The changing age pattern of mortality

Nico Keilman

Population and Health
ECON 3725/4725
Spring 2018

Motivation

Death risks in human populations display a specific age pattern:

- high but falling from birth,
- minimum for young teenagers
- increase to a plateau for young adults \rightarrow traffic, other risky behaviour
- exponential increase beyond age 30

Life expectancies in Western countries during 20th century irregular, in particular for men

Life expectancies derived from period life tables

Difficult to interpret

Future?

Outline

Trends in life expectancy, median and modal age, compression

Life table construction (detailed)

Focus on d_{x}-column

Period vs cohort life tables - interpretation

Explain why period life tables may give distorted impression of reality

Context: Western countries, $20^{\text {th }}$ (\& $21^{\text {st) }}$) century

Required reading: these notes and Chapter 5 on mortality in Population Handbook pp. 16-20
http://www.prb.org/Publications/Reports/2011/prb-population-handbook-2011.aspx

Main message

Period life tables may give a distorted picture of trends in age-specific mortality in times of changing mortality

Western countries: life expectancies increase faster than period life tables suggest

Norway: compression goes faster than period life tables suggest

Life expectancy at birth, Norway
Empirical life tables 1900-2015, projected life tables 2016-2060 (source: StatNor)

Note

1. Irregular pattern (men 1950s, 1960s)
2. Convergence men-women

Age distribution of life table deaths; historical (1960, 1980, 2000) and projected (2020, 2040, 2060) values .

a. Men, Norway

Age distribution of life table deaths; historical (1960, 1980, 2000) and projected (2020, 2040, 2060) values
b. Women, Norway

Fig. 6.2 Probability distribution of age at death in 1950 (solid) and 2000 (dashed) for Sweden, both sexes combined

Women, USA

Ib. Distribution of Deaths

Modal age and median age at death, Norway Empirical life tables 1900-2015, projected life tables 2016-2060

Modal age: age at which distribution reaches a top
Median age: age that divides distribution in two equal halves: 50% dies before median age, 50% dies after median age.

Figure 4a: Five year moving average of the modal age at death for England and Wales, France, Italy, Japan, Sweden and the United States, for available years between 1900 and 2005

Source: Authors' calculations based on Human Mortality Database (2008). The years of the influenza epidemic 1918-1919 have been excluded.

Note: both sexes combined.

Figure 4: Estimated modal age at death based on smoothed density functions: Canada (1921-2007), France (1920-2009),
Japan (1947-2009), and USA (1945-2007)

Men

Standard deviation of age distribution of life table deaths for ages 30 and beyond; historical (1900-2015) and projected (2016-2060) values

Standard deviation ages >30 reflects degree of compression

Note: stronger compression women (1900-2060), men (after 1990)

Figure 5: \quad Estimated standard deviation of ages at death above the mode based on smoothed density functions: Canada (1921-2007),
France (1920-2009), Japan (1947-2009), and USA (1945-2007)

Note: standard deviation above the mode

FIGURE 5 Conditional standard deviations in the age at death, $\mathbf{S}_{10^{\prime}}$ in seven high-income countries since 1960

Note: short time period, both sexes combined. Standard deviation above age 10.
Source: R. Edwards \& S. Tuljapurkar, PopDevRev 31(2005), 645-674.

Changes in age at death distribution

Compression of mortality scenario (Fries 1980)

- Rectangularization
- declining variability in the age of dying

Shifting mortality regime / mortality delay (e.g. Vaupel 2010)

- Increase in modal age at dying
- No changes in shape

Based on data for women, the Netherlands
Source: F. Janssen \& J. de Beer (2016)

Construction of a life table

Required reading: Chapter 5 on mortality in Population Handbook pp. 16-20

http://www.prb.org/Publications/Reports/2011/prb-population-handbook-2011.aspx

A life table simulates a population's mortality experience during its lifetime

It does so by taking a set of empirical age-specific death rates and applying them, for subsequent ages from the youngest to the oldest, to a hypothetical population of 100,000 people born at the same time.

For each subsequent age in the life table, mortality inevitably thins the hypothetical population's ranks, until one reaches the highest age, and even the oldest people die.

| How Life Tables Work | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 6 |
| Age | $\begin{array}{c}\text { Proportion } \\ \text { dying in the } \\ \text { age interval }\end{array}$ | $\begin{array}{c}\text { Number living } \\ \text { at beginning of } \\ \text { age interval }\end{array}$ | $\begin{array}{c}\text { Number dying } \\ \text { during the age } \\ \text { interval }\end{array}$ | $\begin{array}{c}\text { Persons living } \\ \text { in the age } \\ \text { interval }\end{array}$ | $\begin{array}{c}\text { in this and all } \\ \text { subsequent } \\ \text { intervals }\end{array}$ | $\begin{array}{c}\text { Years of life } \\ \text { remaining } \\ \text { (life }\end{array}$ |
| expectancy) | | | | | | |$\}$

$\begin{array}{ll}\text { Col. } 1 & { }_{n} q_{x} \\ \text { Col. } 2 & I_{x}\end{array}$

Col. $3 \quad{ }_{n} d_{x}$ number of deaths in life table population between ages x og $x+n$;

$$
\operatorname{col} 3=\operatorname{col} 2 * \operatorname{col} 1
$$

Col. $4 \quad n^{L_{x}} \quad$ years lived between ages x and $x+n$
Col. $5 \quad$ years lived from age x and beyond
Col. 6 ex
e_{x}
$N B: n$ is width of age interval

Death rate $M=$ Number of deaths/Exposure time (which is number of person-years lived in the relevant period) - death rates differ strongly across ages

Approximation:

Exposure time between 0 and $t=0.5^{*}$ (Population at $0+$ Population at $\left.t\right) * t$, which is called linear hypothesis (deaths spread evenly across the period).

Death probability $q=M /(1+0.5 M)$ or, if the length of age interval is $t \neq 1, q=M t /(1+0.5 M t)$ Here: $t=5$
${ }_{5} L_{x}$ is exposure time from age x to age $x+5$.

FIGURE 1. COMPARISON OF THREE LIFE TABLE FUNCTIONS, U.S. WOMEN, 1900 AND 1995

Note logarithmic scale
1c. Survival Curve

Types of life tables

- Based on five-year age intervals (abridged life table) or one-year intervals (unabridged life table)
- Based on age specific death rates from one calendar year (or short period, for example five years) or death rates for a birth cohort \rightarrow period life table vs. cohort life table

Period life table: death rates refer to mortality experience during only one calendar year, for persons born in many different birth years

In reality, people do not behave that way: they are born in only one year, and they live their lives during many calendar years

Cohort life table: age specific death rates for persons born one particular year as they age (many different calendar years)

Cohort life tables may lead to different conclusions (about cohort life expectancy, cohort compression etc.) than period life tables (period life expectancy, period compression etc.) in times of changing mortality

Norway, empirical and projected data

Cohort life expectancy of men increases faster than their period life expectancy

Best practice life expectancy = world record I.e.

FIGURE 1 Trends in best-practice period and cohort life expectancies since 1870 , females

Note: cohort life expectancy increases by appr. 4 years per decade since 1870 , much faster than period l.e. (2.5 yrs/decade)
Source: V. Shkolnikov et al., PopDevRev 37(2011), 419-434.

Figure 2 Observed and forecast cohort and period life expectancy of females at birth in Sweden and the USA and accompanying gaps and lags
Sources: US Social Security Administration available at Berkeley Mortality Database (www.demog.berkeley.edu/~bmd); Human Mortality Database (www.mortality.org); Statistics Sweden. Early Swedish lags are based on nineteenth-century e_{0}^{C} (not shown).

Figure 1 Sketch of gap (γ) and lag (λ) between cohort and period life expectancy when mortality and entropy are decreasing with time

Cohort standard deviation falls more than twice as fast as period standard deviation

Try to avoid projections of age specific mortality

Problem: we need 100 years of data for one cohort

One way of avoiding that is to inspect "partial" life expectancy (also called "truncated I.e.)

Number of years lived up to a certain age (f. ex. 50, 60, 70, 80 ...).

Area under survival curve between ages $x=0$ and age $x=50$ (or 60, 70, ..)

When there is no mortality, the partial life expectancy up to age $50\left(\mathrm{e}_{0 \mid 50}\right)$ is 50 years. No lives go lost

With actual mortality, $\mathrm{e}_{0 \mid 50}$ is (slightly) lower than 50.
Difference between 50 and $\mathrm{e}_{0 \mid 50}$ is expected number of years lost up to age 50 .
$Y L(50)=50-e_{0 \mid 50}$, or, for a general age $a: Y L(a)=a-e_{0 \mid a}$
Advantage: we need data for only 50 (or a) years to compute $\mathrm{YL}(50)$ (or $\mathrm{YL}(a)$) for cohorts

Period data suggest that since 1980-1990, women in Italy and Japan live longer than women in Norway and Sweden

Expected number of years lost, birth cohorts 1950, 1960, 1970, 1980 Women in Norway, Sweden, Italy, Japan (note: different scales)
(a) Cohort born 1950

(b) Cohort born 1960

Expected number of years lost, up to age 50, 40, 30, 20 Women in Norway, Sweden, Italy, Japan (note: different scales)

Cohort data show that Italian women born in 1950 or later have lost more years of life than Norwegian or Swedish women did. Likewise for Japanese women born 1950-1965

The cohort results provide no indication that Italian and Japanese women may expect to live longer than Norwegian and Swedish women.

Large differences in longevity seen for period data seem to be an artefact due to the distortion that period life tables imply in times of changing mortality

Conclusion: period life tables may give a distorted picture of trends in age-specific mortality in times of changing mortality

Western countries: life expectancies increase faster than period life tables suggest

Norway: compression goes faster than period life tables suggest

Why?

When mortality changes over time: d_{x}-column in period life tables (and hence period life expectancy) may be very different from d_{x}-column in cohort life tables (cohort I.e.)

Age-specific death rates $m(x, t)$, age x in year t

yearg
lag (t-g)
$\xrightarrow{\text { year }}{ }^{t}$

Age at death distributions: $d(x, t)$ for periods $-\delta(x, g+x)$ for cohorts

yearg
lag (t-g)
$\xrightarrow{\text { year }}{ }^{t}$

Thus it is the changing age pattern of mortality (d_{x}-column for period life tables, δ_{x}-column for cohort life tables) which causes the differences

Example: Denmark (Lindahl-Jacobsen et al. PNAS 113(15) April 12, 2016) period life expectancies of men and women stagnated between 1970 and 1990 Caused by different age patterns of mortality in cohorts born 1915-1945, compared to earlier and later cohorts.

Stagnation disappears when Danish women born 1945-1945 are assumed to have the same survival probabilities as Swedish or Norwegian women born those years. See green curves.

Fig. 1. Trends and differences in life expectancy for Danish, Norwegian, and Swedish women since 1950 and hypothetic life expectancy of Danish and Norwegian women when assuming survival probabilities of Danish and Norwegian women born 1915-1945 equal those of Swedish women born 1915-1945.

Many women born 1915-1945 were smokers. By 2000, they were aged 55-85, and many of them had died. These cohorts had little effect on period life expectancy from then on, which increased again.

Earlier cohorts had not started smoking as much as 1915-1945 cohorts.
Later cohorts reduced smoking progressively.

Additional evidence: excess mortality of Dutch men born 1895-1930
(Janssen \& Van Poppel Demos 32(6)2016; Biomed Research International 2015)

Difference in life expectancy between women and men (women minus men, red line) and part of difference attributable to smoking, birth cohorts 1895-1930, the Netherlands

Excess mortality of men for a large part caused by smoking: at least 50%, up to 70\% in cohorts 1895-1906

Men started smoking after WWI. Those born 1890-1925 started smoking at young ages.

Women started smoking much later - later cohorts, and at later ages.

Hypothesis: similar effects for Norwegian men during 1950s and 1960s Cohorts born 1900-1920 unhealthy life style: smoking, inactivity, eating habits \rightarrow cancer, cardiovascular diseases, respiratory diseases

Cohort effect to be confirmed empirically

Main message

Period life tables may give a distorted picture of trends in age-specific mortality in times of changing mortality
\rightarrow Inspect cohort patterns (provided data available)

Western countries: life expectancies increase faster than period life tables suggest

Norway: compression goes faster than period life tables suggest

