University of Oslo / Department of Economics

ECON3120/ECON4120 Mathematics 2

Friday December 7 2007, 09:00–12:00

There are 2 pages of problems to be solved.

All printed and written material may be used, as well as pocket calculators.

Give reasons for all your answers.

Grades given run from A (best) to E for passes, and F for fail.

Problem 1 Consider for each u and each k the following linear equation system in the unknowns x, y and z:

$$\mathbf{A}_{u}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} u\\ k\\ ku \end{pmatrix} \quad \text{where} \quad \mathbf{A}_{u} = \begin{pmatrix} 1 & 2u-1 & 1-u\\ u-1 & 1 & 3u-1\\ 0 & u & 2u \end{pmatrix}$$

Determine, for all values of u and k whether the equation system (i) has a solution, and (ii) if there is a solution, whether it is unique, and (iii) if there is more than one solution, the number of degrees of freedom.

Problem 2 In a model for optimal thinning of a growing forest, one encounters the problem of maximizing the twice continuously differentiable function

$$V(t,x) = g(t)h(x)e^{-rt} - x,$$

where g(t) and h(x) are strictly positive functions defined for t > 0, x > 0. r is strictly positive.

- (a) What are the first-order conditions for V(t, x) to have a maximum at (t^*, x^*) ?
- (b) It will follow that $V_{tx}''(t^*, x^*) = 0$ (but you are not required to show it). Show that if $h''(x^*) < 0$ then the point (t^*, x^*) satisfies the local second-order conditions for a maximum point if

 $g''(t^*) < r^2 g(t^*).$

(Hint: Use the first-order condition for V'_t .)

(c) Find t^* and x^* when $g(t) = e^{\sqrt{t}}$ and $h(x) = \ln(x+1)$, and check the local second-order conditions.

Problem 3 Let K > 0 be a constant. Consider the differential equation

$$\dot{x} = (t - K) \frac{x}{\ln x}$$
 (for $t > 0, x > 1$)

- (a) Find a t which is a stationary point for every solution x(t).
- (b) Find the solution which is such that x(K) = e.

English

Problem 4 Consider the problem

$$\max_{(x,y)} 4e^{x} + \frac{1}{2}Ax^{2}y^{2} + e^{3y} \quad \text{subject to} \quad \begin{cases} x^{2} + By^{2} \leq C \\ x \geq 0 \\ y \geq 0 \end{cases}$$
(P)

where A, B and C are strictly positive constants.

- (a) State the Kuhn-Tucker conditions associated with the problem.
- (b) Show that the Kuhn-Tucker conditions imply $x^2 + By^2 = C$ and $xy \neq 0$.

Note: Do *not* try to solve the problem (P)!