1}, w_{2}, y\right)=w_{1} x_{1}+w_{2} x_{2}+\lambda\left(y-\left(x_{1} x_{2}\right)^{\frac{1}{3}}\right)
$$

Exercise: cost minimization problem (1)

- Determine the cost function for the firm with production function $f\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{3}}$.
- The minimization problem is:

$$
\begin{aligned}
\min _{x_{1}, x_{2}} & w_{1} x_{1}+w_{2} x_{2} \\
\text { s.t. } & q \leq \phi\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{3}}
\end{aligned}
$$

- Write the Lagrangian:

$$
\mathscr{L}\left(x_{1}, x_{2}, \lambda ; w_{1}, w_{2}, y\right)=w_{1} x_{1}+w_{2} x_{2}+\lambda\left(y-\left(x_{1} x_{2}\right)^{\frac{1}{3}}\right)
$$

Exercise: cost minimization problem (1)

- Determine the cost function for the firm with production function $f\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{3}}$.
- The minimization problem is:

$$
\begin{aligned}
\min _{x_{1}, x_{2}} & w_{1} x_{1}+w_{2} x_{2} \\
\text { s.t. } & q \leq \phi\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{3}}
\end{aligned}
$$

- Write the Lagrangian:

$$
\mathscr{L}\left(x_{1}, x_{2}, \lambda ; w_{1}, w_{2}, y\right)=w_{1} x_{1}+w_{2} x_{2}+\lambda\left(y-\left(x_{1} x_{2}\right)^{\frac{1}{3}}\right)
$$

Exercise: cost minimization problem (2)

- The FOCs are:

$$
\left\{\begin{array}{l}
\lambda^{*} M P_{1}\left(x_{1}^{*}, x_{2}^{*}\right) \leq w_{1} \\
\lambda^{*} M P_{2}\left(x_{1}^{*}, x_{2}^{*}\right) \leq w_{2} \\
y \leq\left(x_{1}^{*} x_{2}^{*}\right)^{\frac{1}{3}}
\end{array}\right.
$$

- Since f is increasing in x_{1} and x_{2} and $x_{1}, x_{2} \neq 0$ (WHY?):

Exercise: cost minimization problem (2)

- The FOCs are:

$$
\left\{\begin{array}{l}
\lambda^{*} M P_{1}\left(x_{1}^{*}, x_{2}^{*}\right) \leq w_{1} \\
\lambda^{*} M P_{2}\left(x_{1}^{*}, x_{2}^{*}\right) \leq w_{2} \\
y \leq\left(x_{1}^{*} x_{2}^{*}\right)^{\frac{1}{3}}
\end{array}\right.
$$

- Since f is increasing in x_{1} and x_{2} and $x_{1}, x_{2} \neq 0$ (WHY?):

$$
\left\{\begin{array}{l}
\lambda^{*} \frac{1}{3}\left(x_{1}^{*}\right)^{-\frac{2}{3}}\left(x_{2}^{*}\right)^{\frac{1}{3}}=w_{1} \\
\lambda * \frac{1}{3}\left(x_{1}^{*} \frac{1}{3}\left(x_{2}^{*}\right)^{-\frac{2}{3}}=w_{2}\right. \\
y=\left(x_{1}^{*} x_{2}^{*}\right)^{\frac{1}{3}}
\end{array}\right.
$$

Exercise: cost minimization problem (3)

- Dividing the first by the second FOC (and taking the cubic power of the third one), gives:

$$
\left\{\begin{array}{l}
\frac{x_{2}^{*}}{x_{1}^{*}}=\frac{w_{1}}{w_{2}} \\
y^{3}=x_{1}^{*} x_{2}^{*}
\end{array}\right.
$$

- And, solving for x_{2}^{*} :

- Thus:

- and the conditional demand function of input 2 is:

Exercise: cost minimization problem (3)

- Dividing the first by the second FOC (and taking the cubic power of the third one), gives:

$$
\left\{\begin{array}{l}
\frac{x_{2}^{*}}{x_{1}^{*}}=\frac{w_{1}}{w_{2}} \\
y^{3}=x_{1}^{*} x_{2}^{*}
\end{array}\right.
$$

- And, solving for x_{2}^{*} :

$$
x_{2}^{*}=\frac{w_{1}}{w_{2}} x_{1}^{*}=\frac{w_{1}}{w_{2}} \frac{y^{3}}{x_{2}^{*}}
$$

- Thus:

- and the conditional demand function of input 2 is:

Exercise: cost minimization problem (3)

- Dividing the first by the second FOC (and taking the cubic power of the third one), gives:

$$
\left\{\begin{array}{l}
\frac{x_{2}^{*}}{x_{1}^{*}}=\frac{w_{1}}{w_{2}} \\
y^{3}=x_{1}^{*} x_{2}^{*}
\end{array}\right.
$$

- And, solving for x_{2}^{*} :

$$
x_{2}^{*}=\frac{w_{1}}{w_{2}} x_{1}^{*}=\frac{w_{1}}{w_{2}} \frac{y^{3}}{x_{2}^{*}}
$$

- Thus:

$$
\left(x_{2}^{*}\right)^{2}=y^{3} \frac{w_{1}}{w_{2}}
$$

- and the conditional demand function of input 2 is:

$$
x_{2}^{*}=H^{2}\left(w_{1}, w_{2}, y\right)=y^{\frac{3}{2}} \sqrt{\frac{w_{1}}{w_{2}}}
$$

Exercise: cost minimization problem (4)

- Since $x_{2}^{*}=\frac{w_{1}}{w_{2}} x_{1}^{*}$, substituting $x_{2}^{*}=y^{\frac{3}{2}} \sqrt{\frac{w_{1}}{w_{2}}}$ gives the conditional demand function of input 1 :

$$
x_{1}^{*}=H^{1}\left(w_{1}, w_{2}, y\right)=y^{\frac{3}{2}} \sqrt{\frac{w_{2}}{w_{1}}}
$$

- The cost function is defined as:

- Thus, substituting:

- And, simplifying,

$$
C\left(w_{1}, w_{2}, y\right)=2 \sqrt{y^{3} w_{1} w_{2}}
$$

Exercise: cost minimization problem (4)

- Since $x_{2}^{*}=\frac{w_{1}}{w_{2}} x_{1}^{*}$, substituting $x_{2}^{*}=y^{\frac{3}{2}} \sqrt{\frac{w_{1}}{w_{2}}}$ gives the conditional demand function of input 1 :

$$
x_{1}^{*}=H^{1}\left(w_{1}, w_{2}, y\right)=y^{\frac{3}{2}} \sqrt{\frac{w_{2}}{w_{1}}}
$$

- The cost function is defined as:

$$
C\left(w_{1}, w_{2}, y\right) \equiv w_{1} x_{1}^{*}+w_{2} x_{2}^{*}=w_{1} H^{1}\left(w_{1}, w_{2}, y\right)+w_{2} H^{2}\left(w_{1}, w_{2}, y\right)
$$

- Thus, substituting:

- And, simplifying,

$$
C\left(w_{1}, w_{2}, y\right)=2 \sqrt{y^{3} w_{1} w_{2}}
$$

Exercise: cost minimization problem (4)

- Since $x_{2}^{*}=\frac{w_{1}}{w_{2}} x_{1}^{*}$, substituting $x_{2}^{*}=y^{\frac{3}{2}} \sqrt{\frac{w_{1}}{w_{2}}}$ gives the conditional demand function of input 1 :

$$
x_{1}^{*}=H^{1}\left(w_{1}, w_{2}, y\right)=y^{\frac{3}{2}} \sqrt{\frac{w_{2}}{w_{1}}}
$$

- The cost function is defined as:

$$
C\left(w_{1}, w_{2}, y\right) \equiv w_{1} x_{1}^{*}+w_{2} x_{2}^{*}=w_{1} H^{1}\left(w_{1}, w_{2}, y\right)+w_{2} H^{2}\left(w_{1}, w_{2}, y\right)
$$

- Thus, substituting:

$$
C\left(w_{1}, w_{2}, y\right)=w_{1} y^{\frac{3}{2}} \sqrt{\frac{w_{2}}{w_{1}}}+w_{2} y^{\frac{3}{2}} \sqrt{\frac{w_{1}}{w_{2}}}
$$

- And, simplifying,

$$
C\left(w_{1}, w_{2}, y\right)=2 \sqrt{y^{3} w_{1} w_{2}} .
$$

Exercise: cost minimization problem (4)

- Since $x_{2}^{*}=\frac{w_{1}}{w_{2}} x_{1}^{*}$, substituting $x_{2}^{*}=y^{\frac{3}{2}} \sqrt{\frac{w_{1}}{w_{2}}}$ gives the conditional demand function of input 1 :

$$
x_{1}^{*}=H^{1}\left(w_{1}, w_{2}, y\right)=y^{\frac{3}{2}} \sqrt{\frac{w_{2}}{w_{1}}}
$$

- The cost function is defined as:

$$
C\left(w_{1}, w_{2}, y\right) \equiv w_{1} x_{1}^{*}+w_{2} x_{2}^{*}=w_{1} H^{1}\left(w_{1}, w_{2}, y\right)+w_{2} H^{2}\left(w_{1}, w_{2}, y\right)
$$

- Thus, substituting:

$$
C\left(w_{1}, w_{2}, y\right)=w_{1} y^{\frac{3}{2}} \sqrt{\frac{w_{2}}{w_{1}}}+w_{2} y^{\frac{3}{2}} \sqrt{\frac{w_{1}}{w_{2}}}
$$

- And, simplifying,

$$
C\left(w_{1}, w_{2}, y\right)=2 \sqrt{y^{3} w_{1} w_{2}} .
$$

Properties of the cost function

- Increasing in all input prices and strictly increasing in at least one; if f is continuous, then also strictly increasing in output y.
- The cost function is homogeneous of degree 1 in prices, i.e. changing all prices by 10% increases total cost by 10%.
- The cost function is concave in input prices.
- [Shephard's Lemma] $\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}=x_{i}^{*}=H^{i}\left(w_{1}, w_{2}, q\right)$, i.e. the cost increase when marginally changing the input price is exactly the compensated input demand!

Properties of the cost function

- Increasing in all input prices and strictly increasing in at least one; if f is continuous, then also strictly increasing in output y.
- The cost function is homogeneous of degree 1 in prices, i.e. changing all prices by 10% increases total cost by 10%.
- The cost function is concave in input prices.
- [Shephard's Lemma] increase when marginally changing the input price is exactly the compensated input demand!

Properties of the cost function

- Increasing in all input prices and strictly increasing in at least one; if f is continuous, then also strictly increasing in output y.
- The cost function is homogeneous of degree 1 in prices, i.e. changing all prices by 10% increases total cost by 10%.
- The cost function is concave in input prices.
- [Shephard's Lemma] $\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}=x_{i}^{*}=H^{i}\left(w_{1}, w_{2}, q\right)$, i.e. the cost increase when marginally changing the input price is exactly the compensated input demand!

Properties of the cost function

- Increasing in all input prices and strictly increasing in at least one; if f is continuous, then also strictly increasing in output y.
- The cost function is homogeneous of degree 1 in prices, i.e. changing all prices by 10% increases total cost by 10%.
- The cost function is concave in input prices.
- [Shephard's Lemma] $\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}=x_{i}^{*}=H^{i}\left(w_{1}, w_{2}, q\right)$, i.e. the cost increase when marginally changing the input price is exactly the compensated input demand!

The output optimization problem

- Now that we know how a firm chooses inputs for production, we are left with the following problem:

$$
\begin{equation*}
\max _{y \in \mathbb{R}_{+}} p y-C\left(w_{1}, w_{2}, y\right) \tag{10}
\end{equation*}
$$

- The first order conditions are:

- The second order condition is:

$$
\begin{equation*}
C_{y y}\left(w_{1}, w_{2}, y^{*}\right) \geq 0 \tag{12}
\end{equation*}
$$

The output optimization problem

- Now that we know how a firm chooses inputs for production, we are left with the following problem:

$$
\begin{equation*}
\max _{y \in \mathbb{R}_{+}} p y-C\left(w_{1}, w_{2}, y\right) \tag{10}
\end{equation*}
$$

- The first order conditions are:

$$
\begin{cases}p=C_{y}\left(w_{1}, w_{2}, y^{*}\right) & \text { if } y^{*}>0 \tag{11}\\ p<C_{y}\left(w_{1}, w_{2}, y^{*}\right) & \text { if } y^{*}=0\end{cases}
$$

- The second order condition is:

The output optimization problem

- Now that we know how a firm chooses inputs for production, we are left with the following problem:

$$
\begin{equation*}
\max _{y \in \mathbb{R}_{+}} p y-C\left(w_{1}, w_{2}, y\right) \tag{10}
\end{equation*}
$$

- The first order conditions are:

$$
\begin{cases}p=C_{y}\left(w_{1}, w_{2}, y^{*}\right) & \text { if } y^{*}>0 \tag{11}\\ p<C_{y}\left(w_{1}, w_{2}, y^{*}\right) & \text { if } y^{*}=0\end{cases}
$$

- The second order condition is:

$$
\begin{equation*}
C_{y y}\left(w_{1}, w_{2}, y^{*}\right) \geq 0 \tag{12}
\end{equation*}
$$

Furthermore...

- Our firm needs to be aware that even when profits are maximized, these might not be positive... so we should further require that $\Pi \geq 0$ or:

$$
\begin{equation*}
p y-C\left(w_{1}, w_{2}, y\right) \geq 0 \tag{13}
\end{equation*}
$$

or that average cost is lower than $\mathrm{p}\left(\frac{C\left(w_{1}, w_{2}, y\right)}{y} \leq p\right)$.

Demands and supply functions

- We can define the firm's supply function as the relationship between the optimal quantity produced and the market prices of inputs and output:

$$
\begin{equation*}
y=S\left(w_{1}, w_{2}, p\right) \tag{14}
\end{equation*}
$$

- Remember that we already defined the conditional demand function for input i as:

$$
x_{i}=H^{i}\left(w_{1}, w_{2}, y\right)
$$

- We can now substitute (14) in (15) to obtain the unconditional demand function for input i :

$$
x_{i}=D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)
$$

Demands and supply functions

- We can define the firm's supply function as the relationship between the optimal quantity produced and the market prices of inputs and output:

$$
\begin{equation*}
y=S\left(w_{1}, w_{2}, p\right) \tag{14}
\end{equation*}
$$

- Remember that we already defined the conditional demand function for input i as:

$$
\begin{equation*}
x_{i}=H^{i}\left(w_{1}, w_{2}, y\right) \tag{15}
\end{equation*}
$$

- We can now substitute (14) in (15) to obtain the unconditional demand function for input i :

$$
x_{i}=D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)
$$

Demands and supply functions

- We can define the firm's supply function as the relationship between the optimal quantity produced and the market prices of inputs and output:

$$
\begin{equation*}
y=S\left(w_{1}, w_{2}, p\right) \tag{14}
\end{equation*}
$$

- Remember that we already defined the conditional demand function for input i as:

$$
\begin{equation*}
x_{i}=H^{i}\left(w_{1}, w_{2}, y\right) \tag{15}
\end{equation*}
$$

- We can now substitute (14) in (15) to obtain the unconditional demand function for input i :

$$
\begin{equation*}
x_{i}=D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right) \tag{16}
\end{equation*}
$$

Outline

(1) Technology

(2) Cost minimization
(3) Profit maximization
(4) The firm supply

- Comparative statics
(5) Multiproduct firms

Slope of the supply function

- When $y^{*}>0$, the FOC for the output optimization problem requires that:

$$
p=C_{y}\left(w_{1}, w_{2}, y^{*}\right)
$$

- Substituting the supply function for $y^{*}=S\left(w_{1}, w_{2}, p\right)$ gives:

$$
p=C_{y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)
$$

- Now take the derivative wry p :

$$
1=C_{y y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right) S_{p}\left(w_{1}, w_{2}, p\right)
$$

- Rearrange and obtain:

$$
\begin{equation*}
S_{p}\left(w_{1}, w_{2}, p\right)=\frac{1}{C_{y y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)} \geq 0 \tag{17}
\end{equation*}
$$

- Thus, the slope of the supply function is positive! Why? by the SOC...

Slope of the supply function

- When $y^{*}>0$, the FOC for the output optimization problem requires that:

$$
p=C_{y}\left(w_{1}, w_{2}, y^{*}\right)
$$

- Substituting the supply function for $y^{*}=S\left(w_{1}, w_{2}, p\right)$ gives:

$$
p=C_{y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)
$$

- Now take the derivative wrt p :

$$
1=C_{y y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right) S_{p}\left(w_{1}, w_{2}, p\right)
$$

- Rearrange and obtain:

Slope of the supply function

- When $y^{*}>0$, the FOC for the output optimization problem requires that:

$$
p=C_{y}\left(w_{1}, w_{2}, y^{*}\right)
$$

- Substituting the supply function for $y^{*}=S\left(w_{1}, w_{2}, p\right)$ gives:

$$
p=C_{y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)
$$

- Now take the derivative wrt p :

$$
1=C_{y y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right) S_{p}\left(w_{1}, w_{2}, p\right)
$$

- Rearrange and obtain:

Slope of the supply function

- When $y^{*}>0$, the FOC for the output optimization problem requires that:

$$
p=C_{y}\left(w_{1}, w_{2}, y^{*}\right)
$$

- Substituting the supply function for $y^{*}=S\left(w_{1}, w_{2}, p\right)$ gives:

$$
p=C_{y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)
$$

- Now take the derivative wrt p :

$$
1=C_{y y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right) S_{p}\left(w_{1}, w_{2}, p\right)
$$

- Rearrange and obtain:

$$
\begin{equation*}
S_{p}\left(w_{1}, w_{2}, p\right)=\frac{1}{C_{y y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)} \geq 0 \tag{17}
\end{equation*}
$$

Slope of the supply function

- When $y^{*}>0$, the FOC for the output optimization problem requires that:

$$
p=C_{y}\left(w_{1}, w_{2}, y^{*}\right)
$$

- Substituting the supply function for $y^{*}=S\left(w_{1}, w_{2}, p\right)$ gives:

$$
p=C_{y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)
$$

- Now take the derivative wrt p :

$$
1=C_{y y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right) S_{p}\left(w_{1}, w_{2}, p\right)
$$

- Rearrange and obtain:

$$
\begin{equation*}
S_{p}\left(w_{1}, w_{2}, p\right)=\frac{1}{C_{y y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)} \geq 0 \tag{17}
\end{equation*}
$$

- Thus, the slope of the supply function is positive! Why? by the SOC...

Output price effect on input demand

- Consider the uncompensated demand for input $x_{i}^{*}=D^{i}\left(w_{1}, w_{2}, p\right)$ and take the derivative wrt output price p. Remember that $D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)$.

$$
D_{p}^{i}\left(w_{1}, w_{2}, p\right)=H_{y}^{i}\left(w_{1}, w_{2}, y^{*}\right) S_{p}\left(w_{1}, w_{2}, p\right)
$$

- By the Shephard's Lemma, $\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}=H^{i}\left(w_{1}, w_{2}, y\right)$. Thus

Output price effect on input demand

- Consider the uncompensated demand for input $x_{i}^{*}=D^{i}\left(w_{1}, w_{2}, p\right)$ and take the derivative wrt output price p. Remember that $D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)$.

$$
D_{p}^{i}\left(w_{1}, w_{2}, p\right)=H_{y}^{i}\left(w_{1}, w_{2}, y^{*}\right) S_{p}\left(w_{1}, w_{2}, p\right)
$$

- By the Shephard's Lemma, $\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}=H^{i}\left(w_{1}, w_{2}, y\right)$. Thus
$H_{y}^{i}\left(w_{1}, w_{2}, y\right)=\frac{\partial\left(\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}\right)}{\partial y}=\frac{\partial C_{y}\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}$ (cross derivatives are equal!). Substituting in the previous gives:

$$
\begin{equation*}
D_{p}^{i}\left(w_{1}, w_{2}, p\right)=\frac{\partial C_{y}\left(w_{1}, w_{2}, y^{*}\right)}{\partial w_{i}} S_{p}\left(w_{1}, w_{2}, p\right) \tag{18}
\end{equation*}
$$

Output price effect on input demand

- Consider the uncompensated demand for input $x_{i}^{*}=D^{i}\left(w_{1}, w_{2}, p\right)$ and take the derivative wrt output price p. Remember that $D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)$.

$$
D_{p}^{i}\left(w_{1}, w_{2}, p\right)=H_{y}^{i}\left(w_{1}, w_{2}, y^{*}\right) S_{p}\left(w_{1}, w_{2}, p\right)
$$

- By the Shephard's Lemma, $\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}=H^{i}\left(w_{1}, w_{2}, y\right)$. Thus
$H_{y}^{i}\left(w_{1}, w_{2}, y\right)=\frac{\partial\left(\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}\right)}{\partial y}=\frac{\partial C_{y}\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}$ (cross derivatives are equal!). Substituting in the previous gives:

$$
\begin{equation*}
D_{p}^{i}\left(w_{1}, w_{2}, p\right)=\frac{\partial C_{y}\left(w_{1}, w_{2}, y^{*}\right)}{\partial w_{i}} S_{p}\left(w_{1}, w_{2}, p\right) \tag{18}
\end{equation*}
$$

- How does uncompensated demand change with output price? If w_{i} increases the marginal cost of output, then an increase of the output price would imply a larger use of input i.

Input price effect on input demand (1)

- Consider the uncompensated demand for input $x_{i}^{*}=D^{i}\left(w_{1}, w_{2}, p\right)$ and take the derivative wrt input price w_{j}. (Again, start from the identity $\left.D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)\right)$.

$$
D_{j}^{i}\left(w_{1}, w_{2}, p\right)=H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)+H_{y}^{i}\left(w_{1}, w_{2}, y^{*}\right) S_{j}\left(w_{1}, w_{2}, p\right)
$$

 are equal!)

- Furthermore, differentiate the FOC $p=C_{y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)$ wrt w_{j} to obtain:

Input price effect on input demand (1)

- Consider the uncompensated demand for input $x_{i}^{*}=D^{i}\left(w_{1}, w_{2}, p\right)$ and take the derivative wrt input price w_{j}. (Again, start from the identity $\left.D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)\right)$.

$$
D_{j}^{i}\left(w_{1}, w_{2}, p\right)=H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)+H_{y}^{i}\left(w_{1}, w_{2}, y^{*}\right) S_{j}\left(w_{1}, w_{2}, p\right)
$$

- As before, by the Shephard's Lemma, $\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}=H^{i}\left(w_{1}, w_{2}, y\right)$. Thus $H_{y}^{i}\left(w_{1}, w_{2}, y\right)=\frac{\partial\left(\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}\right)}{\partial y}=\frac{\partial C_{y}\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}$ (cross derivatives are equal!).
- Furthermore, differentiate the FOC $p=C_{y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)$ wrt w_{j} to obtain:

Input price effect on input demand (1)

- Consider the uncompensated demand for input $x_{i}^{*}=D^{i}\left(w_{1}, w_{2}, p\right)$ and take the derivative wrt input price w_{j}. (Again, start from the identity $\left.D^{i}\left(w_{1}, w_{2}, p\right) \equiv H^{i}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)\right)$.

$$
D_{j}^{i}\left(w_{1}, w_{2}, p\right)=H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)+H_{y}^{i}\left(w_{1}, w_{2}, y^{*}\right) S_{j}\left(w_{1}, w_{2}, p\right)
$$

- As before, by the Shephard's Lemma, $\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}=H^{i}\left(w_{1}, w_{2}, y\right)$.

Thus $H_{y}^{i}\left(w_{1}, w_{2}, y\right)=\frac{\partial\left(\frac{\partial C\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}\right)}{\partial y}=\frac{\partial C_{y}\left(w_{1}, w_{2}, y\right)}{\partial w_{i}}$ (cross derivatives are equal!).

- Furthermore, differentiate the FOC $p=C_{y}\left(w_{1}, w_{2}, S\left(w_{1}, w_{2}, p\right)\right)$ wrt w_{j} to obtain:

$$
0=\frac{\partial C_{y}\left(w_{1}, w_{2}, y^{*}\right)}{\partial w_{j}}+C_{y y}\left(w_{1}, w_{2}, y^{*}\right) S_{j}\left(w_{1}, w_{2}, p\right)
$$

Input price effect on input demand (2)

- Substitute to get

$$
\begin{equation*}
D_{j}^{i}\left(w_{1}, w_{2}, p\right)=H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)-\frac{C_{i y}\left(w_{1}, w_{2}, y^{*}\right) C_{j y}\left(w_{1}, w_{2}, y^{*}\right)}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)} \tag{19}
\end{equation*}
$$

- How does uncompensated demand change with the price of another input? Two effects: a substitution effect $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$ and an
output effect $\frac{C_{i y}\left(w_{1}, w_{2}, y^{*}\right) C_{j y}\left(w_{1}, w_{2}, y^{*}\right)}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)}$

Input price effect on input demand (2)

- Substitute to get

$$
\begin{equation*}
D_{j}^{i}\left(w_{1}, w_{2}, p\right)=H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)-\frac{C_{i y}\left(w_{1}, w_{2}, y^{*}\right) C_{j y}\left(w_{1}, w_{2}, y^{*}\right)}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)} \tag{19}
\end{equation*}
$$

- How does uncompensated demand change with the price of another input? Two effects: a substitution effect $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$ and an output effect $\frac{C_{i y}\left(w_{1}, w_{2}, y^{*}\right) C_{j y}\left(w_{1}, w_{2}, y^{*}\right)}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)}$.

Implication 1

- Let us first concentrate on $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Shephard's lemma implies that $H^{i}\left(w_{1}, w_{2}, y\right)=C_{i}\left(w_{1}, w_{2}, y\right)$.
- Thus, $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=C_{i j}\left(w_{1}, w_{2}, y^{*}\right)$.
- But by symmetry of the cross derivatives, $C_{i j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Moreover, $H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$. Thus:
- $H_{j}^{j}\left(w_{1}, w_{2}, y^{*}\right)=H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)$, i.e. the substitution effect is symmetric!
- Check the output effect... it is also symmetric, thus also $D_{j}^{i}\left(w_{1}, w_{2}, p\right)=D_{i}^{j}\left(w_{1}, w_{2}, p\right)$, the total effect is symmetric. $=$

Implication 1

- Let us first concentrate on $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Shephard's lemma implies that $H^{i}\left(w_{1}, w_{2}, y\right)=C_{i}\left(w_{1}, w_{2}, y\right)$.
- Thus, $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=C_{i j}\left(w_{1}, w_{2}, y^{*}\right)$.
- But by symmetry of the cross derivatives, $C_{i j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Moreover, $H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$. Thus:
- $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)$, i.e. the substitution effect is symmetric!
- Check the output effect... it is also symmetric, thus also $D_{j}^{i}\left(w_{1}, w_{2}, p\right)=D_{i}^{j}\left(w_{1}, w_{2}, p\right)$, the total effect is symmetric.

Implication 1

- Let us first concentrate on $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Shephard's lemma implies that $H^{i}\left(w_{1}, w_{2}, y\right)=C_{i}\left(w_{1}, w_{2}, y\right)$.
- Thus, $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=C_{i j}\left(w_{1}, w_{2}, y^{*}\right)$.
- But by symmetry of the cross derivatives,
$C_{i j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Moreover, $H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$. Thus:
- $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)$, i.e. the substitution effect is symmetric!
- Check the output effect... it is also symmetric, thus also $D_{j}^{i}\left(w_{1}, w_{2}, p\right)=D_{i}^{j}\left(w_{1}, w_{2}, p\right)$, the total effect is symmetric.

Implication 1

- Let us first concentrate on $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Shephard's lemma implies that $H^{i}\left(w_{1}, w_{2}, y\right)=C_{i}\left(w_{1}, w_{2}, y\right)$.
- Thus, $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=C_{i j}\left(w_{1}, w_{2}, y^{*}\right)$.
- But by symmetry of the cross derivatives, $C_{i j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Moreover, $H_{i}^{J}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$. Thus:
- $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)$, i.e. the substitution effect is symmetric!
- Check the output effect... it is also symmetric, thus also $D_{j}^{i}\left(w_{1}, w_{2}, p\right)=D_{i}^{j}\left(w_{1}, w_{2}, p\right)$, the total effect is symmetric.

Implication 1

- Let us first concentrate on $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Shephard's lemma implies that $H^{i}\left(w_{1}, w_{2}, y\right)=C_{i}\left(w_{1}, w_{2}, y\right)$.
- Thus, $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=C_{i j}\left(w_{1}, w_{2}, y^{*}\right)$.
- But by symmetry of the cross derivatives, $C_{i j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Moreover, $H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$. Thus:
- $H_{j}^{j}\left(w_{1}, w_{2}, y^{*}\right)=H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)$, i.e. the substitution effect is symmetric!
- Check the output effect... it is also symmetric, thus also $D_{j}^{i}\left(w_{1}, w_{2}, p\right)=D_{i}^{j}\left(w_{1}, w_{2}, p\right)$, the total effect is symmetric.

Implication 1

- Let us first concentrate on $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Shephard's lemma implies that $H^{i}\left(w_{1}, w_{2}, y\right)=C_{i}\left(w_{1}, w_{2}, y\right)$.
- Thus, $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=C_{i j}\left(w_{1}, w_{2}, y^{*}\right)$.
- But by symmetry of the cross derivatives, $C_{i j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Moreover, $H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$. Thus:
- $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)$, i.e. the substitution effect is symmetric!
- Check the output effect... it is also symmetric, thus also $D_{j}^{i}\left(w_{1}, w_{2}, p\right)=D_{i}^{j}\left(w_{1}, w_{2}, p\right)$, the total effect is symmetric.

Implication 1

- Let us first concentrate on $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Shephard's lemma implies that $H^{i}\left(w_{1}, w_{2}, y\right)=C_{i}\left(w_{1}, w_{2}, y\right)$.
- Thus, $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=C_{i j}\left(w_{1}, w_{2}, y^{*}\right)$.
- But by symmetry of the cross derivatives, $C_{i j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$.
- Moreover, $H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)=C_{j i}\left(w_{1}, w_{2}, y^{*}\right)$. Thus:
- $H_{j}^{i}\left(w_{1}, w_{2}, y^{*}\right)=H_{i}^{j}\left(w_{1}, w_{2}, y^{*}\right)$, i.e. the substitution effect is symmetric!
- Check the output effect... it is also symmetric, thus also $D_{j}^{i}\left(w_{1}, w_{2}, p\right)=D_{i}^{j}\left(w_{1}, w_{2}, p\right)$, the total effect is symmetric.

Implication 2

- Look now at the effect of w_{i} on the demand of input i.

$$
\begin{equation*}
D_{i}^{i}\left(w_{1}, w_{2}, p\right)=H_{i}^{i}\left(w_{1}, w_{2}, q^{*}\right)-\frac{\left[C_{i y}\left(w_{1}, w_{2}, y^{*}\right)\right]^{2}}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)} \tag{20}
\end{equation*}
$$

- $H_{i}^{i}\left(w_{1}, w_{2}, y\right)=C_{i i}\left(w_{1}, w_{2}, y\right)$ (by Shephard's Lemma and taking the derivative)
- By concavity of the cost function (SOC for an optimum), $C_{i i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$. Thus, $H_{i}^{i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$.
- But $C_{y y}\left(w_{1}, w_{2}, y^{*}\right) \geq 0$ (again from the SOC) and also the squared term is larger than 0 ; thus:
- $D_{i}^{i}\left(w_{1}, w_{2}, p\right) \leq 0$, i.e. the unconditional demand for input i is decreasing in the own price.

Implication 2

- Look now at the effect of w_{i} on the demand of input i.

$$
\begin{equation*}
D_{i}^{i}\left(w_{1}, w_{2}, p\right)=H_{i}^{i}\left(w_{1}, w_{2}, q^{*}\right)-\frac{\left[C_{i y}\left(w_{1}, w_{2}, y^{*}\right)\right]^{2}}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)} \tag{20}
\end{equation*}
$$

- $H_{i}^{i}\left(w_{1}, w_{2}, y\right)=C_{i i}\left(w_{1}, w_{2}, y\right)$ (by Shephard's Lemma and taking the derivative).
- By concavity of the cost function (SOC for an optimum), $C_{i i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$. Thus, $H_{i}^{i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$.
- But C term is larger than 0 ; thus:
decreasing in the own price.

Implication 2

- Look now at the effect of w_{i} on the demand of input i.

$$
\begin{equation*}
D_{i}^{i}\left(w_{1}, w_{2}, p\right)=H_{i}^{i}\left(w_{1}, w_{2}, q^{*}\right)-\frac{\left[C_{i y}\left(w_{1}, w_{2}, y^{*}\right)\right]^{2}}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)} \tag{20}
\end{equation*}
$$

- $H_{i}^{i}\left(w_{1}, w_{2}, y\right)=C_{i i}\left(w_{1}, w_{2}, y\right)$ (by Shephard's Lemma and taking the derivative).
- By concavity of the cost function (SOC for an optimum), $C_{i i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$. Thus, $H_{i}^{i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$.
- But $C_{y y}\left(w_{1}, w_{2}, y^{*}\right) \geq 0$ (again from the SOC) and also the squared term is larger than 0 ; thus:
decreasing in the own price.

Implication 2

- Look now at the effect of w_{i} on the demand of input i.

$$
\begin{equation*}
D_{i}^{i}\left(w_{1}, w_{2}, p\right)=H_{i}^{i}\left(w_{1}, w_{2}, q^{*}\right)-\frac{\left[C_{i y}\left(w_{1}, w_{2}, y^{*}\right)\right]^{2}}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)} \tag{20}
\end{equation*}
$$

- $H_{i}^{i}\left(w_{1}, w_{2}, y\right)=C_{i i}\left(w_{1}, w_{2}, y\right)$ (by Shephard's Lemma and taking the derivative).
- By concavity of the cost function (SOC for an optimum), $C_{i i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$. Thus, $H_{i}^{i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$.
- But $C_{y y}\left(w_{1}, w_{2}, y^{*}\right) \geq 0$ (again from the SOC) and also the squared term is larger than 0 ; thus:
decreasing in the own price.

Implication 2

- Look now at the effect of w_{i} on the demand of input i.

$$
\begin{equation*}
D_{i}^{i}\left(w_{1}, w_{2}, p\right)=H_{i}^{i}\left(w_{1}, w_{2}, q^{*}\right)-\frac{\left[C_{i y}\left(w_{1}, w_{2}, y^{*}\right)\right]^{2}}{C_{y y}\left(w_{1}, w_{2}, y^{*}\right)} \tag{20}
\end{equation*}
$$

- $H_{i}^{i}\left(w_{1}, w_{2}, y\right)=C_{i i}\left(w_{1}, w_{2}, y\right)$ (by Shephard's Lemma and taking the derivative).
- By concavity of the cost function (SOC for an optimum), $C_{i i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$. Thus, $H_{i}^{i}\left(w_{1}, w_{2}, y^{*}\right) \leq 0$.
- But $C_{y y}\left(w_{1}, w_{2}, y^{*}\right) \geq 0$ (again from the SOC) and also the squared term is larger than 0 ; thus:
- $D_{i}^{i}\left(w_{1}, w_{2}, p\right) \leq 0$, i.e. the unconditional demand for input i is decreasing in the own price.

Many products, many inputs...

- Up to now, we have studied the case of a firm producing a single output y. What if the firm could produce many goods at the same time?
- Abstractly, all commodities (inputs or outputs) could be produced. So, let us write a (large) vector $\mathbf{y} \equiv\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ of all commodities.
- Then good y_{n} is a net output if $y_{n}>0$; it is net input if $y_{n}>0$.

Many products, many inputs...

- Up to now, we have studied the case of a firm producing a single output y. What if the firm could produce many goods at the same time?
- Abstractly, all commodities (inputs or outputs) could be produced. So, let us write a (large) vector $\mathbf{y} \equiv\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ of all commodities.
- Then good y_{n} is a net output if $y_{n}>0$; it is net input if $y_{n}>0$.

Many products, many inputs...

- Up to now, we have studied the case of a firm producing a single output y. What if the firm could produce many goods at the same time?
- Abstractly, all commodities (inputs or outputs) could be produced. So, let us write a (large) vector $\mathbf{y} \equiv\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ of all commodities.
- Then good y_{n} is a net output if $y_{n}>0$; it is net input if $y_{n}>0$.

Production technology and MRT

- We can now write the technology as an implicit inequality:

$$
\begin{equation*}
F(\mathrm{y}) \leq 0 \tag{21}
\end{equation*}
$$

where the function F is non-decreasing in each of the y_{i}.

- We define the marginal rate of transformation of netput i into netput j by:

$$
\begin{equation*}
M R T_{i j} \equiv \frac{M F_{j}(\mathrm{y})}{M F_{i}(\mathrm{y})} \tag{22}
\end{equation*}
$$

Production technology and MRT

- We can now write the technology as an implicit inequality:

$$
\begin{equation*}
F(y) \leq 0 \tag{21}
\end{equation*}
$$

where the function F is non-decreasing in each of the y_{i}.

- We define the marginal rate of transformation of netput i into netput j by:

$$
\begin{equation*}
M R T_{i j} \equiv \frac{M F_{j}(\mathrm{y})}{M F_{i}(\mathrm{y})} \tag{22}
\end{equation*}
$$

Objective of the firm

- Our firm still wants to maximize profits (now much simplified):

$$
\begin{equation*}
\Pi=\sum_{i=1}^{n} p_{i} y_{i} \tag{23}
\end{equation*}
$$

subject to $F(\mathbf{y}) \leq 0$.

- Proceeding as before, we can write the Lagrangean of the maximization problem:

$$
\mathscr{L}(\mathbf{y}, \lambda ; \mathrm{p}) \equiv \sum_{i=1}^{n} p_{i} y_{i}-\lambda F(\mathrm{y})
$$

Objective of the firm

- Our firm still wants to maximize profits (now much simplified):

$$
\begin{equation*}
\Pi=\sum_{i=1}^{n} p_{i} y_{i} \tag{23}
\end{equation*}
$$

subject to $F(\mathrm{y}) \leq 0$.

- Proceeding as before, we can write the Lagrangean of the maximization problem:

$$
\begin{equation*}
\mathscr{L}(\mathbf{y}, \lambda ; \mathbf{p}) \equiv \sum_{i=1}^{n} p_{i} y_{i}-\lambda F(\mathbf{y}) \tag{24}
\end{equation*}
$$

Optimality conditions

- Deriving wrt each y_{i} and λ, we get the following FOCs:

$$
\begin{equation*}
p_{i} \geq \lambda^{*} F_{i}\left(\mathrm{y}^{*}\right) \quad \text { for each } i=1, \ldots, n \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
F\left(\mathrm{y}^{*}\right) \leq 0 \tag{26}
\end{equation*}
$$

- If $y_{i}^{*}>0$, for each j the following holds at the optimum:

- or, equivalently, MRT equals output price ratio.

Optimality conditions

- Deriving wrt each y_{i} and λ, we get the following FOCs:

$$
\begin{gather*}
p_{i} \geq \lambda^{*} F_{i}\left(\mathrm{y}^{*}\right) \quad \text { for each } i=1, \ldots, n \tag{25}\\
F\left(\mathrm{y}^{*}\right) \leq 0 \tag{26}
\end{gather*}
$$

- If $y_{i}^{*}>0$, for each j the following holds at the optimum:

$$
\begin{equation*}
\frac{M F_{j}\left(\mathrm{y}^{*}\right)}{M F_{i}\left(\mathrm{y}^{*}\right)} \leq \frac{p_{j}}{p_{i}} \tag{27}
\end{equation*}
$$

- or, equivalently, MRT equals output price ratio.

Optimality conditions

- Deriving wrt each y_{i} and λ, we get the following FOCs:

$$
\begin{gather*}
p_{i} \geq \lambda^{*} F_{i}\left(\mathrm{y}^{*}\right) \quad \text { for each } i=1, \ldots, n \tag{25}\\
F\left(\mathrm{y}^{*}\right) \leq 0 \tag{26}
\end{gather*}
$$

- If $y_{i}^{*}>0$, for each j the following holds at the optimum:

$$
\begin{equation*}
\frac{M F_{j}\left(\mathrm{y}^{*}\right)}{M F_{i}\left(\mathrm{y}^{*}\right)} \leq \frac{p_{j}}{p_{i}} \tag{27}
\end{equation*}
$$

- or, equivalently, MRT equals output price ratio.

The netput and profit functions

- As before we can write the optimal choice of y_{i} as a function of the prices: $y_{i}^{*} \equiv y_{i}(\mathbf{p})$.
- Subsituting these netput functions in the profit, we get the profit

$$
\Pi(\mathbf{p}) \equiv \sum_{i=1}^{n} p_{i} y_{i}^{*}=\sum_{i=1}^{n} p_{i} y_{i}(\mathbf{p})
$$

The netput and profit functions

- As before we can write the optimal choice of y_{i} as a function of the prices: $y_{i}^{*} \equiv y_{i}(\mathbf{p})$.
- Subsituting these netput functions in the profit, we get the profit function:

$$
\begin{equation*}
\Pi(\mathbf{p}) \equiv \sum_{i=1}^{n} p_{i} y_{i}^{*}=\sum_{i=1}^{n} p_{i} y_{i}(\mathbf{p}) \tag{28}
\end{equation*}
$$

Properties of the profit function

- Non-decreasing in all net-put prices.
- The profit function is homogeneous of degree 1 in prices, i.e. changing all prices by 10% increases total cost by 10%.
- The profit function is convex in net-put prices.
- [Hotelling's Lemma] $\frac{\partial \boldsymbol{\Pi}(\mathbf{p})}{\partial p_{i}}=y_{i}^{*}$, i.e. the marginal profit increase for marginally changing the netput price is exactly the optimal quantity of netput i!

Properties of the profit function

- Non-decreasing in all net-put prices.
- The profit function is homogeneous of degree 1 in prices, i.e. changing all prices by 10% increases total cost by 10%.
- The profit function is convex in net-put prices.
- [Hotelling's Lemma] $\frac{\partial \Pi(\mathbf{p})}{\partial p_{i}}=y_{i}^{*}$, i.e. the marginal profit increase for marginally changing the netput price is exactly the optimal quantity of netput i!

Properties of the profit function

- Non-decreasing in all net-put prices.
- The profit function is homogeneous of degree 1 in prices, i.e. changing all prices by 10% increases total cost by 10%.
- The profit function is convex in net-put prices.
- [Hotelling's Lemma] $\frac{\partial \Pi(\mathrm{p})}{\partial p_{i}}=y_{i}^{*}$, i.e. the marginal profit increase for marginally changing the netput price is exactly the optimal quantity of netput i !

Properties of the profit function

- Non-decreasing in all net-put prices.
- The profit function is homogeneous of degree 1 in prices, i.e. changing all prices by 10% increases total cost by 10%.
- The profit function is convex in net-put prices.
- [Hotelling's Lemma] $\frac{\partial \Pi(\mathbf{p})}{\partial p_{i}}=y_{i}^{*}$, i.e. the marginal profit increase for marginally changing the netput price is exactly the optimal quantity of netput i !

