Answers to the examination problems in ECON 3120/4120, 26 May 2004

Problem 1

(a) $f^{\prime}(x)=-1+\frac{1}{x-1}=\frac{2-x}{x-1}, \quad f^{\prime \prime}(x)=\frac{-1}{(x-1)^{2}}$.
(b) $f(x)$ is (strictly) increasing in (1,2] and (strictly) decreasing in $[2, \infty)$. The function has a (global) maximum at $x=2$. There are no other extreme points, because $x=2$ is the only point where $f^{\prime}(x)=0$.
(c) $\lim _{x \rightarrow 1^{+}} f(x)=-\infty$ because $4-x \rightarrow 3$ and $\ln (x-1) \rightarrow-\infty$. To find the limit as $x \rightarrow \infty$, note that we can write the function as

$$
f(x)=x g(x), \quad \text { where } \quad g(x)=\frac{4}{x}-1+\frac{\ln (x-1)}{x}
$$

By L'Hôpital's rule, $\lim _{x \rightarrow \infty} \frac{\ln (x-1)}{x}=\frac{" 0}{0}=\lim _{x \rightarrow \infty} \frac{1 /(x-1)}{1}=0$. Therefore, $g(x) \rightarrow-1$ and $f(x)=x g(x)$ tends to $-\infty$ as $x \rightarrow \infty$.
(d) $f(2)=2+\ln 1=2$ and $f(x) \rightarrow-\infty$ as $x \rightarrow 1^{+}$. Thus there exists an x_{1} close to 1 with $f\left(x_{1}\right)<0$. The intermediate value theorem ("skjæringssetningen") tells us that the equation $f(x)=0$ has at least one solution in the interval $\left(x_{1}, 2\right)$. Also, $f(x)$ is strictly increasing in (1,2]. Hence, $f(x)=0$ has a unique solution in the interval $(1,2)$. In a similar way we see that $f(x)=0$ also has a unique solution in $(2, \infty)$. It follows that the equation $f(x)=0$ has exactly two roots.

Sketch a graph!

Problem 2

(i) $\int\left(x^{3}+2 x\right)^{2} d x=\int\left(x^{6}+4 x^{4}+4 x^{2}\right) d x=\frac{1}{7} x^{7}+\frac{4}{5} x^{5}+\frac{4}{3} x^{3}+C$.
(ii) To find the integral $I=\int_{0}^{\sqrt{8}} \frac{x}{\left(1+x^{2}\right)^{a}} d x$ we try the substitution $1+x^{2}=u$, $2 x d x=d u$. Since $x=0 \Rightarrow u=1$ and $x=\sqrt{8} \Rightarrow u=9$, we get

$$
\begin{aligned}
I & =\frac{1}{2} \int_{1}^{9} \frac{d u}{u^{a}}=\frac{1}{2} \int_{1}^{9} u^{-a} d u=\left.\frac{1}{2}\right|_{1} ^{9} \frac{1}{1-a} u^{1-a} \\
& =\frac{1}{2}\left[\frac{1}{1-a} 9^{1-a}-\frac{1}{1-a}\right]=\frac{9^{1-a}-1}{2(1-a)} .
\end{aligned}
$$

Problem 3

(a) $\mathbf{A}^{\prime} \mathbf{A}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$, and $\mathbf{A}^{\prime} \mathbf{A}$ is $\left|\mathbf{A}^{\prime} \mathbf{A}\right|=4-1=3$.
(b) $\mathbf{A}^{\prime} \mathbf{A}$ has an inverse because $\left|\mathbf{A}^{\prime} \mathbf{A}\right| \neq 0$. The inverse is

$$
\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1}=\frac{1}{3}\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right) .
$$

Problem 4

(a) Differentiating with respect to x yields

$$
2\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=a^{2}\left(2 x-2 y y^{\prime}\right)
$$

(we consider y as a function of x), and therefore

$$
y^{\prime}=\frac{x}{y} \frac{a^{2}-2\left(x^{2}+y^{2}\right)}{a^{2}+2\left(x^{2}+y^{2}\right)}
$$

(b) At a point where the tangent is horizontal we must have $y^{\prime}=0$ and $x \neq 0$, so

$$
\begin{equation*}
x^{2}+y^{2}=\frac{1}{2} a^{2} . \tag{i}
\end{equation*}
$$

We must also have

$$
\begin{equation*}
\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right) \tag{ii}
\end{equation*}
$$

because the point must lie on the lemniscate. From equation (i) we get $x^{2}=$ $\frac{1}{2} a^{2}-y^{2}$, and then (ii) yields

$$
\frac{1}{4} a^{4}=a^{2}\left(\frac{1}{2} a^{2}-2 y^{2}\right) \Longleftrightarrow \frac{1}{4} a^{2}=\frac{1}{2} a^{2}-2 y^{2} \Longleftrightarrow y^{2}=\frac{1}{8} a^{2}
$$

Hence $y= \pm \frac{1}{4} a \sqrt{2}$. Then $x^{2}=\frac{1}{2} a^{2}-y^{2}=\frac{3}{8} a^{2}=\frac{6}{16} a^{2}$, so $x= \pm \frac{1}{4} a \sqrt{6}$. It follows that the tangent to the curve is horizontal at the four points

$$
\left(\pm \frac{a \sqrt{6}}{4}, \pm \frac{a \sqrt{2}}{4}\right)
$$

Problem 5

With the Lagrangian $\mathcal{L}(x, y)=x+x y-\lambda\left(y+x^{2} e^{y}-1\right)$, the necessary conditions for (x, y) to solve the problem are

$$
\begin{align*}
\partial \mathcal{L} / \partial x=1+y-2 \lambda x e^{y} & =0 \tag{1}\\
\partial \mathcal{L} / \partial y=x-\lambda-\lambda x^{2} e^{y} & =0 \tag{2}\\
y+x^{2} e^{y} & =1 \tag{3}
\end{align*}
$$

These equations are all satisfied at $\left(x_{0}, y_{0}\right)=(1,0)$ if $\lambda=1 / 2$.

