ECON3120/4120 Mathematics 2: Problems for week 42 (2010)

The last parts - i.e. the starred points - are «experimental». Give them your best shot : -)

- Calculate the determinants of Problem 5 (a), 37 (a) and 69 (a).
- Problem 42 (a), (c)
- Problem 128 (a), (c)
- Do problem 48 (b) in three different ways: (I) by identifying \mathbf{A} with a \mathbf{B} as in part (a). (II) by formula. (III) by Gaussian elimination.
- Problem 25
- Problem 58
- Problem 95 (c)
- It is possible to define matrices of infinite order. Consider the infinite matrix \mathbf{A} defined by having ones just at the right of the main diagonal, and zeroes elsewhere, i.e.

$$
\mathbf{A}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
0 & 0 & 0 & 1 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

- Compute the matrix products $\mathbf{B}=\mathbf{A A}^{\prime}$ and $\mathbf{C}=\mathbf{A}^{\prime} \mathbf{A}$ (in these cases, matrix multiplication works just like you are used to).
- Compare \mathbf{B} and \mathbf{C}; is this result possible for $n \times n$ matrices?
- Let $\eta(x)$ be defined by the infinite series

$$
\eta(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots+\frac{x^{n}}{n!}+\ldots
$$

- Show that $\eta^{\prime}(x)=\eta(x)$, and use this to deduce a different expression for η.
- We want to extend the domain of definition of η to matrices by defining

$$
\eta(\mathbf{A})=\mathbf{I}+\mathbf{A}+\frac{\mathbf{A}^{2}}{2}+\frac{\mathbf{A}^{3}}{6}+\cdots+\frac{\mathbf{A}^{n}}{n!}+\ldots
$$

* For what kind of matrices \mathbf{A} can $\eta(\mathbf{A})$ be well-defined? What will the order of $\mathbf{B}=\eta(\mathbf{A})$ then be?
* Define $\mathbf{F}(t)=\eta(\mathbf{A} t)$, for real t. Show that $\frac{\mathrm{d} \mathbf{F}}{\mathrm{d} t}=\mathbf{A F}(t)=\mathbf{F}(t) \mathbf{A}$.
(Hint: just like $\frac{\mathrm{d}}{\mathrm{d} t}(m g(t))=m \frac{\mathrm{~d} g}{\mathrm{~d} t}$ whenever m does not depend on t, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{M} g(t))=\mathbf{M} \frac{\mathrm{d} g}{\mathrm{~d} t}
$$

whenever \mathbf{M} does not depend on t.)

