Answers to the examination problems in ECON 3120/4120, 24 November 2004

Problem 1

(a) $f^{\prime}(x)=2 x e^{-b x}+\left(x^{2}-a\right)\left(-b e^{-b x}\right)=\left(-b x^{2}+2 x+a b\right) e^{-b x}$,

$$
f^{\prime \prime}(x)=(-2 b x+2) e^{-b x}+\left(-b x^{2}+2 x+a b\right) e^{-b x}=\left(b^{2} x^{2}-4 b x+2-a b^{2}\right) e^{-b x}
$$

(b) With $a=5$ and $b=1 / 2$, we get

$$
\begin{aligned}
f^{\prime}(x) & =\left(-\frac{1}{2} x^{2}+2 x+\frac{5}{2}\right) e^{-x / 2}=-\frac{1}{2}\left(x^{2}-4 x-5\right) e^{-x / 2} \\
f^{\prime \prime}(x) & =\left(\frac{1}{4} x^{2}-2 x+2-\frac{5}{4}\right) e^{-x / 2}=\frac{1}{4}\left(x^{2}-8 x+3\right) e^{-x / 2}
\end{aligned}
$$

The stationary points of f are given by

$$
f^{\prime}(x)=0 \Longleftrightarrow x=-1 \text { or } x=5
$$

Further,

$$
f^{\prime \prime}(-1)=3 \sqrt{e}>0, \quad f^{\prime \prime}(5)=-3 e^{-5 / 2}<0 .
$$

Hence, $x=-1$ is a local minimum point for f and $x=5$ is a local maximum point.

The graph of $f(x)=\left(x^{2}-5\right) e^{-x / 2}$

Note that $f(x) \leq 0$ if $x \in[-\sqrt{5}, \sqrt{5}]$ and $f(x)>0$ if x is outside that interval. (See the figure - in problems like this it is usually a good idea to try to sketch the graph even if you are not asked to do so.) By the extreme value theorem, f has a global minimum point over $[-\sqrt{5}, \sqrt{5}]$, and it is clear that this point must be $x=-1$. It follows that $x=-1$ is a global minimum point for f over the entire real line, $\mathbb{R}=(-\infty, \infty)$. There is no global maximum point for f over \mathbb{R}, since $\lim _{x \rightarrow-\infty} f(x)=\infty$.
(c) Integration by parts yields

$$
\begin{aligned}
\int\left(x^{2}-5\right) e^{-x / 2} d x & =\left(x^{2}-5\right)\left(-2 e^{-x / 2}\right)+\int 4 x e^{-x / 2} d x \\
& =-2\left(x^{2}-5\right) e^{-x / 2}-8 x e^{-x / 2}+8 \int e^{-x / 2} d x \\
& =\left(-2 x^{2}-8 x+10\right) e^{-x / 2}-16 e^{-x / 2}+C \\
& =\left(-2 x^{2}-8 x-6\right) e^{-x / 2}+C
\end{aligned}
$$

It follows that

$$
\int_{0}^{b}\left(x^{2}-5\right) e^{-x / 2} d x=\left(-2 b^{2}-8 b-6\right) e^{-b / 2}+6 e^{0} \rightarrow 6 \text { as } b \rightarrow \infty
$$

because

$$
\lim _{b \rightarrow \infty} b^{p} e^{-b / 2}=\lim _{b \rightarrow \infty} \frac{b^{2}}{(\sqrt{e})^{b}}=0
$$

for every constant p. (Cf. equation (4) on page 264 in EMEA, page 224 in MA I.) Alternatively, one can use l'Hôpital's rule to determine

$$
\lim _{b \rightarrow \infty} \frac{-2 b^{2}-8 b-6}{e^{b / 2}}=-\frac{" \infty "}{\infty}=\cdots
$$

Problem 2

(a) Using elementary operations, we get

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & a \\
1 & 2 & b
\end{array}\right| \longleftarrow-1=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & a-1 \\
0 & 1 & b-1
\end{array}\right| \longleftarrow \leftarrow-1=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & a-1 \\
0 & 0 & b-a
\end{array}\right|=b-a .
$$

Of course, we could also have used cofactor expansion along a row or column.
(b) The determinant of the equation system is precisely the determinant from part (a), so by Cramer's rule, the system has a unique solution if $a \neq b$.

If $a=b$, then the system becomes

$$
\begin{align*}
& x+y+z=c \\
& x+2 y+a z=2 c \tag{*}\\
& x+2 y+a z=2
\end{align*}
$$

If $c \neq 1$, then the last two equations in $(*)$ contradict each other, and the system has no solutions. If $c=1$, the $(*)$ reduces to

$$
\begin{aligned}
x+y+z & =1 \\
x+2 y+a z & =2
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
x+y+\quad z & =1 \\
y+(a-1) z & =1
\end{aligned}
$$

which has infinitely many solutions (with one degree of freedom). This is obvious, since for any value of z, the last equation will determine y, and then x is given by the first equation.
Conclusion: The system has
(i) a unique solution if $a \neq b$,
(ii) several solutions if $a=b$ and $c=1$,
(iii) no solutions if $a=b$ and $c \neq 1$.

Problem 3

(a) With the Lagrangian

$$
\mathcal{L}(x, y, z)=x+2 y+\ln (1+z)-\lambda\left(x^{2}+y^{2}-a z\right)
$$

the necessary Lagrange conditions for (x, y, z) to be a solution become

$$
\begin{align*}
\left(\mathcal{L}_{x}^{\prime}=\right) & 1-2 \lambda x & =0 \tag{1}\\
\left(\mathcal{L}_{y}^{\prime}=\right) & 2-2 \lambda y & =0 \tag{2}\\
\left(\mathcal{L}_{z}^{\prime}=\right) & \frac{1}{1+z}+\lambda a & =0 \tag{3}
\end{align*}
$$

together with the constraint equation

$$
\begin{equation*}
x^{2}+y^{2}-a z=0 \tag{4}
\end{equation*}
$$

(b) From conditions (2) and (1) we get $2 \lambda y=2=4 \lambda x$. This shows that $\lambda \neq 0$, and so we get $y=2 x$. The constraint $x^{2}+y^{2}+3 z=0$ then yields $3 z=-x^{2}-y^{2}=$ $-5 x^{2}$, so $z=-\frac{5}{3} x^{2}$.

Conditions (3) and (1) now yield

$$
\frac{1}{1+z}=-\lambda a=3 \lambda=\frac{3}{2 x},
$$

so

$$
2 x=3(1+z)=3-5 x^{2} .
$$

Hence, $5 x^{2}+2 x-3=0$. This quadratic equation has the roots $x_{1}=3 / 5$ and $x_{2}=-1$. The equations $y=2 x$ and $z=5 x^{2} / 3$ then give the points $\left(x_{1}, y_{1}, z_{1}\right)=$ $(3 / 5,6 / 5,-3 / 5), \quad\left(x_{2}, y_{2}, z_{2}\right)=(-1,-2,-5 / 3)$ as the solutions of the first-order conditions. However, we must have $1+z>0$ for $f(x, y, z)$ to be defined, so z_{2} is unusable.

Given that there is a solution of the maximization problem, the solution must be

$$
\left(x_{1}, y_{1}, z_{1}\right)=(3 / 5,6 / 5,-3 / 5), \quad \text { with } \quad \lambda=1 /\left(2 x_{1}\right)=5 / 6
$$

The maximum value is $f_{\max }=x_{1}+2 y_{1}+\ln \left(1+z_{1}\right)=3+\ln (2 / 5)$.
(With $\lambda=5 / 6$, the Lagrangian becomes $\mathcal{L}(x, y, z)=x+2 y+\ln (1+z)-\frac{5}{6}\left(x^{2}+\right.$ $\left.y^{2}+3 z\right)$, which is concave. Hence, $\left(x_{1}, y_{1}, z_{1}\right)$ certainly is a maximum point.)
(c) (i) If $a=0$, the constraint becomes $x^{2}+y^{2}=0$, which gives $x=y=0$ without any restriction on z. We can then make $f(x, y, z)=f(0,0, z)=\ln (1+z)$ as large as we like, so there is no maximum.
(ii) With $a=1$, the constraint gives $z=x^{2}+y^{2}$, and so $f(x, y, z)=x+2 y+$ $\ln \left(1+x^{2}+y^{2}\right)$, which can also be made arbitrarily large. So there is no maximum in this case either.

Problem 4

(a) For every matrix \mathbf{C} we have $\left|\mathbf{C}^{2}\right|=|\mathbf{C}|^{2} \geq 0$, whereas

$$
\left|-\alpha \mathbf{I}_{3}\right|=\left|\begin{array}{ccc}
-\alpha & 0 & 0 \\
0 & -\alpha & 0 \\
0 & 0 & -\alpha
\end{array}\right|=-\alpha^{3}<0
$$

Hence, there is no matrix \mathbf{C} such that $\mathbf{C}^{2}=-\alpha \mathbf{I}_{3}$.
(b) $\left(\mathbf{B}+\frac{1}{2} \mathbf{I}_{3}\right)^{2}=\mathbf{B}^{2}+\mathbf{B}+\frac{1}{4} \mathbf{I}_{3}$, so

$$
\mathbf{B}^{2}+\mathbf{B}+\mathbf{I}_{3}=\mathbf{0} \Longleftrightarrow\left(\mathbf{B}+\frac{1}{2} \mathbf{I}_{3}\right)^{2}=-\frac{3}{4} \mathbf{I}_{3} .
$$

According to part (a), this equation has no solutions.

